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AVANT-PROPOS

1 La linéarité, une idée de base

Dans les années 60 et 70 du XX€ siecle, les promoteurs des « mathématiques modernes » avaient
proposé un fil conducteur unique et clair pour I’enseignement des mathématiques. Pour le dire
sommairement, ils privilégiaient les structures et ’enchainement déductif qui va des ensembles et
relations aux systemes de nombres et aux espaces vectoriels. Cette conception exhibait 'unité de
la mathématique, que ces promoteurs défendaient si éloquemment.

A partir de la fin des années 70, ce fil conducteur a été délaissé pour I'essentiel, et ’enseignement,
comme les programmes en font foi, est revenu aux divisions traditionnelles des mathématiques,
celles que nous avons héritées de 1’histoire plus ancienne. Il s’agit en gros de l'arithmétique, la
géométrie, I'algebre, 'analyse et les probabilités. Or ces divisions de la matiere mathématique ont
un sens. Dans une étude antérieure!, le CREM a montré que chacune d’elles est associée certes &
I’étude d’une certaine classe d’objets, mais aussi et peut-étre surtout a un mode de pensée. C’est
bien d’ailleurs pour cela qu’elles ont émergé au cours des siecles.

Quoiqu’il en soit, et peut-étre précisément parce qu’ils correspondent a des modes de pensée spéci-
fiques, ces chapitres ont tendance a se refermer chacun sur lui-méme. Et ’enseignement mathéma-
tique, considéré dans son ensemble, se constitue alors en compartiments plus ou moins étanches.
Les enseignants connaissent bien les difficultés, pour les éleves, des transferts de méthodes et d’in-
tuitions d’une matiere a une autre. Dans cette perspective, il manque des fils conducteurs, des liens
de parenté visibles qui favorisent la mobilité de la pensée.

Comme nous 'avons remarqué déja ci-dessus, le point de vue des structures a été dans une assez
large mesure occulté a partir des années 80. Or les structures peuvent étre considérées, en raison
méme de leur abstraction, comme un mode de pensée non spécifique, en ce sens qu’elles trans-
cendent les divisions traditionnelles des mathématiques et de ce fait favorisent les transferts. Elles
transcendent ces divisions, parce qu’elles sont au coeur, au principe méme de la pensée mathéma-
tique.

D’ou la question : n’avons nous pas assisté, autour des années 80, a un retour trop ample du
balancier de I’histoire ? N’aurait-il pas mieux valu, plutot que d’abandonner les structures, penser
a les enseigner autrement ? Telle est la question a laquelle le présent ouvrage propose des éléments
de réponse.

On a compris aujourd’hui que les structures ne peuvent pas étre au début de l’enseignement.
Ce qui vient d’abord, ce sont les grandeurs, les nombres, les formes, des questions a leur sujet,
des symboles qui soutiennent la pensée mathématique commencante. Les parentés de structure se
découvrent petit a petit. Et d’ailleurs, certaines structures sont plus prégnantes que d’autres.

Dans cet ouvrage, nous montrons le pouvoir éclairant de la structure linéaire. C’est celle qui sous-
tend les grandeurs et leur mesure, les rapports et les proportions, la similitude, ’algebre du premier

! Voir Les mathématiques de la maternelle jusqu’a 18 ans, CREM [1995], dans les chapitres 4 & 9, les sections
intitulées « Les nombres comme forme de pensée », « La géométrie comme forme de pensée », etc.
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degré, les combinaisons linéaires et les espaces vectoriels. L’idée de linéarité, qui apparait modeste-
ment a ’école maternelle, se construit par généralisations successives tout au long de la scolarité.
Elle est de celles — la principale peut-étre 7 — qui peuvent soutenir la conception d’un enseignement
en spirale, puisque de classe en classe, elle revient dans des contextes divers et éclaire des questions
de plus en plus vastes. L’'idée de structure linéaire n’est pas donnée au départ, elle s’élabore en
méme temps que s’approfondit I'expérience mathématique des éleves.

2 De la prime enfance a 1’age adulte

Une fois de plus?, le CREM propose ici un ouvrage qui traite de ’enseignement des mathématiques
de la prime enfance a I’age adulte. L’idée est qu’il est intéressant — voire nécessaire —, pour chaque
enseignant d’explorer non seulement les matieres au programme de sa classe, mais encore celles
d’avant et celles d’apres, puisque I’éducation mathématique forme un tout.

Le risque d’une étude adressée a des lecteurs aussi nombreux et divers est que beaucoup d’entre eux
ne la liront qu’en partie. Mais au moins prendront-ils conscience que leur travail quotidien a des
tenants et des aboutissants importants, et seront-ils tentés d’y aller voir. Qui plus est, les lecteurs
moins nombreux qui s’intéresseront a 1’ensemble sont sans doute ceux qui sont le plus susceptibles
de faire évoluer ’enseignement.

3 Creuser profond mais aussi servir en classe

Cette étude regroupe des contributions de deux sortes. D’une part des chapitres de nature épistémo-
logique et historique sur la structure linéaire. L’idée est de creuser profond, sur un plan théorique.
Ensuite des chapitres de situations-problemes adaptées a tous les ages de 1’école, montrant prati-
quement la structure linéaire en construction dans diverses matieres. Cette double face de notre
travail entraine un autre risque : c’est que le lecteur théoricien ne lise que ce qui l'intéresse im-
médiatement, et que le praticien fasse de méme. Notre espoir est que certains, les plus nombreux
possibles, cedent a la tentation d’éclairer un point de vue par 'autre, ce qui est — nous semble-t-il —
la meilleure fagon de saisir véritablement ’ensemble du probleme de 1’éducation mathématique.

4 Contenu de ’ouvrage

L’introduction reprend et détaille I'intérét de dégager un (voire plusieurs) fil conducteur pour 'en-
seignement des mathématiques.

La premieére partie, qui comporte quatre chapitres, concerne les éleves de deux ans et demi a douze
ans. Elle propose d’abord des situations-problemes sur les balances et les poids a 1’école maternelle.
Elle se poursuit par diverses activités destinées a 1’école primaire et utilisant le tangram. Viennent
ensuite un chapitre sur les comparaisons et mesures de capacités, et un autre, destiné a la fin du
primaire, sur les grandeurs, les pourcentages et leurs représentations graphiques.

La deuziéme partie vise les éleves de douze a quinze ans. et comprend deux chapitres, numérotés
5 et 6. Le chapitre 5 prend la suite du dernier chapitre de la premiere partie. Il traite d’abord des
pourcentages et de divers supports géométriques qui permettent de les visualiser, puis du theme

2 Voir les trois publications antérieures les plus importantes du CREM, & savoir : Les mathématiques de la
maternelle jusqu’a 18 ans [1995], Formes et mouvements, perspectives pour ’enseignement de la géométrie [2001] et
Construire et représenter, un aspect de la géométrie de la maternelle jusqu’a 18 ans [2001].
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général de la proportionnalité, dans ses expressions numérique (les tableaux de proportionnalité),
graphique et algébrique (les formules). Les contextes des questions posées sont divers : problemes
de troc, d’épargne, remplissage d’un réservoir d’essence. Le méme chapitre se termine par une
question de patterns de cubes et par une introduction des nombres entiers liée a des questions
d’alignement de points dans un systeme d’axes. Le chapitre 6 traite de la proportionnalité et
de la non-proportionnalité en géométrie, avec des questions de périmetres et d’aires et enfin une
introduction au théoreme de Thales conjointement avec des notions de perspective cavaliere.

La troisieme partie concerne les éleves de quinze a dix-huit ans. Elle comprend sept chapitres, qui
portent les numéros 7 a 13. Elle s’ouvre par une introduction historique consacrée aux méthodes
de fausse position et de double fausse position, permettant de montrer aux éleves que les pratiques
aujourd’hui communes sont apparues au terme d’une difficile maturation. Le chapitre 8 est une
introduction progressive au calcul vectoriel géométrique, partant de la notion de changement de
position. Le chapitre 9 complete le précédent par une initiation au produit scalaire et donc a
I'idée de bilinéarité. Les nombres complexes, considérés comme des vecteurs munis d’'un produit
particulier, permettent d’aborder efficacement des questions de géométrie euclidienne : ils sont la
matiere du chapitre 10. Le chapitre 11 propose une initiation simultanée a la réalisation de dessins
en Postscript et a la géométrie analytique. Les deux derniers chapitres de cette troisieme partie
rattachent I'idée de vecteur a celle de grandeur vectorielle en physique. Le chapitre 12 traite d’abord
de problemes simples d’équilibre de solides dans un champ de pesanteur uniforme, ce qui mobilise les
centres de gravité. Il étudie ensuite les conditions d’équilibre d’un point soumis a des forces, matiere
qui permet d’introduire la regle du parallélogramme. Enfin le chapitre 13 introduit & la méme loi
du parallélogramme, mais dans le contexte de la composition des vitesses pour des mouvements
uniformes et uniformément accélérés.

La quatrieme partie est entierement orientée vers I’histoire et 1’épistémologie des vecteurs. Elle
comprend les chapitres 14 et 15. Le premier des deux explique la genese des vecteurs dans le
contexte des nombres complexes, chez TAIT, disciple de HAMILTON, et BELLAVITIS. Le chapitre 15
tente une construction de l'idée de vecteur en partant de la géométrie analytique ordinaire et en
cherchant a dégager les expressions algébriques qui ont un sens géométrique indépendant du repere
choisi : ce sont les expressions que pour cela on qualifie d’intrinseques.

La cinquiéme partie enfin ne comporte qu'un seul chapitre, ce qui peut paraitre assez singulier. Cela
se justifie par le fait qu’elle propose une synthese de tout 'ouvrage : en renvoyant systématiquement
a tous les autres chapitres, elle dégage la notion de structure linéaire dans ses divers avatars de
la maternelle jusqu’a dix-huit ans. C’est donc a ce chapitre que le lecteur est invité a se reporter
chaque fois qu’il éprouve le besoin de savoir ot il en est.

Notons que nous n’avons pas couvert toutes les matieres qui relevent de 1'idée linéaire. Et cer-
taines de celles qui manquent au tableau peuvent méme étre considérées comme particulierement
importantes. Pour n’en citer que trois : les équations et les systemes algébriques linéaires, ainsi
que le calcul matriciel, la différentielle, qui est I’application linéaire tangente & une fonction, et les
équations différentielles linéaires. Mais ce qui releve de la structure linéaire dans le corpus entier
des mathématiques est gigantesque, et nous ne pouvions tout traiter. Nous espérons, quoiqu’il en
soit, avoir au moins montré une certaine direction de pensée.

Ajoutons enfin que ce travail résulte de la collaboration de toute une équipe dans laquelle chacun a
pu exprimer sa sensibilité. Nous avons cherché davantage la qualité dans la diversité, que I'expression
d’une pensée par trop monolithique.
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5 Présentation type des situations-problemes

Les situations-problemes rassemblées dans les trois premieres parties de ce rapport ont été congues
chacune pour des éleves déterminés, dans une tranche d’age donnée et possédant certaines connais-
sances préalables. Toutefois, elles peuvent étre adaptées, dans certaines limites, a d’autres éleves.
Chaque professeur en jugera.

3

Ces situations sont présentées selon un plan uniforme® comportant les rubriques suivantes :

De quoi s’agit-il 2 — Description, en une ligne ou deux, de I’activité proposée aux éleves.
Enjeux — Matieres couvertes et compétences visées.

De quot a-t-on besoin ? — Description du matériel requis. Relevé des connaissances supposées
chez les éleves.

Comment s’y prendre ? — Cette rubrique comporte des questions a proposer aux éleves, des
indications pour organiser le travail en classe, des éléments de réponses aux questions, et les éléments
de la théorie auxquels la situation aboutit normalement.

Echos d’une ou plusieurs classes — Indications sur le déroulement de l'activité dans 'une
ou lautre classe expérimentale. On releve les réactions les plus communes, mais aussi les plus
significatives, méme si elles sont isolées.

Prolongements possibles — Nouvelles situations-problemes, plus ou moins difficiles que celle
faisant I’objet principal de la section. Ces situations peuvent jouer le role de variantes, d’exercices,
de questions d’évaluation, de poursuite du travail pour les éleves mordus.

Vers ot cela va-t-il 2 — A quelles questions mathématiques plus avancées la situation en question
prépare-t-elle de maniere directe ou indirecte ? Quels rapports la situation en question entretient-
elle avec d’autres disciplines 7 Quelle place la situation occupe-t-elle dans la culture mathématique
globale 7

Commentaires — Eclaircissements de toutes natures susceptibles d’étre utiles aux enseignants et
aux éleves, comme par exemple des indications sur I'histoire des mathématiques, des commentaires
sur le caractere plus ou moins réaliste de certains modeles mathématiques, etc.

3 Ce plan est inspiré par E. C. WITTMANN et G. MULLER [1990] et [1994]. Nous I’avons mis au point & I’occasion
d’une recherche précédente (voir CREM [2001b]).
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Pourquoi est-il important de dégager un ou des fils conducteurs pour l’enseignement des ma-
thématiques, et comment y arriver 7 C’est le sujet de cette introduction, que 1'on s’est efforcé
de présenter de la maniere la moins technique possible, de sorte qu’elle soit accessible a toute
personne cultivée, méme brouillée avec les mathématiques. Il a fallu pour cela tenter une ga-
geure : sans faire de mathématiques, donner de cette discipline une idée raisonnablement fidele.
Cette derniere entreprise est de celles qu’il ne faut jamais abandonner, tant sont énormes les
malentendus a propos des mathématiques, méme chez beaucoup de personnes abondamment
diplomées.

On n’a pas tardé a s’apercevoir que la rigueur

ne pourrait pas s’établir dans les raisonnements,

si on ne la faisait pas entrer d’abord dans les définitions.
H. POINCARE

L’objectif de cette étude est de dégager, parmi d’autres sans doute, un fil conducteur pour ’en-
seignement des mathématiques de la prime enfance a ’age adulte. Pour mener a bien une telle
entreprise, il faut — cela va de soi —, prendre deux choses en compte : d’une part les mathématiques
et d’autre part les éleves. Commencons par les mathématiques qui sont a la fois une forme de pensée
et un ensemble structuré de connaissances, c’est-a-dire une science. Nous commencgons par la non
pas parce que les mathématiques seraient, lorsqu’il est question de concevoir leur enseignement,
plus importantes que les éleves, mais seulement pour assurer la clarté de 'exposé.

1 Logique et rigueur : le sens étroit

Essayons tout d’abord de dégager un caractere qui distingue assez clairement les mathématiques
des autres sciences dites exactes, des sciences humaines, de la philosophie et de la pensée commune.
Pour cela, analysons la portée et 'usage, dans ces différents domaines, des mots et des symboles
comme moyens d’expression de la pensée.

En mathématiques, chaque mot (chaque symbole aussi) est défini de maniére univoque par quelques
propriétés completement intelligibles, et renvoie de ce fait a une classe de choses connue sans
ambiguité. Grace a cela, ces mots et symboles peuvent étre engagés dans des raisonnements déductifs
de longue haleine!. Ce qui est démontré est siir et peut servir de point de départ & de nouvelles
déductions. La pensée mathématique n’appuie ses certitudes sur aucun soutien extérieur.

Dans les sciences dites exactes, comme par exemple la physique et la chimie, on se donne des
modeles mathématiques des phénomenes que 'on étudie. Si ces modeles sont assez précisément
décrits pour participer de l'univocité des mathématiques, alors travailler dans un modele, c’est

! Dans le Discours de la méthode, DESCARTES parlait de « ces longues chaines de raisons, toutes simples et faciles,
dont les géometres ont coutume de se servir pour parvenir a leurs plus difficiles démonstrations ».
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faire des mathématiques. Et rien n’empéche dans ces conditions de construire des démonstrations
aussi longues que nécessaire. Mais les modeles représentent des situations ou des phénomenes réels,
et la question se pose toujours de 'adéquation du modele a la réalité, de la conformité des déductions
aux données expérimentales. En ce sens, les sciences exactes fondent leurs énoncés pour la forme
sur les démonstrations mathématiques, et pour le fond sur la conformité a ’expérience.

Les mots utilisés dans les autres domaines de la connaissance sont aussi, comme les mots et symboles
mathématiques, cernés par des définitions, les dictionnaires en font foi. Mais ces définitions n’ont
pas la méme univocité logique, et de ce fait elles ne peuvent pas étre engagées dans des déductions
de quelque ampleur. On les précise souvent par des exemples. Des mots tels que maison, cheval,
révolution, liberté, et méme mathématiques, sont définis d’une fagon qui parle a 'intuition et renvoie
a un ensemble de choses cerné approximativement. Tout essai de déduction stricte qui les utilise
s’enlise au bout de quelques pas.

Ceci ne veut pas dire, loin de la, que ces notions seraient inutilisables et donc inutiles. Mais on ne
peut les appliquer a des objets particuliers qu’a coup de commentaires, de correctifs et de nuances.
La rigueur mathématique n’est autre que le respect de la logique. La rigueur dans les sciences
humaines et bien souvent dans la pensée commune, s’appuie certes aussi sur la logique, mais tout
autant sur le soin avec lequel on introduit les correctifs et les nuances qui assurent la fidélité a un
certain objet?.

Ce caractere des sciences humaines est compatible avec la production d’études longues et perti-
nentes, mais qui par dela 'argumentation s’appuient aussi sur des observations, des expériences,
des enquétes.

Le cas de la philosophie est plus subtil. Les philosophes sont coutumiers de développements de
longue haleine. Dans la mesure ou ceux-ci sont purement spéculatifs, et ou par nature ils ne se
fondent pas seulement sur la déduction pure, ils ne peuvent conclure de facon totalement convain-
cante et demeurent donc des objets de débats. Ceci ne leur enléve ni leur pertinence, ni leur intérét,
en tant que matieres a réflexion et sources d’orientations intellectuelles et morales.

Nous appellerons ci-apres sens étroit — sans connotation péjorative pour 'adjectif étroit —, le sens
des mots et des symboles tel qu’il est codifié, dans n’importe quelle discipline intellectuelle, pour
assurer ou favoriser la solidité des raisonnements et des arguments. Le sens étroit est associé a
I'univocité, a la rigueur de la pensée.

2 Intuition et créativité : le sens large

Mais un mot (ou un symbole) n’est jamais entierement cerné par sa définition. Chacun renvoie
dans la mémoire aux questions et contextes ou il a été rencontré et a joué un role, aux exemples
dans lesquels il s’est incarné, aux choses qui lui ressemblent et a celles qui s’opposent a lui. Ces
liens sont rationnels ou non, nécessaires ou fortuits, forts ou ténus. C’est parce que les mots et
les concepts ont beaucoup de référents, beaucoup de liens entre eux qui forment comme un tissu
mental, que la pensée est mobile et peut étre créative, que I'imagination peut soupgonner (deviner)
des propriétés. Bien entendu, ces choses que 1’on soupgonne, il faut ensuite les infirmer ou confirmer

2 Pour répondre A cette difficulté, le sociologue allemand MAX WEBER (cf. M. WEBER [1965]) a proposé la notion
d’idéal type. Un idéal type est un concept répondant & une définition la plus claire possible. Il est doté d’une netteté
logique qui en fait un bon instrument d’argumentation, mais cette netteté n’est souvent obtenue qu’au prix d’une
schématisation, une stylisation de la réalité. Ce qui ne va toutefois jamais jusqu’a permettre de longues déductions.
Le fait qu'un idéal type s’écarte ainsi de la réalité par raison de clarté implique ce que nous disions ci-dessus, a
savoir qu’on ne peut 'utiliser pour étudier adéquatement des cas particuliers qu’en ’entourant de commentaires et
de correctifs.
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en les ramenant dans le champ du sens étroit. Nous appellerons ci-apres sens large d’'un mot (ou
d’un symbole) I'ensemble, I’essaim des référents auxquels il renvoie — rationnellement ou non —,
dans la mémoire et I'imagination.

Toute pensée en recherche, toute pensée mathématique créative en particulier, est une sorte de
contrepoint entre le sens large et le sens étroit, entre I'imagination et I'intuition d’une part, et la
rigueur de 'autre. Comme 1’a dit POINCARE [1908], « c’est par la logique qu’'on démontre, c’est
par l'intuition qu’on invente. Savoir critiquer est bien, savoir créer est mieux. » Une pensée réduite
au sens large, a I'imagination débridée, s’agiterait beaucoup et n’aboutirait nulle part. Une pensée
réduite au sens étroit serait immobile, car elle ne saurait ou aller.

Le sens large est variable d’une personne a l'autre. Un enfant a dans sa mémoire une foule de
choses qui relevent de ’expérience commune, de ce qu’on lui a enseigné a 1’école et de tout ce qu’il
a brodé de raisonnable ou méme d’un peu fou autour de cela au fil de sa pensée libre et de ses
réves. Une personne qui a fait beaucoup de mathématiques a accumulé en outre dans sa mémoire,
non seulement des théories bien en forme, mais encore une énorme quantité d’images, d’analogies,
de perspectives, étranges ou non, d’intuitions, qui mélangent souvent mathématiques et pensée
commune, et constituent le terreau de sa créativité.

3 La déduction comme fil conducteur

Apres ces considérations sur les deux registres indissociables de la pensée mathématique, examinons
la forme générale de la science mathématique comme ensemble structuré de connaissances. Un survol
historique s’avérera utile en 1'occurrence.

Nous avons vu que la pensée mathématique est capable de produire de longues chaines de déduc-
tions. Le premier exemple majeur que I'histoire nous en ait 1égué est constitué par les Eléments
d’EucLIDE au III® siecle av. J.-C.? C’est un vaste traité de géométrie et d’arithmétique dans le-
quel tous les théoréemes sont tirés par déduction d’un petit nombre d’axiomes. Les Eléments sont
demeurés en occident, quasiment jusqu’au XIX® siecle, le modele de la rigueur mathématique.

Toutefois, on s’est apercu au XIX€ siecle qu’ EUCLIDE utilisait certains axiomes non explicités, qu’il
s’appuyait sur I’'une ou ’autre proposition intuitive, non rattachée déductivement aux axiomes. En
d’autres termes, il ne satisfaisait pas entierement a ce qu’étaient devenus les critéres de rigueur a
la fin du XIX® siecle. Mais en 1899, DAvVID HILBERT a donné une version nouvelle de la géométrie
d’EUCLIDE, entierement conforme a ces criteres.

A cette méme époque, bien d’autres théories mathématiques avaient été développées, la plupart en
dehors du cadre euclidien. Elles concernaient de nouvelles formes de la géométrie, les nombres, 1’al-
gebre, 'analyse, etc. Ces théories avaient chacune la forme dont nous avons parlé, a savoir celle d’un
systeme déductif long et rigoureux, accroché a quelques axiomes. Toutefois, elles coexistaient dans
un certain désordre, et leur foisonnement faisait désirer non seulement une organisation d’ensemble,
mais encore et surtout un fondement unique.

Et c’est la ce qu’a réalisé le XX¢ siecle. Ces longs enchainements déductifs coexistants ont été
organisés en une architecture d’un seul tenant, tout entiere déduite des quelques axiomes de la
théorie des ensembles. Ce résultat spectaculaire, sans doute peu connu du grand public, a frappé les
imaginations des mathématiciens. Il constitue une preuve de fait de 'autonomie des mathématiques,
de leur capacité d’avancer sans dérailler sur de tres longues distances — peut-étre indéfiniment 7 —,
en s’appuyant sur 'univocité de leurs concepts. Le premier traité qui ait matérialisé cet effort de

3 Les mathématiques antérieures n’ont pas produit de monument déductif comparable.
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synthese a été publié en de nombreux volumes a partir de 1939 par un groupe de mathématiciens
frangais rassemblés sous le pseudonyme de NICOLAS BOURBAKI.

Pour arriver a cette organisation axiomatique globale, il a fallu concentrer I'attention sur les en-
chainements logiques, ce qui ne peut se faire avec toute la rigueur et la streté de pensée requise
qu’au détriment des autres registres de la pensée mathématique. La question qui s’impose a tout
moment dans ce genre d’entreprise est, pour le dire familierement : qu’est-ce qui dépend de quoi ¢
Et pour y répondre, il faut écarter de la réflexion les perceptions, les mouvements, les intuitions, les
conjectures. Il faut écarter les questions du type : d’ou cela vient-il 7 pour résoudre quels problemes
a~t-on inventé cela 7 y a-t-il d’autres applications possibles 7 y a-t-il des images ou des analogies qui
aident & saisir telle ou telle partie 7 Bref il faut, par raison de méthode et de facon radicale, réduire la
pensée au sens étroit. Ce qui n’a — soulignons-le — jamais empéché les mathématiciens qui ’ont fait
de naviguer par ailleurs avec bonheur dans le sens large. Mais il reste que le produit fini est 1a, sous
forme de traité austere, séparant soigneusement et a juste titre les parties strictement déductives
d’éventuelles allusions a I’histoire et aux contextes. Dans I'histoire, il y a d’abord des questions,
des problemes, et on construit des théories pour y répondre. Dans les mathématiques réécrites dé-
ductivement, il y a d’abord les théories, et ensuite les problemes passés au rang d’applications. Et
dans beaucoup de traités, il n’y a pas d’applications.

Il importe d’ailleurs d’observer ici un paradoze du sens large. On pourrait dire sans trop déformer
la vérité que les mathématiques présentées déductivement comme dans le traité de BOURBAKI ne
sont rien d’autre que les mathématiques réduites au sens étroit. Mais il faut tout de suite nuancer
cette vue des choses. Comment procede en effet celui qui aborde un traité déductif et s’y enfonce ?
Il commence par déchiffrer le texte pas a pas, en vérifiant chaque implication. Mais il ne peut pas
poursuivre longtemps ce travail ingrat. II 'interrompt fréquemment pour se donner des exemples,
il s’interroge sur la marche générale de la pensée, sur ses motivations et ses moyens, il repere les
passages cruciaux et les distingue des points techniques mineurs, il circule intuitivement avec de
plus en plus d’aisance a travers la théorie. On peut dire en bref qu’il se construit un nouveau
sens large. Et si on continue & penser que l'exposé déductif pur renvoie au sens étroit, alors le
lecteur développe en quelque sorte un sens large du sens étroit, nourri par une intuition des formes
abstraites. Le sens étroit, les implications considérées une a la fois, fut-ce dans le bon ordre, sont
imbuvables. Tout le monde, tout mathématicien a besoin de relever la téte et de regarder en arriere
et en avant, et méme jusqu’a 1’horizon.

Ce qui par contre s’avérera éclairant pour nous est de réaliser que les mathématiques ainsi recons-
truites a partir de la théorie des ensembles vont des structures pauvres vers les plus riches. Qu’est-ce
que cela veut dire ? Cette question mérite un développement assez long.

4 Les structures pauvres et les structures riches

Qu’est-ce qu’'une structure pauvre 7 Qu’est-ce qu’une structure riche ? Pour comprendre cela,
regardons d’abord du co6té de la géométrie, et pour la facilité, bornons-nous a la géométrie plane.
Cette géométrie a pour vocation d’étudier toutes les figures planes, et il y en a vraiment beaucoup,
d’une infinité de formes et de tailles. Il y en a tellement que ’on n’arrive a se faire une idée que
d’une toute petite partie d’entre elles.

On dit d’une géométrie qu’elle est riche lorsqu’elle distingue et décrit beaucoup de types de figures
différents. Et pour faire cela, elle doit bien entendu s’appuyer sur un nombre suffisant de proprié-
tés. La géométrie habituelle, qui est aussi la géométrie d’EUCLIDE , est une géométrie riche. On y
étudie les propriétés d’alignement, les intersections, le parallélisme, les longueurs, les angles et leurs
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mesures. On y distingue les polygones des cercles, les carrés des rectangles, ceux-ci des parallélo-
grammes, ces derniers des trapezes, etc. Ou plus exactement, parmi les trapezes on distingue les
parallélogrammes, parmi ceux-ci les rectangles, et parmi ces derniers les carrés.

Une géométrie un peu moins riche que celle-1a porte le nom de géométrie affine. On y distingue moins
de types de figures que dans la géométrie euclidienne, ce qui va de pair avec le fait qu’on y considere
moins de propriétés. En géométrie affine, on étudie les propriétés d’alignement, d’intersection et
de parallélisme, mais on ne s’intéresse pas de maniere générale aux longueurs, et on ne mesure pas
les angles. A cause de cela, on ne distingue plus par exemple les carrés des rectangles, ni ceux-ci
des parallélogrammes : il s’agit dans tous les cas de quadrilateres possédant deux paires de cotés
paralleles. Mais on distingue les parallélogrammes des trapezes, car ces derniers peuvent n’avoir
qu’'une paire de cotés paralleles.

Une géométrie encore moins riche — on peut aussi dire plus pauvre —, que la géométrie affine est la
géométrie projective. Dans celle-ci, on distingue encore moins de types de figures, parce que I'on
s’intéresse a moins de propriétés. On ne retient plus que les propriétés d’alignement et d’intersection,
et on exclut le parallélisme et a fortiori la mesure des longueurs et des angles. Dans ce cadre-la, un
quadrilatere en vaut un autre, puisque la seule chose que 1’on considere est le fait qu’il y ait quatre
cOtés qui se coupent deux a deux en quatre sommets. Par contre, on distingue bien les quadrilateres
des triangles et des pentagones.

Une géométrie encore plus pauvre que ces trois premieres est celle qui porte le nom de topologie. On
ne s’y intéresse plus quasiment a aucune des propriétés que nous avons évoquées jusqu’a présent.
Tout ce qui demeure est une propriété qui se trouve dans les autres géométries, mais que nous
n’avons pas mentionnée encore, a savoir la continuité. En topologie, on distingue les figures d’un
seul tenant, que l'on qualifie de connexes, et les autres. On distingue aussi les figures en boucle
fermée et les autres : les carrés, triangles, rectangles, cercles, ellipses sont des boucles fermées et
sont donc équivalents en topologie ; les angles, les lignes brisées ouvertes sont des figures d’un autre
type. Parmi les figures en boucle fermée, on distingue aussi celles qui ne se recoupent pas de celles
qui se recoupent une fois comme le chiffre 8, et de celles qui se recoupent deux fois, trois fois, etc.

Résumons-nous : de deux structures qui étudient un méme ensemble d’objets, on dit que 1'une est
pauvre si elle s’intéresse a peu de propriétés et qu’en conséquence elle discerne peu de catégories
d’objets, et on dit qu’une autre est plus riche lorsqu’au contraire elle étudie davantage de propriétés
et discerne dans I’ensemble davantage de catégories d’objets?.

5 Voir et concevoir

Les conséquences de cette distinction entre structures plus ou moins riches ou pauvres sont consi-
dérables quant a la maniere d’imaginer — de « voir dans sa téte » —, et de concevoir les catégories
d’objets. Si une catégorie est peu nombreuse (parce qu’elle possede de nombreuses propriétés), on
y accede sans trop de peine en imagination. On se représente assez facilement tous les carrés, et
meéme tous les rectangles possibles : I'intuition joue a plein. Par contre, si une catégorie est im-
mensément nombreuse et ne possede qu'un tout petit nombre de propriétés, il devient impossible
de la parcourir en imagination et donc, pour 1’étudier de maniére quelque peu siire, on est bien
forcé de se concentrer davantage sur ces propriétés et leurs conséquences logiques. Les intuitions

4 Cest un peu comme en biologie, ol tous les objets que I’on étudie sont des étres vivants. Il faut donner davantage
de caractéres pour discerner les regnes végétal et animal, davantage encore pour arriver dans le régne animal aux
vertébrés et invertébrés, et ainsi de suite pour décrire les reptiles, les mammifeéres, etc., puis les ruminants, puis les
bovidés. Et donc en biologie aussi, moins il y de caractéres imposés, plus la classe des étres visés est vaste, diverse,
difficile & imaginer.
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globalisantes échappent et la déduction en devient plus nécessaire. Pour conclure surement, il faut
faire plus grande la part de I'intellect, concevoir a défaut de voir. Il est par exemple beaucoup plus
difficile d’imaginer I’ensemble des quadrilateres que celui des rectangles. On voit des choses sur les
rectangles sans trop de risques de se tromper, alors que les quadrilateres quelconques relevent avant
tout du raisonnement.

Il faut se méfier d’une confusion possible. On pourrait croire par exemple que la topologie est une
discipline simple parce qu’on y étudie peu de propriétés, et que, pour le bon sens, étudier peu de
propriétés semble bien plus facile que d’en étudier beaucoup. Mais c’est la une illusion de simplicité.
Car on ne fait pas si facilement I'impasse sur 'intuition. Celui qui, en topologie, connait les axiomes
et quelques exemples n’ira pas bien loin. Par contre celui qui a exploré longuement ces immenses
catégories d’objets ayant peu de propriétés, qui dans le cours de ses réflexions peut en évoquer
de toutes sortes a titre d’exemples et de contre-exemples, celui-la aura en topologie une démarche
créative et critique. Nous retrouvons ici, et ce n’est pas un hasard, le sens large et le sens étroit,
ainsi que 'appui qu’ils prennent I'un sur 'autre.

A la lumitre de la distinction entre structures pauvres et riches, reprenons nos considérations sur
les mathématiques reconstruites au XX° siecle. La théorie des ensembles est la plus pauvre de
toutes. Elle s’occupe de peu de propriétés, la premiere d’entre elles étant 'appartenance d’un objet
a un ensemble. Elle ne discerne que des catégories d’objets en petit nombre et chacune immense :
les intersections, les réunions, les relations, les fonctions, ... Le reste des mathématiques passe —
pour le dire trés schématiquement —, par la construction de trois types de structures, qualifiées de
structures méres par BOURBAKI : ce sont les structures algébriques et topologiques et les structures
d’ordre. Ce n’est pas ici le lieu de les présenter en détail. Chaque structure de I'un de ces types
est définie par tres peu de propriétés et couvre un champ d’objets immense, extrémement varié,
impossible a imaginer globalement, ou les intuitions apportent par conséquent plus de conjectures
que de convictions fortes, et ou, par conséquent encore, le dernier mot revient au seul raisonnement.

Il faut ensuite avancer encore longuement dans les chaines et les enchevétrements de déductions
pour aboutir a ces objets plus familiers, plus riches de propriétés que sont les nombres, les figures
et les fonctions particulieres étudiés dans I'enseignement élémentaire.

Etant donné la difficulté d’acces de lintuition aux structures pauvres, on comprend que dans
I’histoire des mathématiques, les structures riches soient apparues avant les pauvres. Celles-ci ont
été le produit d’un trés lent processus de clarification des dépendances logiques qui traversent les
matieres étudiées. Les géométries sont exemplaires a cet égard. Celle I’EUCLIDE date d’environ 300
ans avant J.-C. La projective est née au XVII® siecle des travaux des peintres de la renaissance sur
les représentations fideles des objets de ’espace. La topologie s’est constituée vers le début du XX¢
siecle pour résoudre des questions liées autant a I’analyse qu’a la géométrie.

Une observation capitale s’impose ici. On pourrait croire que 1'organisation déductive globale des
mathématiques n’a d’autre intérét que d’unifier la discipline et d’assurer son fondement. Il n’en
est rien. L’identification, aux XIX® et XX¢ siecles, de structures abstraites entretenant entre elles
des liens fermement établis, a fourni a la pensée mathématique des outils d’une efficacité inégalée
jusque-la. Des qu'un mathématicien travaillant dans un contexte problématique donné y découvre
Iexistence d’une structure qui lui est familiere par ailleurs, il dispose, pour avancer dans son travail
de compréhension, de toutes les propriétés de cette structure.

6 Les fils conducteurs de ’enseignement jusqu’en 1980

Jusqu’ici, nous avons longuement parlé de la science mathématique. Comme on s’en rendra compte
dans la suite, il fallait passer par la pour comprendre ce qu’ont été les fils conducteurs de 'en-
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seignement des mathématiques depuis le milieu du XX¢ siecle, et ce qu’ils pourraient étre de nos
jours.

Jusqu’aux années 60, sauf exception, on enseignait a ’école primaire I'arithmétique élémentaire et
un peu — tres peu —, de géométrie intuitive. On enseignait ensuite a 1’école secondaire encore un
peu de géométrie intuitive, puis vers 14 ans la géométrie d’EUCLIDE plus ou moins réaménagée,
I'algebre héritée du XVIII® siecle et quelques éléments d’analyse hérités du XIX®. A cette époque,
il n’existait pas pour l’enseignement des mathématiques de fil conducteur traversant la discipline
entiere. Les chapitres enseignés étaient ceux qui étaient successivement montés du fond des siecles.

Dans les années 60 et 70, la réforme dite des « mathématiques modernes » a tenté une mise a jour de
I’enseignement. Le fil conducteur était alors celui de la déduction qui va des ensembles, relations et
fonctions aux diverses catégories de nombres, aux structures algébriques, a une géométrie algébrisée
et aux débuts de I'analyse. Ce fil conducteur, proclamé par les promoteurs de la réforme, était donc
celui qui va des structures pauvres vers les plus riches. Le modele a suivre était celui du traité de
BOURBAKI. L'unité de la mathématique devait inspirer et imprégner ’enseignement®. Il importait
d’enseigner des le départ des concepts définitifs, ceux qui appartiennent aux mathématiques d’au-
jourd’hui. Certes, il fallait les rendre assimilables par les enfants en en cherchant les expressions les
plus simples et surtout en les illustrant de quelques exemples familiers. On considérait en tout cas
comme une source de difficultés pour les éleves le fait d’ajuster un concept en cours de route pour
l'adapter a de nouveaux contextes.

Ce fil conducteur était clair pour les mathématiciens qui le promouvaient, mais beaucoup moins
pour une partie importante des enseignants et pour la majorité des éleves. Ainsi par exemple, du
champ immense couvert par la théorie des ensembles, les éleves n’avaient acces au départ qu’a
quelques exemples relativement insignifiants. Le sens — la foule des référents de cette théorie —, se
construisait pour eux trop lentement, et donc ils ne pouvaient pas voir vers quelles applications on
les menait.

D’autre part, la réforme des « mathématiques modernes » a suscité d’emblée une controverse
majeure. Pour certains® cet enseignement devait commencer vers quatorze ans, voire plus tard.
Pour d’autres, tels que PAPY et REVUZ, il pouvait commencer au début du secondaire’. Et méme
I'idée d’enseigner, des 1’école élémentaire, en allant des structures pauvres vers les plus riches, a
été défendue avec force par PIAGET® et tres largement appliquée, entre autres aux Etats—Unis, en
Belgique et en France.

Dans les faits, la réforme des « mathématiques modernes » a été élaborée d’abord pour les classes
supérieures du secondaire”, ensuite pour le secondaire inférieur et aprés seulement pour 1’école
élémentaire. Ainsi le fil conducteur qui l'inspirait n’a pas été concu dans 'ordre naturel des ap-
prentissages, qui est I'ordre chronologique. Cela pose question et nous y reviendrons. On se rend
compte en outre aujourd’hui que I'adaptation des « mathématiques modernes » a ’enseignement
élémentaire s’est appuyée sur une collaboration insuffisante entre spécialistes des mathématiques
et de I’épistémologie génétique, entre autres PIAGET!Y.

5 J. DIEUDONNE, membre du groupe BOURBAKI, était un promoteur éloquent de la réforme. L’un des manifestes
les plus clairs de celle-ci est la préface de son ouvrage : Algébre linéaire et géométrie élémentaire, [1963]. Pour plus
de développements sur les « mathématiques modernes », voir entre autres R. BKOUCHE et al. [1991] et S.M.B. [1984].

5 Voir surtout J. DIEUDONNE [1963] et G. CHOQUET [1963].

" Voir par exemple G. PAPY [1963].

8 Voir J. PIAGET [1947].

9 Cf. 0.E.C.E. [1961].

10 Celui-ci n’a cessé de proclamer que les enfants acquierent spontanément les notions de géométrie et d’arithmétique
en allant des structures pauvres vers les plus riches, c’est-a-dire dans ’ordre inverse de leur découverte historique.
Cette affirmation est loin d’étre claire, tant est grande la distance entre les concepts mathématiques du XX siecle et
les notions acquises par les enfants, et elle a fait ’objet d’interprétations quasi littérales.



12 Introduction

Quoiqu’il en soit de ces difficultés d’application, ’enseignement des mathématiques suivait a I’époque
un fil conducteur unique, clair et cohérent, celui de la structure déductive de la science mathéma-
tique elle-méme.

7 La situation actuelle

Qu’en est-il actuellement ? Les « mathématiques modernes » n’ayant pas donné les résultats es-
comptés, d’autres réformes ont suivi, inspirées par d’autres idées. Aujourd’hui, et en s’en tenant
aux grandes lignes, on observe du coté des matieres traitées : une insistance beaucoup moindre sur
les fondements (ensembles, relations, construction des systémes de nombres) et sur les structures
présentées axiomatiquement, un recentrage de I’algebre sur les polynomes, les fonctions rationnelles
et les équations des premier et deuxieme degrés, un retour a la géométrie des figures accompagné
d’une initiation aux vecteurs et a la géométrie analytique, un recours aux transformations, prin-
cipalement planes et appliquées a I’étude des figures (plus guere de transformations étudiées pour
elles-mémes), un développement du traitement de données, en y comprenant les statistiques et
probabilités, et enfin I'usage des calculatrices et, dans une mesure croissante, des ordinateurs.

Les « mathématiques modernes » ont laissé des traces dans cet enseignement. On ne retrouve plus
dans celui-ci la construction d’EUCLIDE, qui €tait un fil conducteur majeur pour la géométrie dans la
premiere moitié du XX€ siecle. On y découvre non pas un exposé ordonné des géométries projective,
affine et euclidienne, mais une conscience plus claire de la hiérarchie logique des géométries. On
observe aussi un usage plus général et plus précoce des fonctions, des graphiques de fonctions et de
leur interprétation, et de la géométrie analytique élémentaire. On s’accordera a reconnaitre qu’il y
a, dans cette évolution, beaucoup de points positifs.

Quels sont d’autre part les principes qui inspirent aujourd’hui la conception de I’enseignement des
mathématiques et en particulier des programmes ? D’abord on essaie de cerner des « mathématiques
du citoyen », ou encore une culture mathématique de base. Le danger est que cette culture soit
identifiée a des mathématiques du pur quotidien. On y fait une part trop étroite aux probabilités
et statistiques.

D’autre part, l'insistance se porte davantage sur des compétences que sur des connaissances, sans
pour autant que ces deux notions soient concues comme indépendantes I'une de lautre!!. Les
compétences, entre autres pour ce qui concerne les mathématiques, sont le plus souvent la capacité
de mobiliser ses connaissances & bon escient. Un effort est fait pour promouvoir cette vue équilibrée
des choses. Toutefois, un effet pervers de cette « pédagogie des compétences » est qu’'une partie des
enseignants pensent encore développer les compétences en elles-mémes, et parfois méme une a la
fois.

Enfin un vaste mouvement milite en faveur d’un enseignement par situations-problémes, qui met
en avant autant I'intuition et la créativité que la logique et la rigueur, c’est-a-dire les deux poles
de 'activité mathématique. I1 y a d’ailleurs un lien naturel entre les compétences et les situations-
problemes, puisque les compétences fondamentales — celles qui sont constitutives de la maturité
intellectuelle —, sont aussi celles qui sous-tendent la résolution de problemes. Par ailleurs on souligne
qu’on ne peut enseigner uniquement par problémes, car il faut organiser des moments de mise en
ordre et de synthese. L’enseignement par problemes s’avere plus difficile que les autres formes
d’enseignement. Il requiert des enseignants un niveau de formation qui est loin d’étre toujours
atteint actuellement!?.

1 Cf. J.-P. CAZZARO et al. [2001] et CREM [1995].
12 Nous ne saurions trop souligner les dangers de cette situation. Sur la notion de compétence, les situations-
problémes et les mathématiques du citoyen, voir entre autres CREM [1995].
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Une autre tendance de ’enseignement d’aujourd’hui est la volonté de promouvoir I'usage des moyens
informatiques. L’intention est double : d’une part les machines apportent la possibilité de nouvelles
explorations (par exemple des fluctuations d’échantillonnage), et d’autre part, en effectuant les
taches de routine (les calculs numériques ou formels), elles liberent du temps pour les questions de
fond.

La référence aux trois éléments clés que sont les mathématiques du citoyen, les compétences, les
problemes, montre que l'intérét se porte aujourd’hui autant sinon davantage vers la personne de
I’éleve, ses capacités et son insertion sociale que vers la science mathématique comme corpus de
connaissances. On dit, et c’est bien raisonnable, qu’il faut partir de ’éleve et de ses connaissances,
souvent plus proches du savoir commun que des mathématiques. On dit que I’éleve doit construire
son savoir, bien entendu avec toute ’aide nécessaire du professeur, et sans oublier que les mathé-
matiques constituées, ou certains de ses chapitres, sont le terme de cette construction.

8 Que faire maintenant ?

Revenons a cette idée de partir de 1’éleve pour aller vers les mathématiques. C’est une idée simple
et saine. Mais c’est en méme temps une gageure. Car la question n’est plus, comme a 1’époque des
« mathématiques modernes », d’inculquer une science bien connue, mais plutot de partir d’'un savoir
pour en construire un autre. Pour concevoir une ligne directrice de l’enseignement des mathéma-
tiques, il ne suffit plus de connaitre les mathématiques et de s’appliquer a les exposer clairement
depuis le début. Il faut d’abord étre familier du savoir de I’éleve et chercher par quels aménagements
successifs et motivés on pourra en tirer le savoir mathématique souhaité. Dans cette optique, il n’est
plus guere question d’inculquer des concepts définitifs.

Comment les choses se présentent-elles ? Le fait le plus important est que la partie du savoir de
I’éleve qui a vocation de donner naissance au savoir mathématique, cette partie est déja structurée.
Par exemple, lorsqu’un petit enfant réalise qu'un objet solide déplacé peut étre ramené a sa position
de départ, il rencontre une opération inversible, comme celles dont il est question dans la théorie
des groupes. PIAGET [1937] a longuement expliqué cela. Lorsque 'enfant met deux batonnets bout
a bout, il réalise, avant toute mesure et dans le champ des seules grandeurs, une addition de deux
longueurs, et cette addition est entre autres commutative. On pourrait multiplier les exemples.

Bien entendu, ’enfant ne théorise pas ces propriétés de structure. Il les vit au niveau purement
sensori-moteur. Mais ces structures vécues sont néanmoins les germes d’ou sortiront les mathéma-
tiques devenues plus tard conscientes et opératoires.

Un deuxieme fait important est que ces structures qui sous-tendent les activités psycho-motrices
des enfants ne sont que de petits morceaux, des germes des structures évoluées vers lesquelles tend
I’enseignement. Mais elles préfigurent celles-ci.

La question centrale qui se pose est donc d’élaborer un fil conducteur qui parte de ces structures
embryonnaires pour aboutir aux structures classiques. Pour ce faire, nous proposons dans cette
étude de partir des deux opérations que les enfants acquierent le plus spontanément : d’une part
I’addition des grandeurs, premiere opération binaire interne, et ensuite, grace a l'itération de la
somme, la multiplication d’une grandeur par un nombre naturel, qui est une premiere opération
binaire externe. On a la, des les premieres années de la vie, une préfiguration de la structure linéaire,
celle qui exprime la proportionnalité et les phénomenes apparentés.

Partant de la, on suit, pour le dire rapidement, le chemin qui passe par les grandeurs avant toute
mesure, par la mesure des grandeurs (les nombres réels positifs), puis par la mesure des grandeurs
orientées (les nombres relatifs), et qui aboutit aux vecteurs et aux nombres complexes. Ce parcours
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n’est pas continu et ne peut pas I'étre. En effet, chaque état du savoir, a un moment de la jeunesse,
répond a une structure déterminée par un ensemble d’axiomes, et pour passer d’une structure a la
suivante, il faut modifier cet ensemble. Or modifier un groupe d’axiomes, c¢’est changer ou ajouter
un axiome, ce qui change brusquement le paysage. Qui plus est, au fil de la construction de ce
savoir, des objets ontologiquement nouveaux apparaissent : apres les grandeurs, successivement
les réels positifs, les relatifs, les vecteurs. En outre, les notions de somme et de produit par un
nombre mutent aussi dans le passage d’un type d’objets a un autre. Il est ainsi assez clair que 'idée
d’enseigner d’emblée aux enfants des concepts définitifs est impraticable!®.

9 Pourquoi un fil conducteur ?

Nous sommes a pied d’ceuvre maintenant pour répondre a la question : pourquoi a-t-on besoin d’un
fil conducteur — ou plutot de fils conducteurs —, a travers toutes ces matieres mathématiques que
l’on apprend de la prime enfance a l’age adulte ? Les arguments nous paraissent ici simples et forts.

Apres tout, et quelle que soit I'importance que I'on accorde a ’acquisition de compétences, on en-
seigne en classe des matieres qui s’enchainent. Ces matieres s’appuient a chaque age sur un ensemble
de structures qui sont des outils de la pensée, des conditions de la compétence. La construction
du savoir mathématique forme un tout que I’on souhaite, selon une heureuse expression, parcourir
en suivant des spirales. Mais pour réaliser cela, il faut voir comment chaque spire s’articule a la
précédente et a la suivante, et aussi d’oll viennent et vers ot vont ces spirales. C’est pourquoi on a
besoin d’études de synthese qui parcourent tous les niveaux scolaires.

De telles études sont difficiles et demandent des collaborations inhabituelles. Le plus souvent en effet,
les recherches sur ’apprentissage des mathématiques élémentaires sont réalisées par des psycho-
pédagogues qui ne connaissent pas bien le dessus de la spirale, et les recherches sur 1’enseignement
plus avancé sont réalisées par des mathématiciens qui en ignorent le dessous.

Qui plus est, les stratifications du systéme scolaire ne favorisent pas I’émergence d’une conception
globale de l’enseignement. En effet, et malgré d’heureuses initiatives récentes'?, les programmes
sont toujours élaborés par des commissions distinctes pour les enseignements élémentaire et secon-
daire, avec des coordinations insuffisantes. En outre, les enseignants des niveaux maternel, primaire,
secondaire inférieur et secondaire supérieur sont toujours formés a peu pres séparément. Le résultat
est que bien souvent un enseignant d’un niveau donné situe difficilement son action dans ’ensemble,
ignorant pour l’essentiel comment les éleves qui lui arrivent ont été formés, et ce que ceux qui le
quittent vont devoir affronter.

Une vue d’ensemble de la construction mathématique telle qu’elle s’articule au savoir commun et
aux autres disciplines intellectuelles est enfin un objectif proprement culturel dont on souhaiterait
voir s’approcher tout enseignant, tout étudiant, tout citoyen.

13 On objectera peut-étre que les axiomes ne mutent pas dans leur expression formelle. Par exemple, I'égalité
a+ b = b+ a exprime la commutativité de la somme quels que soient a et b, grandeurs, naturels, réels positifs ou
négatifs, vecteurs. Mais ’enseignement ne confine heureusement pas les esprits des éleves au champ des expressions
formelles, et celles-ci ne contiennent pas tout le sens des concepts.

14 Spécialement la promulgation, en Communauté francaise de Belgique, des Socles de compétences a 14 ans.
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FAMILIARISATION AVEC LES POIDS
A L’ECOLE MATERNELLE

1 Introduction

Les activités proposées ci-dessous sont concues de maniere a ce que les no-
tions abordées s’élaborent progressivement au fil de 'exécution des taches
proposées aux enfants. On débute par des manipulations de base, impor-
tantes pour aborder la notion ciblée. Celles-ci sont accessibles a tous, y
compris aux plus jeunes. On poursuit par des actions plus élaborées, fai-
sant intervenir le langage oral, et aussi un langage écrit par le biais de
symboles. Parfois, 'enfant travaille en toute liberté et parfois il recoit une
consigne précise. Enfin, il y a des jeux structurés a jouer seul ou a plusieurs,
qui réinvestissent les découvertes faites au cours des autres activités.

Les activités sont présentées ici sous forme d’ateliers, chacun accessible
A quelques enfants'. L’enseignant les introduit dans 'ordre, séance apres
séance. Une nouvelle activité vient s’ajouter aux autres, mais celles-ci res-
tent accessibles dans la classe. Pas d’obligation de passer par toutes les
activités, ni de consacrer un temps défini par 'enseignant a une tache dé-
terminée. Quel que soit le type d’activité choisi par les enfants, qu’ils y
restent longtemps ou au contraire passent d’une activité a I’autre, ils sont
confrontés a la notion de poids et développent a ce propos des compétences
a des degrés divers.

Compétences. — Tout au long des séquences, certaines compétences sont
déja présentes dans nos objectifs méme si elles ne seront certifiées qu’a
I’école primaire.

Comparer des grandeurs de méme nature et concevoir la grandeur comme
une propriété de l’objet, la reconnaitre et la mesurer.

Effectuer le mesurage en utilisant des étalons familiers et en exprimer le
résultat.

Faire des estimations en utilisant des étalons familiers et conventionnels.

! Ce dispositif permet aux enfants d’ages et de niveaux différents de trouver leur
place. La méthodologie se rapportant au travail en ateliers est décrite dans les ouvrages
de A. Godenir et P. Descy [1998] et N. du Saussois [1991].
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Chapitre 1. Les poids a l’école maternelle

Etablir des relations dans un systeme (le systéme décimal) pour donner du
sens a la lecture et a l’écriture d’une mesure.

2 Manipulations libres des balances

Donner a manipuler différents types de balances et divers objets a poser
sur les plateaux.

Commencer a identifier le poids comme une grandeur, les grandeurs étant
un préalable a la proportionnalité.

Manier des instruments en vue de comparer des objets selon leurs poids.

Découvrir un lien de causalité entre I'inclinaison de la balance et les poids
des objets.

Comparer les poids d’objets en apparence semblables ou au contraire tres
différents : confronter ses perceptions a la réaction d’une balance.

Sur l'identification des grandeurs associées a un objet (poids, hauteur, .. .)
et sur les égalités et inégalités de grandeurs, voir? chapitre 16, section 3.1.

Une balance a plateaux suspendus.

Une balance de Roberval (ancienne balance de ménage a poids, figure 1).

Fig. 1

Divers objets : blocs de construction, petites voitures, cailloux, fruits, ...
Ce matériel peut étre renouvelé a chaque séance et enrichi avec les objets
apportés par les enfants.

On dispose le matériel sur une table et on propose aux enfants de faire
des expériences avec les objets et les balances. On les laisse prendre libre-
ment connaissance du matériel. L’enseignant ne parle ni de graduations,
ni d’unités de poids, il n’utilise pas encore les termes « plus lourd ou plus
léger que », ni « moins lourd ou moins léger que », ceci pour que les enfants
découvrent eux-mémes qu’'un objet plus lourd fait pencher la balance de
son coOté. Apres la séance, on discute en groupe des expériences de chacun.

2 Dans la rubrique Enjeuz de chaque section, nous renvoyons au dernier chapitre
(chapitre 16), qui expose en détails le fil conducteur de la proportionnalité - linéarité
depuis les grandeurs jusqu’aux espaces vectoriels.
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3 Soupeser des objets

3.1 Léger ou lourd?

On donne aux enfants un ensemble d’objets, certains légers et tous sensible-
ment de méme poids, d’autres plus lourds et également tous sensiblement
de méme poids. On leur demande de les trier en les soupesant.

Continuer a se familiariser avec les poids, soupeser.
Dissocier mentalement 1’aspect visuel et la sensation de poids.

Classer en fonction d’un critere. Chaque objet ayant plusieurs grandeurs
(hauteur, volume, poids, ...), sélectionner une grandeur particuliere, ici le
poids, et ordonner selon celle-la. Voir chapitre 16, section 3.1.

Une série d’objets que I'enseignant aura préalablement choisis pour former
deux groupes de poids bien distincts et quasi égaux dans chaque groupe.
Par exemple, des objets de plus ou moins 30 & 50 grammes pour former
le groupe des objets « légers » et d’autres objets d’environ 150 grammes
pour le groupe des objets « lourds ». Il faut veiller a ce que certains des
objets légers soient volumineux et que certains des objets lourds soient
peu volumineux, pour que le classement ne se fasse pas selon le volume de
I’objet, mais bien selon la sensation de poids.

Placer sur une table tous les objets et deux boites pour les classer en
deux groupes. Sur chaque boite, un symbole permet d’identifier le type
d’objet qu’il faut y mettre : les objets qui paraissent lourds dans ['une et
les objets qui semblent légers dans I’autre. Les deux symboles choisis sont,
par exemple, deux personnes qui portent des objets comme a la figure 2.

Fig. 2

L’enseignant illustre cela avec deux objets réels et des mouvements de son
corps : l'objet léger (entouré sur le premier dessin) peut étre soulevé faci-
lement, tandis que l'objet lourd (entouré sur le second dessin) fait pencher
le bras du personnage vers le sol. La consigne est : « Prenez un objet dans
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chaque main et essayez de dire lequel est le plus lourd et lequel est le
plus léger. Placez-les chacun dans la boite correspondante. Si vous hésitez
choisissez d’autres objets. »

3.2 Du plus léger au plus lourd

Ranger des pots du plus léger au plus lourd.

Exercer la perception du poids.

Ordonner des objets en fonction de leurs poids, ce que Piaget appelle sérier
les poids. Voir chapitre 16, section 3.1.

Quatre séries de trois pots (par exemple d’une boisson lactée) opaques,
fermés et identiques. La premiere série est remplie de sable a trois niveaux
différents de sorte qu’en les soupesant, on sente des poids de plus en plus
grands. De la méme maniere, la deuxieme série est remplie de gravier a trois
niveaux, la troisieme série d’eau a trois niveaux et la quatrieme d’écrous a
trois niveaux.

Les pots sont déposés sur une table. Chaque série de trois pots est iden-
tifiable par une couleur : trois pots bleus pour ceux contenant de l'eau,
trois pots jaunes pour le sable, trois pots verts pour les écrous et trois pots
rouges pour le gravier.

Dans chaque cas, 'enfant doit ranger les pots du plus léger au plus lourd
(ou inversement).

Aux enfants plus agés, on présente des séries de 4 ou 5 pots. Ainsi, les
différences de poids sont plus difficiles a percevoir, les comparaisons plus
nombreuses et 'ordre croissant plus complexe a établir.

Comparer les poids de deux pots completement remplis de deux couleurs
différentes.

4 Comparer avec les balances

Les enfants pesent des fruits et légumes a ’aide d’une balance a plateaux
et/ou d’une balance de ménage, afin de comparer leurs poids (plus lourd,
égal ou plus léger que. . .). Ils symbolisent leurs résultats a I’aide de cartons
représentant les fruits et légumes et les positions des balances.

Comparer les poids de deux éléments a 1’aide d’une balance a plateaux ou
d’une balance de ménage.

Garder une trace de la comparaison au moyen de symboles.

Voir chapitre 16, section 3.1.
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De quoi a-t-on Une balance a plateaux suspendus et une balance de ménage.

n 2 .
besoin Trois panneaux pour attacher les cartons au moyen de velcro (figure 3 et

fiche 1 a la page 75).

Les 24 cartons a découper représentant les balances a plateaux suspendus
(figure 4) et les balances de ménage (figure 5) (fiches 2 et 3 aux pages 76
et 77). Ils sont destinés & étre fixés aux panneaux a 'aide de velcro.

Les 15 cartons de fruits et légumes a découper (fiche 4 & la page 78). Ils
sont destinés a étre fixés aux panneaux a l’aide de velcro.

ke

A
DD

Fig. 3 Fig. 4

e R

Fig. 5

Les 15 vrais fruits et 1égumes représentés sur les cartons. Il est évident que
le choix des fruits et 1égumes est arbitraire et peut étre adapté en fonction
des saisons par exemple.
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Le panneau s’organise en trois colonnes et se lit par lignes horizontales.
La premiere et la troisieme colonnes présentent chacune quatre fruits ou
légumes. La colonne du centre est aussi munie de velcro et de points d’in-
terrogations, mais elle ne comporte pas de carton au début de ’activité.

Dans cette colonne, 'enfant doit placer les dessins de
balance correspondant aux situations rencontrées. Par

exemple, la premiere ligne du panneau présente un

parmi les fruits et légumes a sa disposition un ananas
et une cerise qu’il place chacun sur un des plateaux de

la balance. Il observe le résultat ; ici la balance penche
du coté de I'ananas. Il choisit alors, parmi les dessins
de balances, le carton qui symbolise cette situation et

% ananas a gauche et une cerise a droite. L’enfant choisit

5
R
®
i

le place sur le panneau a l’endroit du point d’interro-

gation entre les deux dessins. Le panneau complété est
une trace des résultats des manipulations.

Attardons-nous sur ce point pour relever une difficulté qui pourrait se
présenter et qui peut étre résolue justement par la lecture du panneau.
Il peut y avoir contradiction entre l'inclinaison de la balance et celle du
dessin qui la représente. Par exemple, 'enfant aurait posé ’ananas (lourd)
a droite et la cerise (moins lourde) & gauche, alors que sur le panneau
ces deux éléments seraient présentés dans la situation opposée. L’enfant
devra dans ce cas comprendre le passage de la comparaison réelle a sa
représentation. Pour qu’il y arrive, I’enseignant peut lui demander de faire
une lecture commentée de la ligne du panneau qui présente la situation (le
plateau le plus bas du coté du plus lourd et le plateau relevé du coté du
plus léger).

Ensuite, on présente le panneau différemment en placant a I'avance les
dessins de balances et en demandant a 1’éleve de le compléter par les dessins
de fruits et 1égumes de son choix qui respectent la situation. Plus difficile
encore, on propose un dessin de fruits et légumes et un dessin de balance :
a 'enfant de trouver ce qui compléte cette situation en réalisant la pesée.



d. Equilibr@r une balance 23

)
£
4

N
N
C

? %

De quoi s’agit-il ¢

Enjeux

De quoi a-t-on
besoin ¢

5 Equilibrer une balance

Placer un objet sur un plateau d’une balance, puis équilibrer celle-ci.

Prélever de la plasticine pour réaliser une boule de méme poids qu’'un objet
donné.

La notion de poids égaux et le vocabulaire « étre aussi lourd que », « avoir
le méme poids que », « peser autant que ». Voir l'activité précédente.

Travailler l'invariance de la masse (forme différente et pourtant méme
poids).

Accumuler des objets identiques qui servent d’unité pour parvenir au méme
poids qu’un objet quelconque.

Mesurer par encadrement. Voir chapitre 16, section 4.2.

Une regle de la proportionnalité : quand on double ou triple le poids d’un
coté, il faut doubler ou tripler le poids de 'autre coté de la balance pour
conserver 1’équilibre. Voir chapitre 16, page 573.

Une balance a plateaux suspendus ou une balance de Roberval.
De la plasticine.

Un lot d’objets de méme type (Lego, gros écrous, ...).

Des lots de 2, 3 et 4 objets identiques.

Des cartons représentant les objets a peser.

Des cartons représentant les objets servant d'unité de poids (Lego, gros
écrous, .. .).

Un panneau en deux colonnes pour afficher les cartons.
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Avec la plasticine

L’enfant place sur un plateau de la balance un objet de son choix et forme
par tatonnement une boule de plasticine qu’il place sur 'autre plateau
pour équilibrer la balance. Pour constater I’équilibre, il faut attendre que
le fléau de la balance s’immobilise a 1’horizontale.

Avec des objets identiques comme unités

L’enfant place un objet sur un plateau de la balance et place sur 'autre
le nombre nécessaire d’unités (Lego, écrous, ...) pour arriver a I’équilibre.
Par exemple, pour une figurine sur un plateau, il faut quatre briques Lego
sur I’autre, ou encore pour une pomme sur un plateau, il faut neuf gros
écrous sur l'autre.

Parfois, ’enfant ne parvient pas exactement a ’équilibre : « Trois briques
c’est trop et deux ce n’est pas assez ». Soit il retire la derniere brique qu’il
a posée et la remplace par une ou plusieurs briques plus petites, soit il
enleve les grosses briques et les remplace par des plus petites. On aborde
ici la notion d’encadrement. L’enfant affine le choix des unités pour étre
plus précis dans ses mesures.

Avec plusieurs objets identiques

L’enseignant propose a ’enfant quelques objets identiques pouvant chacun
étre équilibré par un nombre entier de briques. Un de ces objets ayant
été pesé, I'enfant en dépose un second a coté du premier. Combien doit-
il ajouter d’unités (Lego, écrous, ...) sur le second plateau pour rétablir
I’équilibre ?

Par exemple, 'enfant place une figurine sur le premier plateau et deux
écrous sur le second pour arriver a ’équilibre, soit « une figurine pour deux
écrous ». S'il ajoute une figurine identique a la premiere, il doit ajouter
deux écrous sur le second plateau pour rétablir I’équilibre, soit « deux
figurines pour quatre écrous ». S’il place trois figurines identiques, il doit
encore ajouter deux écrous, soit « trois figurines pour six écrous ». ..

iy
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Ceci est une étape importante dans I'acquisition du concept de linéarité.
C’est pourquoi, on veillera a garder une trace en reportant les résultats
obtenus sur un panneau : dans une premiere colonne, on présente les objets
a peser dessinés sur des cartons et dans la seconde colonne, les unités
placées sur 'autre plateau. Entre les deux colonnes, on place un dessin de
balance équilibrée qui symbolise la notion « a le méme poids que », « est
aussi lourd que » (figure 6).

6 Jeux pour deux joueurs

Ces activités de jeux fixeront les acquis des situations précédentes.

6.1 Bataille : un grand classique

Remporter le plus possible d’objets a partir d’un jeu de cartes représentant
des objets a peser sur une balance a plateaux.

Comparer les poids de deux objets a ’aide d’une balance a plateaux.

Comprendre quun objet plus lourd qu'un autre peut se révéler plus léger
qu’un troisieme.

Voir chapitre 16, section 3.1.

Dans une boite ouverte, un lot de 10 objets différents dont deux seulement
de méme poids.

Des cartes représentant les objets, une carte par objet sauf pour les deux
objets de méme poids, chacun représenté par deux cartes. Donc, en tout
douze cartes.

Une balance a plateaux.

Le principe est celui, classique, de la bataille. Les 12 cartes sont mélangées
et distribuées également aux deux joueurs, qui les placent en pile devant
eux, faces cachées. Les deux joueurs retournent en méme temps leur pre-
miere carte. Ils choisissent chacun dans la boite 'objet représenté sur leur
carte et le posent sur un plateau de la balance pour déterminer le plus
lourd. Celui qui possede la carte représentant ’objet le plus lourd ramasse
les deux cartes et les place sous sa pile. L’autre enfant replace les objets
dans la boite.

Le jeu continue ainsi. Il y a bataille lorsque les deux cartes retournées
sont identiques, mais également lorsque deux objets pesés équilibrent la
balance. Dans ce cas, chaque joueur place sur la carte qu’il a jouée une
deuxieme carte face cachée, puis une troisieme face visible. Chacun pese
les deux nouveaux objets et le gagnant remporte les six cartes. Lorsqu’un
joueur ne possede plus de carte, il est déclaré perdant.

Une variante du jeu consiste a tenir ses cartes en mains (et non face cachée
sur la table). Ainsi chaque joueur peut choisir la carte qu’il va mettre en
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jeu. Cela révele des surprises, car une carte qui vient de gagner peut étre
perdante au tour suivant ; tout dépend de ’objet choisi par ’autre enfant.
Les joueurs découvrent de cette maniere qu’un objet plus lourd qu'un autre
peut se révéler plus léger qu’un troisieme.

6.2 Que le plus lourd gagne

Peser des objets tirés au sort pour déterminer le plus lourd.

Exercer la perception du poids (soupeser des objets).

Comparer les poids de deux objets a ’aide d’une balance. Voir chapitre
16, section 3.1.

Une balance.
Un grand sac contenant 20 objets divers.

Deux boites pour placer les objets gagnés.

Les deux joueurs placent la balance entre eux. Il ont chacun une boite
vide pour placer les objets gagnés au cours de la partie. Le premier prend
sans regarder un objet dans le sac, le second fait de méme. Chacun place
son objet sur un plateau de la balance et le joueur qui avait choisi ’objet
le plus lourd remporte la manche. Autrement dit, celui en faveur de qui
penche la balance recgoit les deux objets qu’il place dans sa boite. C’est
alors au tour de I'enfant qui a perdu son objet de choisir dans le sac. Les
joueurs recommencent ainsi jusqu’a ce que le sac soit vide. Chacun compte
les objets de sa boite pour déterminer le gagnant. La stratégie consiste a
soupeser les objets dans le sac, ce qui est permis tant qu’on ne regarde pas
le contenu, et a choisir celui qui semble le plus lourd et non pas le plus
volumineux, ce qui engendre bien des surprises !

6.3 Memory des sacs

Retrouver les sacs qui ont le méme poids en les soupesant (estimation).

Exercer la perception du poids (soupeser des objets).

Associer des objets de poids égaux sans avoir recours a la vue. Voir chapitre
16, section 3.1.

Dix sacs en tissu opaque de couleur identique (par exemple des gants de
toilette) fermés par des élastiques.

Du sable ou un autre matériau assez lourd pour lester les sacs.

Un plateau de jeu comportant dix grandes cases de couleurs différentes
pour y placer les dix sacs.

Une balance pour les cas de litige.
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Au préalable, I'enseignant leste les sacs par paires de méme poids. Il les
ferme a ’aide d’un élastique.

Deux enfants placent le plateau de jeu entre eux. Chacun dispose cing sacs
au hasard sur les cases du plateau. Ils déterminent celui qui commence.
A chaque tour, 'enfant a le droit de soulever deux sacs et d’estimer s’ils
ont le méme poids. S’il estime que les deux sacs sont de poids différents,
il les repose sur les cases ou il les a pris. S’il pense que les deux sacs sont
aussi lourds I'un que 'autre, il 'annonce et fait estimer a ’autre enfant.
En cas de contestation, les enfants ont recours a la balance. Le joueur qui
a trouvé deux sacs identiques les garde et c’est au suivant d’essayer. Celui
qui a le plus de sacs a gagné.

Le principe du memory s’applique a ce jeu dans la mesure ou 'enfant essaie
de se souvenir sur quelle case (importance de la couleur) se trouve tel sac
qu’il aurait déja soupesé. On peut méme convenir d’annoncer a haute voix
si les sacs soulevés sont plus ou moins lourds ou légers.

Une variante plus facile du jeu consiste a présenter deux séries de sacs
de couleurs différentes en répartissant les poids identiques entre les deux
couleurs. Par exemple, une série de 5 sacs verts de poids différents qui
correspond a une série de cing sacs jaunes comportant les mémes poids.
Ainsi I'enfant sait qu’il doit associer a chaque tour un sac vert a un sac
jaune et les possibilités sont moins nombreuses.

Une variante plus difficile est de proposer un plus grand nombre de sacs
remplis de matériaux divers. Ainsi s’ajoute a l’estimation de poids, une
reconnaissance tactile du contenu.



POLYGONES SUPERPOSABLES, POLYGONES DE
MEME FORME :

LE TANGRAM A L’ECOLE PRIMAIRE

1 Introduction

Le Tangram nous vient de Chine, il est vieux d’environ 2 500 ans et s’utilise
comme un puzzle. Il se compose de sept pieces, a savoir un carré, un paral-
lélogramme, et cing triangles rectangles, deux grands, un moyen et deux
petits. En assemblant ces sept pieces de diverses facons, on peut obtenir
des centaines de configurations différentes'. Un assemblage particulier est
celui du carré (figure 1).

Fig. 1 Fig. 2

Les sept polygones ont entre eux des rapports de grandeurs simples?. En
pavant le carré formé des sept pieces avec le petit triangle (figure 2), on
voit apparaitre certaines propriétés, a savoir :

certains cotés de polygones ont méme longueur ;

! D. Picon [1997] présente plus de mille configurations. Nous en avons utilisé quelques-
unes.

2 La description des propriétés du Tangram est destinée dans un premier temps &
I’enseignant exclusivement. C’est ’objectif des activités qui suivent de faire découvrir
ces propriétés aux éleves.

28
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les aires de chacun des deux grands triangles valent quatre fois I'aire d’un
petit ;

les aires du carré, du parallélogramme et du moyen triangle valent deux
fois ’aire d’un petit triangle;

la construction de la figure fait jouer un role aux diagonales et aux points
milieux de certains segments ;

le parallélogramme a deux orientations possibles dans le plan : il est orienté
différemment selon la face sur laquelle il est posé. La figure 3 montre que
lors d’une rotation dans le plan, par exemple un demi-tour sur la table,
le parallélogramme garde son orientation. Tandis que la figure 4 illustre le
retournement du parallélogramme obtenu en sortant du plan : on passe de
la face A a la face B, qui est orientée différemment.
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Fig. 3 Fig. 4

En regle générale, 'exploitation des figures du Tangram fait appel aux
notions de famille de figures, parallélisme, perpendicularité, amplitude
d’angle, symétries, pavages, conservation de l'aire indépendamment de la
forme, etc. Ces notions sont des enjeux pour chacune des activités.

On trouve des Tangram plastifiés dans le commerce. On peut aussi en faire
soi-méme dans du carton, en étant tres soigneux quant aux dimensions des
pieces® (ceci a beaucoup d’importance pour réussir certaines manipula-
tions).

Les activités ci-apres peuvent étre proposées de la premiere a la sixieme
primaires. Certaines sont aménagées différemment pour les petits et les
grands, nous le mentionnons explicitement au moment venu. De plus, nous
suggérons que chaque activité fasse I'objet d’'une séance commune a la
classe, puis soit reprise a d’autres moments sous forme d’ateliers ou de
prolongements visant a améliorer les compétences visées.

2 Découverte des pieces du Tangram

Explorer les possibilités du Tangram en formant librement des configura-
tions, en superposant des pieces, en reproduisant un modele.

3 Le c6té du carré composé des sept pieces doit mesurer au moins 10 cm pour que
les piéces soient faciles & manipuler.
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FEchos des classes

Chapitre 2. Le Tangram a l’école primaire

Se familiariser avec des polygones simples.

Explorer des égalités et inégalités d’aires et de cOtés. Découvrir des formes
identiques (en passant d’'un Tangram & un autre). Voir chapitre 16, section
3.1.

Compétences. — Reconnaitre, comparer des figures, les différencier.
Construire des figures avec du matériel varié.

Un Tangram?* par enfant.

Tout d’abord, on donne les pieces aux enfants et on les laisse manipuler
librement, créer des configurations, échanger des propos.

Ensuite, on leur demande de travailler par deux : un enfant crée un as-
semblage (figure 5 par exemple) et I'autre s’en sert comme modele pour le
reproduire avec ses pieces. Puis, on échange les roles.

Par le va-et-vient entre le modele et la reproduction, les éleves appro-
fondissent les possibilités du Tangram et les différences entre les pieces.
L’enfant qui reproduit le modele, analyse sa composition, les positions re-
latives des pieces, leur orientation (important pour le parallélogramme).
Il est amené a distinguer le petit, le moyen et le grand triangle, a juxta-
poser des cOtés de méme longueur, etc. Les deux éleves discutent de ce
qui est réalisé avec un vocabulaire plus ou moins précis, mais néanmoins
efficace dans I'action. Ils peuvent superposer les triangles pour vérifier leur
conformité au modele.

Les enfants ne se lassent pas d’imaginer des assemblages. Les manipulations
libres ont été proposées au début de chaque séance dans toutes les classes
et les éleves ont été créatifs. Au fil du temps, ils ont enrichi leur pratique
de ce qu’ils avaient découvert précédemment : ils refaisaient spontanément
une partie d’activité qui leur avait particulierement plu. Lors de ces ma-
nipulations libres, les échanges oraux entre enfants ont été nombreux : ils
ont expliqué ce que représentait leur dessin, se sont mutuellement lancé
des défis, etc.

En outre, les réalisations libres n’ont pas toutes été planes : certains ont
empilé les pieces, les ont dressées en les faisant tenir en équilibre ou en les
calant avec d’autres pieces. L’enseignant les a laissé faire.

En premiere et deuxieme primaires en particulier, ’enseignant a proposé
la méme activité en ajoutant une limite de temps. Il a donné le signal
du départ pour que le premier enfant de chaque équipe de deux crée son
modele et il a compté jusqu’a 20. Au bout du compte, le modele devait étre
terminé. L’enseignant a compté a nouveau jusqu’a 20 pour fixer le temps
de reproduction du modele par le deuxieme enfant de chaque équipe. La
limitation du temps a été particulierement stimulante pour les enfants. En
effet, a défaut de cette limitation, certains passaient trop de temps a créer

4 Dans la section De quoi a-t-on besoin ? de toutes les activités, nous entendons par
Tangram les sept pieces en vrac.
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leur modele et I’autre enfant de ’équipe s’impatientait ou se désintéressait.
De plus, ce fut un bon exercice pour ceux qui ne maitrisaient pas bien la
comptine orale des nombres et qui anticipaient difficilement la limite du
temps imparti. On aurait également pu proposer a l'un des enfants de
compter jusqu’a 20 en gardant un certain rythme ou encore de compter a
rebours.

3 Reproduction d’un modele

Apres avoir découvert le Tangram et travaillé uniquement des modeles de
méme grandeur, on propose a présent des modeles plus grands ou plus
petits (plus de superposition possible). On va également introduire un
vocabulaire spécifique au travers d’explications orales.

3.1 Repérage visuel

Reproduire avec son Tangram un assemblage des sept pieces placé au ta-
bleau.

Reconnaitre des polygones de méme forme et de grandeurs différentes.
Créer une configuration semblable a un modele plus grand. Voir chapitre
16, section 3.3.

Compétences. — Reconnaitre, comparer des figures, les différencier. Re-
connaitre et construire des agrandissements et des réductions de figures.

Un Tangram par enfant.

Un grand Tangram qui adhere au tableau et dont les pieces sont facilement
déplacables®.

Des fiches portant chacune un modele d’assemblage - & une échelle diffé-
rente des pieces que manipulent les enfants - (voir en annexe les fiches 5
et 6 aux pages 79 et 80).

Tout d’abord, I’enseignant prépare un assemblage au tableau. Chaque en-
fant doit reproduire ce dessin sur son bureau avec ses pieces.

Puis, c’est au tour d’un enfant de créer le modele au tableau, si possible
hors de la vue des éleves pour qu’ils ne soient pas guidés par les étapes de
la construction, mais bien par le dessin achevé.

Ensuite, ’enseignant place au tableau une fiche avec un assemblage (fiches
5 et 6) : un éléeve compose ce modele au tableau avec le grand Tangram

® On peut utiliser un matériel magnétique qui adhére aux surfaces métalliques de
certaines armoires ou tableaux. On peut aussi placer du velcro au dos des pieces et couvrir
le tableau d’un drap de feutrine qui permet de les y accrocher. On peut tout simplement
mettre du papier collant double face sur les pieces, mais cette solution est moins pratique
car le papier collant tend a se détacher au fur et & mesure des manipulations.
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Fig. 9

Fig. 10

Chapitre 2. Le Tangram a l’école primaire

pendant que les autres réalisent la méme chose sur leur bureau. Puis, on
vérifie collectivement si la composition de la fiche et celle du tableau sont
semblables. La comparaison porte sur les positions relatives des pieces, les
écarts angulaires entre elles (dont il faut estimer a vue 'amplitude), les
cOtés adjacents, etc. Les enfants essaient de verbaliser les différences pour
que celui qui est au tableau corrige. Si les remarques ne sont pas assez
précises, ils viennent montrer au tableau les différences entre la fiche et le
Tangram. Ce faisant, chacun vérifie ce qu’il a composé sur son bureau.

Enfin, chacun travaille individuellement avec ses piéces sur son bureau.
Pour cela, les enfants recoivent une série de fiches qui leur servent de
modeles.

La reproduction du modele passe d’abord par une reconnaissance globale
de la forme : « Ca ressemble a un bonhomme (figure 6), c’est un grand
rectangle (figure 7), on dirait un carré avec des trous dedans (figure 8)... »

Fig. 7 Fig. 8

Ils ont repéré chaque piece au tableau et ont placé la leur sur le bureau
dans une position similaire. Ce faisant, ils ont transposé l'orientation du
tableau a la surface de leur bureau, ils ont pris comme reperes le haut, le
bas, la gauche et la droite.

Des confusions sont parfois apparues entre les petits, les moyens et les
grands triangles. Par exemple, un enfant a comparé deux pieces voisines :
le coté du triangle choisi était plus grand que celui du carré auquel il
se juxtaposait (figure 9) tandis qu’au tableau les deux cotés s’ajustaient
parfaitement (figure 10). Un autre éleve a réalisé tout I’assemblage, puis
en comparant sa production a celle du tableau, il a remarqué que la forme
globale qu’il avait obtenue était différente.

Un autre probleme fréquent et déja rencontré dans les manipulations libres
a concerné 'orientation du parallélogramme (voir la section 1 & la page 28).
Un éleve a observé que sur 'assemblage du tableau (figure 11) le parallélo-
gramme « penchait » vers la gauche et I’a disposé sur son bureau pour qu’il
« penche » également vers la gauche, mais sans tenir compte des positions
des grands et des petits cOtés, ce qui a donné le résultat de la figure 12.
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Cette situation a posé probleme a beaucoup d’enfants qui, méme s’ils
voyaient une différence avec le modele, ne parvenaient pas a la corriger
immédiatement. Ils ont fait pivoter le parallélogramme sur le bureau et
ont cherché la bonne orientation sans penser tout de suite a le retourner.
Par ailleurs, s’ils étaient attentifs a la longueur des cotés, par exemple en
juxtaposant le carré au parallélogramme, ils en oubliaient ’orientation du
parallélogramme (figure 13).

Remarquons que le matériel magnétique n’adhere au tableau que d’un seul
c6té. Ce fait a mis le probléeme en lumiere, car lorsque ’éléve retournait
la piece, elle n’adhérait plus au tableau. Il fallait donc deux pieces ma-
gnétiques pour présenter le parallélogramme sur ses deux faces (figure 14).
La présence de ces deux pieces distinctes a permis d’illustrer dans plu-
sieurs activités les deux orientations possibles du parallélogramme : lors
des reproductions de modeles au tableau, il a fallu choisir la piece illustrant
I’orientation voulue. Néanmoins, le probleme s’est présenté différemment
pour les éleves travaillant sur leur bureau : les deux faces de leur paral-
lélogramme n’avaient aucun signe distinctif. La référence aux deux pieces
magnétiques a levé les hésitations a certains moments.

Enfin, les jeunes éleves se sont montrés vite satisfaits d’une reproduction
qui respectait globalement le modele. Les détails de positions relatives des
pieces n’ont pas toujours attiré leur attention. C’est en faisant le rappro-
chement avec le « jeu des sept erreurs » qu’ils ont observé plus minutieuse-
ment la configuration. Il n’a pas été facile d’expliquer les différences entre
le modele et la reproduction. Les éleves ont volontiers utilisé des termes
imagés ainsi qu'un vocabulaire spatial et géométrique minimal. Pour des
échos relatifs au vocabulaire, voir la section suivante.

3.2 Description orale

Expliquer oralement la disposition des pieces pour reproduire un modele.

Utiliser un vocabulaire géométrique et spatial approprié a I’expression des
similitudes. Voir chapitre 16, section 3.3.

5 La situation est la méme si on utilise des pieces de Tangram coloriées différemment
sur chaque face. Selon la face choisie, le parallélogramme a ou non la méme couleur que
les autres pieces.
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Chapitre 2. Le Tangram a l’école primaire

Comprendre et interpréter des instructions pour effectuer une construction
précise.

Compétences. — Décrire les différentes étapes d’une contruction en s’ap-
puyant sur des propriétés de figures, de transformations. Comprendre et
utiliser, dans leur contexte les termes usuels propres da la géométrie.

Un Tangram par enfant.
Un grand Tangram pour le tableau.

Des modeles dessinés sur fiches (voir en annexe les fiches 5 & 7 aux pages
79 a 81).

Dans un premier temps, on travaille collectivement. L’enseignant choisit
un modele ou les pieces du Tangram se succedent dans un ordre simple a
décrire (par exemple la figure 15). Il fait venir un enfant devant la classe
pour décrire ce modele aux autres éleves, qui doivent le composer sur leur
bureau sans le voir. En premiere et deuxieme années, pour ne pas imposer
une description trop longue a un seul éleve, 'enseignant demande a plu-
sieurs d’entre eux de venir tour a tour décrire une seule piece du Tangram
(dans l'ordre de la construction, par exemple de haut en bas) et sa posi-
tion par rapport aux autres. L’enseignant met en évidence, éventuellement
en les écrivant au tableau, les types d’informations qu’il faut donner pour
pouvoir construire I'assemblage, a savoir le nom de la forme a prendre,
sa taille g’il s’agit d’un triangle, son orientation dans le plan et enfin sa
position par rapport aux autres pieces.

Ensuite, en guise de synthese, un enfant vient répéter la description com-
plete pendant qu'un autre construit I’assemblage au tableau. Ceci permet
a lenfant qui décrit d’avoir un retour direct de ce qu’il dit. S’il n’est pas
assez clair ou précis dans ses explications, la réalisation au tableau ne cor-
respond pas a son modele et il peut rectifier ses propos. Les autres éleves
interviennent également. Mieux encore, si deux enfants construisent chacun
au tableau un assemblage conforme a la description, alors des différences
d’interprétation apparaissent au vu des constructions. Par exemple, en di-
sant de mettre le grand c6té du triangle a I'horizontale, on peut obtenir
les deux positions de la figure 16.

Dans un deuxiéeme temps, les enfants travaillent par deux en placant un
écran entre eux. L’'un invente avec ses pieces un modele sur le bureau et
explique la disposition des pieces a I'autre, qui doit a son tour le reproduire.
Pour vérifier, ils enlevent 1’écran. Puis ils échangent les roles.

Lors de la description collective, la richesse du vocabulaire varie en fonction
de I’age et du niveau des enfants. Néanmoins, on a constaté que tant que les
enfants se comprennent avec un vocabulaire sommaire et non spécifique-
ment géométrique, ils continuent a ’employer. De plus, ils font beaucoup
de gestes qui éclairent souvent leurs paroles. Pourtant, I'introduction de
mots précis par I'enseignant a permis a certains moments d’améliorer la
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Fig. 17

compréhension, car un mot pouvait alors remplacer une phrase entiere et
la description était plus aisée. Les enfants ne se sont pas toujours souvenus
de la signification de mots employés par certains; il y a eu des confusions.
Cette activité a été 'occasion de rappeler ou clarifier certaines notions et
surtout de composer une liste de mots communs a la classe. Les éleves
n’ont pas intégré tout de suite des mots parfois nouveaux pour eux, mais
ils les ont compris dans certains contextes et a force de les utiliser dans les
diverses activités proposées plus loin, ils se les sont appropriés peu a peu.

Par ailleurs, pour faciliter ’explication du dessin a la classe, ’enseignant
a noté au tableau un schéma & suivre pour la description :

1. NOM de la forme,

2. TAILLE (pour les triangles seulement),
3. SENS7 de la forme,

4. POSITION de la forme dans le dessin.

Sil’on regarde en détail le vocabulaire utilisé, on peut faire quelques consta-
tations. Tout d’abord, le nom des formes était familier a part celui du
parallélogramme, qui était inconnu des plus jeunes — ils 'ont appelé « la
forme longue » — et souvent oublié par les plus agés. Le mot exact a été
vite adopté. La taille des pieces n’a pas posé de problemes : petit, moyen
et grand font partie du vocabulaire courant.

Ensuite, 'orientation d’une forme a été choisie en fonction de ses caracté-
ristiques morphologiques. Pour le carré, les enfants ont parlé de « droit »
et « penché », « pointe vers le haut/le bas », « mettre le carré comme un
losange », « mettre le bord du dessus horizontal ». Pour le triangle, outre
la grandeur de la forme, ils ont souvent évoqué le grand c6té en disant « le
grand bord couché/debout/penché », « le grand bord droit », « le grand
coté vers le haut/le bas », « le grand coté horizontal /vertical /oblique » ; ils
ont aussi parlé de « la grande pointe en haut/en bas/a gauche/a droite »,
« langle droit au-dessus/en dessous/a gauche/a droite ». Pour le parallé-
logramme, ils distinguaient « les grands et les petits bords/cotés », « les
grands cotés horizontalement /verticalement », et, pour distinguer ses deux
orientations, ils ont ajouté a ces termes « le parallélogramme penche vers
la gauche/la droite ».

Enfin, la position d’une piéce par rapport aux autres a fait appel soit au
sens figuratif du dessin, par exemple « le carré pour faire la téte et le
triangle pour le ventre », soit aux notions spatiales s’appliquant au plan :
« & gauche/droite de », « au-dessus/en dessous », « en haut/en bas », « au
milieu de », « entre », « a coté de », « contre », etc.

Un enfant de deuxieme primaire, apres plusieurs essais, a fait la description
suivante (en se référant a la figure 17) :

« On prend le grand triangle, on met son grand c6té horizontalement vers
le bas et on le met en bas du bureau. On prend le triangle moyen, on le
met comme 'autre et on le place au-dessus du grand triangle au milieu. On
prend le petit triangle avec son grand c6té horizontalement vers le haut,

" Terme plus simple & comprendre & cet égard que orientation.
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on le met au-dessus du moyen triangle, pointe contre pointe. On prend le
parallélogramme (intervention de l’enseignant), on le met penché a droite
avec son grand coté horizontal, a droite du petit triangle, avec son bord
tout contre, ¢a fait une grande ligne horizontale toute droite en haut. »

4 Meémorisation d’une configuration

La difficulté supplémentaire dans les deux activités qui suivent est que
les enfants n’ont plus le modele sous les yeux. D’abord, ils doivent faire
appel uniquement a leur mémoire. Ensuite, ils doivent expliquer oralement
la configuration soit avec I’aide d’un schéma, soit avec leur mémoire pour
seul support.

4.1 Recomposer un dessin caché (de 6 a 9 ans)

Observer, pendant un temps limité, une configuration puis un dessin du
Tangram afin de mémoriser ’emplacement des pieces. Reconstruire 1’as-
semblage sans avoir le modele sous les yeux.

Exercer le sens de 'observation (deux objets identiques).

Mémoriser une configuration complexe en se donnant des reperes. Voir
chapitre 16, section 3.3.

Reconstituer un modele en faisant appel a sa mémoire.

Compétences. — Reconnaitre, comparer des figures, les différencier, les
classer. Construire des figures avec du matériel varié. Dans un contexte de
[...] reproduction de dessins, relever la présence de régularités.

Un Tangram par enfant.

Des modeles dessinés chacun sur une fiche séparée (voir en annexe les fiches
5 et 6, aux pages 79 et 80).

Tout d’abord, chaque enfant fait une composition avec ses pieces sur son
bureau. Il doit la regarder attentivement en vue de la mémoriser puis,
au signal de l’enseignant, il mélange les pieces et essaie de reconstituer
sa configuration initiale. Apres quelques tentatives, on s’apercoit qu’il est
difficile d’étre stur que I'on a bien refait un assemblage identique. C’est pour
cette raison que l'on va proposer des modeles sur fiches, afin de garder une
trace de ce que I'on compose et pouvoir vérifier.

Ensuite, les éleves sont par deux (chacun a son Tangram) et I'enseignant
place entre eux une fiche face cachée et donne la consigne suivante : « Au
signal, vous retournerez le modele, vous le regarderez attentivement pour
retenir 'emplacement de chaque piece et apres pouvoir refaire 1’assem-
blage avec vos pieces. Attention, il est interdit de toucher aux pieces du
Tangram pendant que vous regardez le modele. Lorsque je vous dirai de
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cacher le modele, vous devrez le reconstituer sur le bureau. Vous aurez
droit a plusieurs essais si nécessaire. »

L’enseignant donne alors le signal de regarder le modele et veille a ce que les
enfants ne commencent pas I’assemblage a ce moment. Apres une dizaine
de secondes, il demande de cacher le modele et de reproduire le dessin
avec les pieces. Si les éleves ne parviennent pas a faire ’assemblage au
premier coup, ils doivent au moins placer I'une ou l'autre piece. Ensuite,
I’enseignant donne un nouveau signal : retour a I’observation sans toucher
aux pieces, et ainsi de suite autant de fois que nécessaire.

L’enseignant souligne 'importance de se donner des reperes lors de 'ob-
servation du modele. Afin de mieux mémoriser celui-ci, chacun choisit une
technique qui 'aide a retenir I’emplacement des pieces les unes par rap-
port aux autres, a repérer dans le modele les pieces qu’il a déja bien placées
et ce qui manque encore ou ce qui n’est pas correct. L’enseignant estime
le nombre d’essais nécessaires pour que la majorité des enfants aient ter-
miné leur reconstitution. Il explique éventuellement aux plus rapides qu’ils
pourraient tout de méme s’étre trompés, ceci afin qu’ils prétent attention
au modele lorsque celui-ci est visible. Finalement, il autorise a retourner
définitivement le modele pour corriger.

Lorsque les enfants ont créé leur propre composition puis mélangé leurs
pieces, ils 'ont recomposée assez facilement. Leurs assemblages possédaient
trés souvent une structure presque symétrique. Grace a cela, les enfants
les mémorisaient plus facilement, que ce soit visuellement ou par les gestes
qui ont permis de le composer.

Par ailleurs, lorsque le modele leur était étranger, ils ont eu I'impression,
une fois la fiche retournée, de ne se souvenir de rien. Des la deuxieme obser-
vation, ils ont appliqué une technique de mémorisation. Certains ont utilisé
leur mémoire visuelle et ont dit : « C’est comme si on dessinait les formes
dans notre téte. » D’autres ont utilisé un moyen verbal : ils ont récité ’em-
placement des pieces dans un ordre donné. Par exemple, en haut le petit
triangle, puis le carré et a droite le moyen triangle. Chez certains, cette
technique s’est accompagnée de gestes dans ’espace déterminant I’empla-
cement des pieces de haut en bas ou de gauche a droite. Ce moyen verbal
a demandé plusieurs retours au modele, alors qu'un enfant ayant vraiment
une image mentale de celui-ci pouvait le reproduire en deux fois, voire, plus
rarement, en une. Les techniques étaient variées et difficiles a analyser par
I’enseignant.

Les éleves qui ont di, en cours de route, corriger des erreurs ont affronté
une situation beaucoup plus complexe que les autres. Leur esprit était sans
doute encombré d’informations trop nombreuses.

4.2 Expliquer une configuration cachée (de 9 & 12 ans)

Reproduire un modele placé dans la classe, hors de la vue.
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Mémoriser une configuration.
En dessiner un schéma.

Expliquer oralement une configuration a reproduire. Voir chapitre 16, sec-
tion 3.3.

Compétences. — Voir compétences a la page 36. En outre : Tracer des
figures simples. Décrire les différentes étapes d’une construction en s’ap-
puyant sur des propriétés de figures, de transformations.

Un Tangram pour deux enfants.
Quatre Tangram a placer chacun dans une boite.

Des feuilles et des crayons.

La premiere étape est de passer par l'intermédiaire d’un dessin pour re-
constituer le modele caché.

L’enseignant dispose les boites aux quatre coins de la classe avec un as-
semblage des pieces du Tangram au fond de chaque boite. La présence des
pieces est importante et ne peut étre remplacée par un dessin, car I'activité
consiste en partie a dessiner ’assemblage.

Les enfants sont par équipes de deux. Le premier muni d'un papier et
d’un crayon se rend en silence vers une des boites et fait un schéma du
modele. Il rejoint son coéquipier et lui explique oralement ’emplacement
de chaque piece, en s’appuyant sur son schéma, mais sans le lui montrer.
Le coéquipier recompose ’assemblage sur son bureau. Ceci fait, il va voir
I’assemblage dans la boite et revient corriger éventuellement son travail.
Ensuite, les enfants échangent leurs roles et choisissent une autre boite.

La seconde étape consiste & mémoriser le modele et a I’expliquer a I'autre,
sans le soutien d’'un schéma. Le défi est alors de faire le moins de trajets
possibles entre la boite et le bureau. Une étape intermédaire peut étre,
pour l'enfant qui va voir le modele, de le refaire lui-méme sur le bureau
hors de la vue de son coéquipier, puis de lui expliquer la configuration.
Mais le but est bien de faire le trajet, de mémoriser le modele placé dans
la boite et de I'expliquer a I'autre enfant pour qu’il puisse le recomposer
le plus vite possible. Apres quoi, on échange les roles.

Les schémas des enfants ont été faits rapidement, a main levée. Ils rendaient
assez bien le modele. Certains ont écrit les noms des pieces et ont donné
une indication a propos de leur grandeur, parfois en abrégé. Ceci a permis
d’éviter les confusions lorsque le dessin n’était pas précis ou lorsque les
différences de grandeur des pieces n’étaient pas assez contrastées. Les éleves
ont eu 'attention attirée par la disposition des pieces dans le plan : le
haut, le bas, la gauche et la droite, les alignements des cotés des pieces
adjacentes. Les figures 18 a 20 montrent les dessins que des éleves ont faits
d’un méme modele non figuratif. Les figures 21 a 23 présentent les schémas
d’un modele figuratif.
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Fig. 21 Fig. 22 Fig. 23

Pour certains, le dessin n’a pas forcément facilité les explications. Les re-
marques a faire ici sur le vocabulaire employé par les éleves rejoignent celles
de la section 3.2 a la page 34. Le nombre moyen de trajets a été de trois,
jamais plus de cing et souvent méme un seul apres un peu d’entrainement.
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5 Silhouettes de Tangram

A présent, nous proposons des assemblages présentés seulement par leur
contour et donc sans dessin des pieces individuelles. Nous les appelons des
silhouettes.

5.1 Modeles superposables (de 6 a 12 ans)

Avec les sept pieces du Tangram, recouvrir parfaitement une surface don-
née par son contour.

Egalité d’aires et de longueurs. Voir chapitre 16, sections 3.1 et 3.3.
Notion de frontiere.

Observer pour anticiper : émettre des hypotheéses quant au choix des piéces
a placer a certains endroits.

Un Tangram par enfant.

Des fiches avec, sur chacune, une silhouette de Tangram (voir en annexe
les fiches 8 a 10, aux pages 82 a 84, a agrandir a la taille des Tangram de
la classe).

Chaque enfant regoit une fiche sur laquelle figure une silhouette qu’il doit
recouvrir avec toutes ses pieces sans lacune ni chevauchement. Les fiches
sont de difficulté croissante. Lorsque des pieces se détachent nettement
du contour, le modele est plus facile & reproduire (figure 24). Lorsque le
modele est plus compact, il est par contre plus difficile car il ne permet pas
de deviner au préalable 'emplacement des pieces (figure 25). La consigne
est de procéder comme avec un puzzle en superposant ses pieces au modele
pour trouver la facon dont le dessin est construit. Des que deux éleves ont
terminé, I’enseignant controle et échange les modeles.

)
Ve

Fig. 2/ Fig. 25

Lorsque les éleves ont travaillé sur plusieurs modeles, on propose a la classe
de composer un carré avec les sept pieces. Aux plus jeunes, il est néces-
saire de donner un dessin de carré comme base pour disposer leurs pieces.
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L’enseignant laisse les enfants chercher la solution aussi longtemps que
nécessaire. Apres un certain temps, il peut les encourager en désignant a
chacun les pieces qui sont correctement placées et celles qui ne le sont pas.

A tout age, cette activité a suscité beaucoup d’intérét. Les éleves ont été
fiers de pouvoir résoudre le probleme, surtout apres beaucoup d’essais et
parfois un peu de découragement. En comparant leurs solutions pour un
méme dessin, ils ont constaté avec étonnement qu’une silhouette n’accepte
souvent qu’une seule solution. Ils ont d’abord pensé pouvoir disposer les
pieces au hasard et parvenir a recouvrir la silhouette. Bien souvent, ils ont
cru étre proches de la solution, mais un petit espace restait libre qui ne
correspondait a aucune piece du Tangram. Il fallait alors enlever presque
toutes les pieces pour recommencer autrement. Les jeunes enfants n’ont
pas accepté facilement de retirer ce qu’ils avaient déja placé.

Certains ont trouvé préférable de placer d’abord les grandes pieces et le
parallélogramme. D’autres ont raisonné sur les équivalences entre figures.
Par exemple, il leur restait a placer un grand triangle et sur la silhouette
se présentaient deux espaces valant chacun un petit triangle. « Il faudrait
couper ce grand triangle en deux », a dit un enfant, mais ce n’était pas
possible, alors il a remplacé sa grande piece par deux plus petites et a pu
terminer son puzzle.

Les interactions entre éleves ont été nombreuses. Apres étre passée entre
les mains de plusieurs éleves, une silhouette avait la réputation d’étre facile
ou difficile. Si un enfant ne parvenait pas a la solution, ceux qui avaient
réussi la fiche ont essayé de lui donner des conseils : ils avaient 'intention
de montrer la solution, mais ils ne s’en souvenaient plus. Une silhouette
pouvait passer plusieurs fois entre les mains d’un méme éleve qui la recon-
naissait, mais ne se rappelait pas la facon de la recouvrir. Pourtant, a force
de résoudre ces puzzles, la plupart des éleves sont devenus plus efficaces,
ils ont anticipé la place de certaines pieces et ont vu clairement quand ils
étaient engagés dans une mauvaise solution.

Il en est de méme pour la composition du carré avec les sept pieces. Cette
activité, proposée a plusieurs reprises, a demandé chaque fois un temps
de réflexion. Tous les éleves sont arrivés a la solution apres cing a vingt
minutes. La figure 26 montre les deux solutions possibles en fonction de
Iorientation du parallélogramme.

Fig. 26
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Fig. 27

Chapitre 2. Le Tangram a l’école primaire

5.2 Modeles a I’échelle (de 8 a 12 ans)

Assembler les sept pieces pour former une configuration semblable & une
silhouette plus grande ou plus petite qui sert de modele.

Affiner la perception des polygones semblables.

Notion de rapport interne®. Voir chapitre 16, section 3.3.

Compétences. — Voir compétences a la page 36. En outre : Reconnaitre
et construire des agrandissements et des réductions de figures.

Un Tangram par enfant.
Un grand Tangram pour le tableau.

Des fiches avec, sur chacune, une petite silhouette de Tangram (voir en
annexe les fiches 8 & 10, aux pages 82 a 84).

Au préalable, I'enseignant compose un assemblage au tableau avec les
grandes pieces, il en trace le contour puis retire les formes. Il présente
cette silhouette aux enfants en leur demandant de retrouver I’emplace-
ment des pieces. Ceux-ci cherchent la solution avec leurs petites pieces.
Puis le résultat des recherches est présenté au tableau.

Ensuite, chacun recoit une fiche avec de petites silhouettes qu’il faut re-
composer avec les pieces. L’enseignant organise une maniere de corriger
collectivement ou avec des fiches d’auto-correction.

L’exercice est surprenant, car on peut arriver & composer un dessin dont
I’allure générale ressemble au modele, mais dont le contour est pourtant
différent. Cela a été le cas lorsqu’un bateau a été proposé comme modele
au tableau (figure 27). Les éléves ont fait des essais qui représentaient bien
des bateaux, mais avec des proportions différentes (figures 28 et29).

Fig. 28 Fig. 29

Ils parvenaient a composer la voile du bateau et les dimensions semblaient

8 Un rapport entre deux longueurs est appelé ici rapport interne si les deux longueurs
sont observées dans le méme dessin.
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étre a I’échelle du modele, mais avec les pieces restantes ils n’ont pu faire
qu’une petite coque qui ne correspondait pas au reste. Les éleves plus agés
ont reporté les distances d’un c6té du dessin sur 'autre. Par exemple, la
« hauteur » de la coque allant a vue deux fois dans la longueur a la base,
ils ont essayé une composition qui respectait cette observation.

6 Dessin a I’échelle d’un modele simple

6.1 Dessin sur quadrillage d’un carré formé des sept
pieces (de 6 a 8 ans)

Dessiner sur quadrillage un carré formé des sept pieces du Tangram.

Etablir des rapports de longueurs (x2 et x1/2) dans une configuration
(rapports internes) et les transposer sur un modele a I’échelle. Voir chapitre
16, section 3.3.

Se repérer sur un quadrillage.

Utiliser les instruments de dessin : regle et crayon.

Compétences. — Tracer des figures simples. Reconnaitre et construire des
agrandissements et des réductions de figures.

Un Tangram par enfant.
Des feuilles quadrillées.

Des regles et des crayons de couleurs.

Chaque enfant compose le carré avec ses pieces et recoit une feuille qua-
drillée pour le dessiner. La consigne est de dessiner le contour du carré
le plus grand possible (insister), puis de dessiner les différentes pieces. Il
est interdit de contourner les pieces. L’enseignant laisse les éleves faire un
premier essai seuls, puis reprend collectivement les suggestions de chacun
pour faire le dessin définitif sur une autre feuille. Il procede par étapes en
demandant a la classe ce qu’il faut faire et en réalisant le dessin en grand au
tableau. Selon son choix, il reproduit ou non le quadrillage au tableau. Pour
de jeunes enfants, cette reproduction du quadrillage est indispensable pour
se repérer, mais il est souhaitable de s’en passer des que possible. L’idée
n’est pas que chaque enfant ait le méme dessin, mais, pour des raisons de
clarté, on peut décider de fixer les dimensions du contour, par exemple au-
tant de centimetres de coté, ou autant de carrés du quadrillage en fonction
de la taille du papier.

Le tracé fait appel aux propriétés de la figure (voir la section 1 & la page 28),
I’enseignant les explique selon les nécessités. Il s’exprime dans un langage
spécifiquement géométrique et, avec de jeunes enfants, utilise des couleurs
pour clarifier le tracé.
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Lorsque le dessin est terminé, les éleves colorient les polygones qui com-
posent le carré avec des couleurs différentes, pour les faire ressortir et
atténuer les traits apparaissant par erreur.

Nous avons réalisé cette activité en deux étapes d’environ quarante minutes
chacune.

En premiere année, les enfants sont arrivés a dessiner sommairement 1’em-
placement de chaque piece dans le carré sans tenir compte des dimensions.
Parfois, le contour était rectangulaire au lieu d’étre carré. Lors de la mise
en commun, le dessin s’est fait pas a pas au tableau et simultanément
sur les feuilles. Les enfants ont exprimé ce qu’ils voulaient dessiner, I’ont
montré au tableau sur un grand quadrillage et I’enseignant a dessiné en
expliquant comment il procédait.

Fig. 30 Fig. 51

L’utilisation de couleurs a permis de simplifier les consignes du tracé et
le quadrillage a beaucoup servi pour fixer les longueurs. Au passage, les
éleves ont appris a mieux manier la regle pour tracer des lignes droites.
L’enseignant a vérifié chaque dessin au fur et a mesure. Si une imprécision
passait inapercue, apres quelques tracés, le dessin se déformait et ne cor-
respondait plus a la description faite au tableau. Alors, certains enfants
trouvaient a leur dessin une allure bizarre : « Mon dessin ne ressemble pas
a mes pieces. » Les figures 30 et 31 présentent deux réalisations d’enfants
de premicre primaire.

En deuxieme primaire, les éleves ont utilisé la regle comme instrument de
mesure?. Certains ont choisi la dimension du premier c6té et ’ont reportée
pour tracer le carré. Ils n’avaient pas retenu la consigne de faire le carré le
plus grand possible. Comme ’enseignant le faisait remarquer, un enfant a
allongé ses traits sur toute la hauteur de la feuille : le carré était devenu
rectangle. Ce fut un véritable défi de ne pas travailler avec des dimensions
fixées a ’avance, mais de chercher comment tracer un coté le plus long
possible qui puisse étre reporté des quatre cotés sans sortir de la page. Un
enfant a fait remarquer qu’on ne pouvait pas aller contre le bord de la
feuille, car les carrés du quadrillage a cet endroit n’apparaissaient pas en

¥ Les mesures ont parfois entrainé des erreurs de calcul.



6. Dessin a ’échelle d’un modeéle simple 45

Prolongements
possibles

De quoi s’agit-il ¢

Enjeux

entier. Un autre a ajouté que c¢’était plus facile de suivre les lignes du qua-
drillage, ce que tous n’avaient pas fait. Une fois le contour du carré tracé,
I’enseignant a procédé au tableau comme en premieére année, sauf qu’il
n’a pas reproduit le quadrillage. Il a travaillé sans ce support et les éleves
divisaient les distances mentalement apres les avoir mesurées. Comme ils
arrondissaient au centimetre pres, des erreurs sont apparues lors de la di-
vision en deux des diagonales. Ils se sont alors servis du quadrillage. Les
figures 32 et 33 montrent deux réalisations d’enfants de deuxieme primaire.

Q’qﬂj‘\"\\}113
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Fig. 32 Fig. 33

Découper le Tangram fait par les éleves pour s’en servir. Les éleves sont
groupés par deux, 'un avec des petites pieces de Tangram et 'autre avec
les grandes pieces qu’il a dessinées. L’un réalise une configuration sur le
bureau, ’autre le reproduit avec ses grandes pieces et inversement. L’ob-
jectif est de travailler avec un modele qui n’est pas superposable a I'original
et de faire se correspondre, d’un Tangram a I'autre, les petits triangles, le
moyen et les grands.

6.2 Dessin sur grande feuille d’un carré formé des sept
pieces (de 8 a 12 ans)

Dessiner sur une grande feuille le carré formé des sept pieces du Tangram.

Etablir des rapports de longueurs (x2 et x1/2) dans une configuration
(rapports internes) et les transposer sur un modele a ’échelle. Voir chapitre
16, section 3.3.

Utiliser les instruments de dessin : regle et équerre.

Calculer mentalement avec des nombres décimaux. Voir section 4.5.

Compétences. — Voir compétences a la page 43. En outre : Effectuer le
mesurage en utilisant des étalons conventionnels et en exprimer le résultat.
Mesurer des angles. Déterminer le rapport entre deux grandeurs. Identi-
fier et effectuer des opérations dans des situations variées. Connaitre et
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énoncer des propriétés de cotés et d’angles utiles dans les constructions de
quadrilateres et de triangles.

Un Tangram par enfant.
Une grande feuille vierge (format Al) pour quatre enfants.
Une feuille A4 par enfant.

Des regles, des équerres, des crayons et des gommes.

Au départ, chaque enfant compose un carré avec ses pieces. Ensuite, chaque
équipe de quatre regoit une feuille sur laquelle elle doit reproduire le modele
du carré le plus grand possible. Il s’agit donc bien d’un carré qui a pour
coté la largeur de la feuille (laisser les éleves le découvrir). Ils se mettent
d’accord sur la maniere de procéder et chacun fait une part du travail en
coordination avec les autres. Certaines lignes sont tres longues et comme
aucune regle n’est adéquate, il faut se mettre a plusieurs pour y arriver. Les
feuilles font rarement apparaitre des nombres entiers dans les mesures des
cOtés. Les enfants sont donc amenés a faire usage de nombres décimaux,
tout d’abord pour mesurer des longueurs, ensuite pour les partager en
deux, enfin pour les additionner en vue de vérifier leur dessin.

Dans un deuxieme temps, les enfants font individuellement, sur une feuille
A4, le dessin le plus grand possible.

Certains éleves ont éprouvé des difficultés a choisir comme mesure la plus
grande possible, la largeur totale de la grande feuille. Ils n’ont pas accepté
facilement de prendre le bord de la feuille comme co6té du carré et, par
conséquent, de ne pas le tracer. D’autres, par contre, y ont pensé tout
de suite. Beaucoup d’enfants n’ont pas bien utilisé leur regle, ils ont été
imprécis. Ils ont travaillé en marquant les points de division sur les cotés
des polygones déja faits. Apres avoir exécuté les tracés, ils ont vérifié les
angles droits avec leur équerre (souvent a la demande de ’enseignant).
Ils ont rapidement constaté qu’un écart de quelques millimetres au départ
pouvait engendrer de grandes déformations comme, par exemple, une figure
qui aurait du étre carrée et qui n’avait qu’un angle droit.

Les calculs avec des nombres décimaux ont posé des problemes a certains,
bien qu’en équipe les ressources soient plus nombreuses. La collaboration
a été nécessaire pour tracer de grandes droites : les enfants ont aligné
leurs regles I'une derriere 'autre et 'un d’entre eux a été chargé de tracer.
Beaucoup ont pensé a utiliser la regle d’'un metre du tableau, mais elle
était trop imprécise pour faire des mesures. Les enfants ont mesuré alors
des segments inférieurs a la longueur de leur regle et les ont additionnés.

Le travail individuel a permis a chacun de refaire ’ensemble de la dé-
marche, ce qui était bien nécessaire dans certains groupes ou un seul enfant
avait pris la téte des opérations.

Les figures 34 et 35 montrent les grandes feuilles de quatre groupes d’éleves
de troisieme et quatrieme primaires.
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Fig. 34 Fig. 35

Parvenir au partage du carré en sept pieces uniquement par pliage de la

feuille pour faire apparaitre les traits de séparation'?.

7 Dessin a I’échelle de modeles plus compliqués

7.1 Agrandissement d’une figure (de 8 & 10 ans)

Créer un dessin avec les pieces du Tangram et le reproduire quatre fois
plus grand.

Reproduire un dessin & une échelle plus grande.

Notion de rapport externe'!. Voir chapitre 16, section 3.3.

Compétences. — Tracer des figures simples. Résoudre des problémes
simples de proportionnalité directe. Reconnailre et construire des agran-
dissements et des réductions de figures. Déterminer le rapport entre deux
grandeurs.

10 Cette activité est décrite dans ERMEL [1982].
1 Un rapport de deux longueurs est appelé ici rapport externe si les deux longueurs
sont observées sur deux figures semblables (& I’échelle).
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Fig. 37

Chapitre 2. Le Tangram a l’école primaire

Un Tangram par enfant.
Une grande feuille vierge pour quatre enfants.

Des crayons ordinaires.

Les enfants sont par équipes de quatre. Ils mettent leurs pieces en commun
et doivent recréer les pieces d’'un Tangram quatre fois plus grand en as-
semblant chaque fois quatre pieces identiques. Ainsi avec les quatre carrés,
ils forment un carré quatre fois plus grand. Ils procedent de la méme ma-
niere pour le parallélogramme en assemblant les quatre parallélogrammes
de I'équipe. Et ainsi de suite pour le moyen triangle, les deux petits et les
deux grands triangles (figures 36).

Ensuite, les quatre enfants de chaque groupe redistribuent les pieces et
chacun imagine un assemblage. Ils en choisissent un parmi les quatre. Dans
un coin de la feuille, ils disposent cet assemblage et contournent chaque
piece pour former un dessin. Ils doivent alors composer le méme dessin
quatre fois plus grand en assemblant, comme au début, les pieces identiques
pour obtenir une pieéce quatre fois plus grande. Lorsque les pieces sont
posées correctement sur la feuille, ils contournent les « grandes » pieces,
c’est-a-dire celles formées des quatre petites pieces.

Voici, aux figures 37 et 38, la réalisation d’un groupe d’éleves.

Fig. 38

Pour les enfants, le plus difficile a été de composer un grand triangle avec
quatre petits.

Lors du dessin, certains ont contourné toutes les pieces du grand modele
comme le montre les figures 39 et 40, au lieu de faire apparaitre juste le
contour des pieces quatre fois plus grandes.
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Fig. 40

7.2 Reéduction et agrandissement de figures
(de 10 a4 12 ans)

Dessiner, d’aprés un modele, un assemblage a une échelle plus petite. Ex-
primer I’échelle d’une silhouette par rapport a un modele. A partir d’un
dessin a ’échelle 1/2 ou 1/4, dessiner I'original.

Pratiquer les rapports internes et le rapport externe. Voir chapitre 16,
section 3.3.

Relever des dimensions et les exprimer a 1’échelle voulue. Voir section 4.
Exprimer une échelle par une fraction. Voir section 4.4.

Dessiner avec une regle, une équerre et un rapporteur.

Calculer mentalement, par écrit ou a la calculatrice.

Compétences. — Tracer des figures simples. Mesurer des angles. Connaitre
et énoncer les propriétés de cotés et d’angles utiles dans les constructions

de quadrilateres et de triangles. Dans un contexte de pliage, de découpage,
de pavage et de reproduction de dessins, relever la présence de régularités.

Un Tangram par enfant.

Un grand Tangram pour le tableau.

Des feuilles A4 vierges.

Des regles, équerres, rapporteurs, crayons et gommes.

La fiche 11 (voir en annexe a la page 85).

La premiere étape consiste a réaliser un assemblage au tableau avec les
grandes pieces du Tangram, dans le but de le dessiner sur une feuille A4.
Les dimensions du dessin sont au choix, du moment que le dessin apparaisse
entierement sur la feuille. Avant de commencer, I’enseignant interroge les
éleves sur la fagon de procéder. Il faut connaitre les dimensions des pieces
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Fig. 41
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du tableau pour les réduire a 1’échelle de la feuille. Mais faut-il mesurer tous
les cotés de toutes les pieces 7 Si on connait la mesure du c6té du carré, par
exemple 25 cm, quelles mesures peut-on en déduire pour les autres pieces ?
Les éleves doivent imaginer ce cas avec leur Tangram et noter au brouillon
les dimensions des autres pieces en les comparant les unes aux autres. En
superposant les figures, on trouve deux sortes de cotés : ceux qui valent le
cOté du carré ou le double, soit les longueurs notées a et 2a sur la figure
41, et ceux qui valent b et 20 dont on ne connait pas la mesure. Les éleves
s’expriment en termes de longueurs, soit a = 25 centimetres et b = 35,3
centimetres (mesures prises, dans ce cas-ci, sur la figure au tableau'?).

A la suite de ce raisonnement, ’enseignant indique les mesures sur le dessin
du tableau. Les éleves doivent reproduire le dessin a 1’échelle sur leur feuille
A4. Chacun choisit comme il ’entend le nombre par lequel il va diviser les
mesures relevées au tableau, pourvu que son dessin soit entierement sur sa
feuille. Vient alors la phase de dessin : il faut utiliser les instruments pour
tracer les figures, les paralleles, les angles droits, le plus soigneusement
possible. Les enfants remarqueront en dessinant que, lors de la mise a
I’échelle des figures, les cotés changent de mesure mais les angles restent
identiques. Ils devront peut-étre relever au tableau des angles entre des
cOtés de pieces non jointives ou estimer a vue 'amplitude de ces angles,
marqués en gris sur la figure 42.

L]

Fig. 42

Enfin, I'enseignant demande a chacun d’exprimer 1’échelle de son dessin
sous forme d’une fraction. Il fait allusion aux mesures : si un centimetre

sur le dessin vaut cing centimetres au tableau, on parle d’un dessin a
Péchelle 1/5.

On fait la synthese suivante, illustrée par les cas rencontrés dans la classe.
On exprime ’échelle par un rapport qui nous parle de longueurs. Il s’agit
des longueurs des cotés d’une figure comparées aux longueurs des cotés
d’un modéle plus grand. Un centimétre sur un dessin a l’échelle correspond
a x centimeétres sur le modéle : on parle dans ce cas de l’échelle 1/x.

A Détape suivante, I’enseignant donne a la moitié des éleves le premier des-
sin de la fiche 8 a la page 82 et aux autres le deuxieme dessin de cette méme
fiche. Il leur est dit que le premier dessin est la reproduction d’un autre a

12 On peut décider de travailler sans mesurer b, au quel cas on contruit les figures en
reportant au compas la mesure prise sur la diagonale du carré.
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FEchos des classes

I’échelle 1/4 et que le deuxieme est la reproduction du méme modele de
départ a ’échelle 1/2. On demande alors a chacun des éleves de retrouver
I'original. Ainsi, au bout du compte, tous devront arriver au méme mo-
dele de départ par des calculs différents, les uns multipliant les longueurs
par 2 et les autres par 4. La phase de dessin demande 'utilisation des

instruments.

Lorsque I’enseignant a demandé quelles étaient les mesures nécessaires pour
reproduire le dessin du tableau sur une feuille, les éleves ont rapidement
répondu qu’il ne fallait pas mesurer tous les cotés, puisque plusieurs figures
avaient des cotés de méme longueur. Ils sont arrivés a cette conclusion
suite aux nombreuses manipulations ou ils avaient remplacé une piece par
une autre, expliqué la maniere dont deux pieces se joignaient, dessiné un
schéma, etc.

Les figures 43 a 46 présentent les dessins des éleves d’apres un grand modele
au tableau : le premier était a I’échelle 1/5, les deux suivants a 1’échelle
1/4 et le dernier a ’échelle 1/3.
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Les éleves avaient déja rencontré des échelles sur des cartes géographiques,
mais certains ont fait la confusion avec le rapport des aires en disant qu’un
dessin a ’échelle 1/2 allait deux fois dans le modele.

Le maniement des instruments, et particulierement celui du rapporteur, a
posé quelques problemes. L’enseignant a beaucoup insisté sur la précision
des mesures lors des relevés et du tracé. Certains n’étaient pas a 'aise avec
les calculs de décimaux et ont été autorisés a utiliser leur calculatrice, ceci
afin de ne pas alourdir I'activité.

Les figures 47 a 50 montrent les réalisations de quatre éleves. Chaque figure
présente le petit modele a I’échelle 1/2 ou 1/4 (donné par I’enseignant) sur
lequel ils ont travaillé et ’agrandissement qu’ils ont eux-mémes dessiné.
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8 Fractions et aires

8.1 Trouver des fractions (de 10 & 12 ans)

Trouver la fraction que représente chaque piece par rapport au Tangram
complet.

Notions de fraction et d’équivalence par superposition de figures. Voir cha-
pitre 16, section 4.4.

Compétences. — Fractionner des objets en vue de les comparer.

Un Tangram par enfant.

Des feuilles et des crayons.

Chaque éleve forme le carré avec les sept pieces du Tangram. Il le dessine
sur un papier en contournant les pieces ou utilise le dessin réalisé a la
section 6.2 a la page 45.

La consigne est : « Imaginons que le carré ainsi formé soit une tarte, quelle
part de cette tarte représente chaque morceau ? Ecrivez la fraction qui cor-
respond a chaque piece du Tangram. » Si les éleves démarrent difficilement,
on prend 'exemple du grand triangle : « Combien de parts comme celle-ci
peut contenir la tarte carrée ? Le grand triangle va quatre fois dans la tarte,
donc il vaut 1/4 de la tarte carrée. » Les enfants essaient d’appliquer le
méme raisonnement aux autres pieces du Tangram pour obtenir la figure
51.

Seul le petit triangle va exactement seize fois dans la tarte carrée. Pour les
autres pieces, il faut recourir au pavage complet du grand carré a l'aide
du petit triangle (voir figure 52). Ils en arrivent a la conclusion que le
carré, le parallélogramme et le triangle moyen contiennent chacun deux
petits triangles, c’est-a-dire valent chacun 2/16 de la tarte carrée. A ce
stade, si les éleves ont déja manipulé des fractions équivalentes, on peut
remplacer 2/16 par 1/8. Sinon, pour y arriver, on pourra tenir un des deux
raisonnements suivants.

Si le petit triangle va seize fois dans la tarte carrée, chacune des pieces qui
comprend deux petits triangles (le parallélogramme, le triangle moyen et
le carré) ira huit fois dans la tarte carrée.

Le découpage de la figure 53 montre que le carré va huit fois dans la
tarte carrée. Il suffit, ensuite, de montrer I’équivalence des aires du carré,
du parallélogramme et du triangle moyen en recourant au petit triangle
comme piece de référence.

Ces trois pieces valent donc 1/8 de la tarte carrée.
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Fig. 52

Fig. 53

Pour trouver les différentes fractions, les éleves ont eu recours au pavage
complet du grand carré. Pour cela, ils ont reporté une piece sur le dessin
et 'ont contournée pour faire apparaitre le pavage. La figure 52 montre un
exemple de pavage avec le petit triangle et la figure 53, le pavage avec le
carré.

Certains enfants ont été surpris dans un premier temps par ’équivalence
des aires du carré, du parallélogramme et du triangle moyen : le recours
au petit triangle comme piece de référence les a convaincus (figure 54).

AP~

Fig. 54

8.2 Evaluer des aires (de 10 & 12 ans)

Exprimer l'aire d’'un dessin au moyen d’une unité non conventionnelle, puis
en centimetres carrés.

Notions d’aire par pavage et recouvrement'3. Voir chapitre 16, section 4
et en particulier 4.1 et 4.5.

Compétences. — Construire et utiliser des démarches pour calculer des
aires. Effectuer le mesurage en utilisant des étalons familiers et convention-
nels et en exprimer le résultat. Dans un contexte de pliage, de découpage,
de pavage et de reproduction de dessins, relever la présence de régularités.

3 On peut trouver d’autres activités relatives au Tangram dans ERMEL [1982].
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Un Tangram par enfant.

Par enfant, une fiche avec une silhouette (voir en annexe les fiches 8 a 10,
aux pages 82 a 84).

Des feuilles et des crayons.

Chaque enfant recoit une silhouette et doit chercher son aire. Apres un mo-
ment de reflexion individuelle, I’enseignant demande si une des pieces du
Tangram ne pourrait par servir d’unité de mesure. Le carré est commode
car son aire est facile a trouver. Il rappelle la notion de centimetre carré,
mais ne permet pas de paver les silhouettes recues. Le choix du petit tri-
angle est plus judicieux, puisqu’il permet de recouvrir entierement chaque
silhouette par pavage. On laisse alors de cOté la notion de centimetre carré
et on se donne comme unité le petit triangle. Chaque enfant doit exprimer
I’aire de sa silhouette en « unité-triangle ». Il indique son résultat sur son
dessin. La mise en commun révele que toutes les silhouettes ont la méme
aire, quelle que soit leur forme, puisqu’elles se composent du méme nombre
d’unités.

On passe alors a 'unité conventionnelle du centimetre carré : comment
transformer en centimetres carrés l'aire exprimée en « unité-triangle » 7
Les éleves font une recherche individuelle, puis on partage les idées. La
solution est de transformer les 16 « unités-triangle » en centimetres carrés
en passant par l'aire d’un seul triangle. Plus facile encore : on évoque ce
qui a été découvert a l'activité précédente, a savoir que la piece carrée
du Tangram vaut deux triangles. Ceci amene a dire que les 16 « unités-
triangle » sont égales a 8 « unités-carré ». On calcule I'aire du petit carré,
par exemple 4 centimetres carrés, et on multiplie le résultat par huit pour
obtenir laire totale de la silhouette, 32 centimetres carrés dans ce cas-ci.

Enfin, les enfants recherchent I’aire de chaque piece du Tangram en passant
par les équivalences avec le petit triangle. Si par exemple le carré a une
aire de 4 centimetres carrés, le parallélogramme et le triangle moyen aussi.
Le grand triangle a une aire de 8 centimetres carrés et le petit triangle de
2 centimetres carrés.

Trouver I'aire d’une autre surface que le Tangram en choisissant une piece
que nous appellerons « figure-unité » qui permet de la paver entierement.

Les éleves ont vite fait le rapport entre cette activité et celle sur les frac-
tions. Le pavage de la silhouette par le petit triangle a été assez naturel,
ainsi que le rapport avec le carré. Ils ont trouvé I'aire de toutes les piéces,
bien que, contrairement a notre exemple ci-dessus, les nombres qu’ils ont
eu a utiliser comportaient une virgule (le carré avait 3,4 centimetres de
coté).



LES MESURES DE CAPACITE

1 Comparer des récipients (de 6 a 10 ans)

De quoi s’agit-il ? Comparer la capacité de récipients, les sérier en fonction de leur capacité.

Mesurer un récipient avec un autre qui sert d’étalon.

Enjeux Discerner la capacité comme grandeur.
Comparaison et sériation des capacités. Voir chapitre 16, section 3.1.

Mesure en nombres entiers. Voir section 4.2.

Compétences. — Comparer des grandeurs de méme nature et concevoir
la grandeur comme une propriété de l’objet, la reconnaitre et la nommer.

De quoi a-t-on Des récipients pouvant contenir de l’eau, de formes les plus variées pos-

besoin ? sibles, par exemple : vase, cube, boite a conserve, flacon a parfum, petit
seau, boite a biscuits, bouteille opaque, bouteille transparente, bocal, as-
siette creuse, boite a glace, ...

Des bassines pour protéger les tables.

Comment s’y Les éleves doivent apporter des récipients pouvant contenir de 1’eau, les
prendre ¢ plus spéciaux possibles (I’enseignant en prévoit aussi).

Premaziére activité

Par groupes de deux, les éleves décrivent deux récipients et les comparent.
Si c’est possible, ils prennent note des caractéristiques relevées. Dans tous
les cas, I’enseignant fait une mise en commun orale des observations. La
question est « que peut-on dire d’un récipient 7 » Au fur et & mesure 1’en-
seignant écrit au tableau les caractéristiques données par les éleves et les
organise en deux colonnes sans annoncer le principe de répartition. La pre-
miere colonne contient les caractéristiques qualitatives des objets (matiere,
usages, provenance, ...) et la seconde, les informations du type quantita-
tif (grandeur, hauteur, éventuellement contenance, ...). L’enseignant fait
préciser le vocabulaire, notamment les adjectifs. Par exemple « le vase est
grand » ne veut rien dire en soi, I’éleve doit préciser « le vase est plus
grand que le flacon », et encore faut-il savoir ce qu’il entend par « grand ».

o7
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Finalement, I’enseignant demande pourquoi les informations sont en deux
colonnes. Il s’attend a ce que les éleves fassent la différence — méme si
c’est dans leur langage — entre la description qualitative du récipient et sa
capacité, la quantité d’eau qu’il peut contenir. L’activité se poursuit sur
ce dernier point.

Synthése

A la fin de la séance, l'enseignant met en évidence la distinction entre
la matiere et la forme du récipient et la quantité de liquide qu’il peut
contenir. Cette idée doit sortir de 'expérience des enfants et les guider
vers les manipulations suivantes.

Deuxiéme activité

On propose de s’intéresser a la capacité des récipients. Les éleves se mettent
par groupes de trois ou quatre avec quelques récipients (quatre ou cing),
choisis par I'enseignant pour que le classement des capacités ne se calque
pas sur celui de la hauteur des récipients!.

La premiere consigne est de comparer les capacités deux a deux. Ex-
primer les comparaisons en termes de « dans tel ou tel, on peut mettre
plus/moins/autant d’eau que dans tel autre ». Les éleves disposent d’eau
et organisent les comparaisons a leur guise.

La deuxiéme consigne est de mettre tous les récipients dans l'ordre (les
sérier), en partant de celui ot on peut mettre le moins d’eau jusqu’a celui
ou on peut en mettre le plus. Faire un premier classement a 'ceil, puis
vérifier au-dessus d’une bassine. Les procédures sont laissées aux éleves
(ils n’ont pas de récipients intermédiaires autres que ceux a classer).

Nous montrons ci-apres un exemple de méthode pour déterminer le réci-
pient qui contient le moins d’eau et deux exemples de méthode pour classer
les récipients en fonction de leur capacité?.

1 Si les éleves lisent des capacités sur des étiquettes, on remet la question & plus tard,
car elle mérite une activité & part entiere (voir activité 4 a la page 67).
2 Pour la clarté des photos, nous avons coloré 1’eau.
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TROUVER LE RECIPIENT QUI CONTIENT LE MOINS D’EAU

a) On choisit celui qui a lair le plus petit, par exemple le récipient A.
On le remplit d’eau et on verse le contenu de A dans chacun des autres.

A B C D

b) On voit que le récipient D déborde, donc il contient moins d’eau que A et que les deux
autres.

Vérification : on vide tous les récipients et on recommence a remplir chacun avec D.
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CLASSER DES RECIPIENTS (I)

a) Avec le récipient qui contient le moins d’eau (& vérifier), ici D, on remplit complétement les
autres, un par un. On note combien de fois on a versé D dans chaque récipient.

D E F G

b) On classe les récipients en commencant par celui qui peut contenir le moins d’eau jusqu’a
celui qui peut contenir le plus d’eau :

1. le récipient D ;

2. le récipient £ = 3xD;

3. le récipient F' = entre 4 et 5x D ;
4. le récipient G = 5x D.
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CLASSER DES RECIPIENTS (II)

a) On prend le récipient qui contient le moins d’eau, ici le D, pour remplir les autres.

b) On verse le contenu de D
une fois dans chaque réci-
pient.

c) Puis, on rajoute une
deuxieme fois de 1'eau avec D
dans chaque récipient.

d) On rajoute a nouveau la
meéme quantité d’eau dans les
récipients restants.

Le récipient I est rempli, donc c’est le troisieme récipient du classement.

e) On peut alors classer les récipients dans l'ordre : D, B, I, H.
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Synthése

Il est important de relever en fin de séance « qui sait quoi » et comment les
acquis s’installent pour chaque enfant. En fonction de ’age, on attendra
des résultats différents et plusieurs séances seront sans doute nécessaires
pour mettre au point une stratégie efficace.

L’objectif a terme est de faire une synthese collective ou chaque groupe
s’explique sur ses difficultés et sur les méthodes efficaces. Les enfants
doivent expliquer leurs manipulations et l'enseignant les ameéne & utili-
ser un vocabulaire adéquat. La description compléte d’une résolution du
probleme peut donner des idées a certains enfants et lors d’un autre essai,
chacun devrait étre capable d’y arriver le plus « économiquement » pos-
sible. Ceci permettrait a I’enseignant de voir ceux pour qui un probleme
de compréhension persiste. Il ne s’agit pas d'une évaluation notée, mais
d’une observation attentive des moyens que se donne chaque enfant pour
résoudre le probleme qu’on lui a soumis.

On peut faire une synthese reprenant en bref les procédures efficaces ac-
compagnées d’illustrations schématiques des situations, en adaptant ce qui
a été présenté ci-dessus en fonction de I'expérience de la classe.

En premiere et deuxieme primaires, les enfants ne se sont pas préoccupés
d’éventuelles étiquettes, ni des indications de contenance. Ils ont décrit les
récipients en termes tres généraux « gros, petit, ... » Ils en sont restés
a de tels adjectifs et n’ont pas exprimé clairement des comparaisons sans
I'intervention de l’enseignant. La mise en commun s’est faite oralement
sans note au tableau. La consigne suivante (mettre tous les récipients dans
Uordre en partant de celui ou on peut mettre le moins d’eau jusqu’a celui
ot on peut en mettre le plus) a été donnée par I'enseignant sans beaucoup
d’explications, pour voir les réactions des éleves.

Concernant la comparaison des capacités, les éleves se sont tout d’abord
fixés sur la hauteur des récipients : « Le récipient le plus haut pourra
contenir le plus d’eau. » Les manipulations avec ’eau leur ont permis
d’infirmer ce classement.

En troisieme et quatrieme primaires, les comportements ont été plus va-
riés. Les éleves ont été tres inventifs dans le choix des récipients et stimulés
a travailler avec le matériel qu’ils avaient eux-mémes apporté. C’est I'en-
seignant qui a sélectionné les deux récipients a comparer en fonction des
ressemblances et différences susceptibles de provoquer un apprentissage.
La description qualitative a été tres riche, les éleves ont relevé des données
sur les étiquettes (nom du produit, provenance, contenance, ...). Pour-
tant la comparaison des capacités n’a pas surgi tout de suite. Les enfants
formulaient les comparaisons quantitatives en disant : « C’est plus pe-
tit/grand /haut/gros que. . ., la bouteille mesure 13 cm, c’est plus haut que
ma latte... » Néanmoins, en quatrieme année, les éleves ne s’attachaient
plus a la hauteur du récipient pour en caractériser la capacité.

En ce qui concerne les sériations, chaque groupe a travaillé différemment.
L’un est parti du récipient qui paraissait le plus petit et s’en est servi pour
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De quoi s’agit-il ¢

Enjeux

De quoi a-t-on
besoin ¢

remplir les autres et les classer en fonction du nombre de transvasements
nécessaires pour remplir entierement chaque récipient.

Un autre groupe a fait de méme, mais a partir du récipient le plus grand
et de 'importance du débordement : ils ont estimé a vue si ¢a débordait
beaucoup ou un peu.

Un groupe a tenu compte de quelques indications données par les éti-
quettes.

Dans un des groupes, les éleves ont choisi un récipient au hasard, avec
lequel ils ont versé le contenu une seule fois dans chacun des autres réci-
pients et ils en sont restés la. Ils ne savaient que faire et ont fait appel a
I’enseignant. L’intervention d’un autre groupe qui avait réussi a résoudre
la question les a éclairés dans la maniere de procéder.

Certains sont repassés par une comparaison des récipients deux par deux
pour arriver au classement général.

Un seul groupe n’est pas parvenu au bout de la tache dans le temps imparti,
en raison d’une mauvaise organisation entre les éleves.

Dans une classe, apres avoir sérié les récipients, chaque groupe a remis ses
bouteilles en désordre et tous les éleves sont passés de table en table. Ils
devaient proposer un classement en jugeant a I’ceil (sans transvasement)
de la capacité des récipients. Le groupe qui avait effectué le classement par
transvasement faisait les corrections et justifiait ses choix en les expliquant.

2 Mesurer des capacités (de 8 a 10 ans)

Comparer des récipients gradués selon des étalons différents.

Mesurer une capacité avec un étalon de rencontre imposé. Voir chapitre
16, section 4.2.

Rencontre, dans un cas extrémement simple, avec un changement d’unité
(section 4.8 pour le cas général). La mesure avec un étalon deux fois plus
petit s’exprime par un nombre deux fois plus grand (c’est une application
de ce que l'on appelle le principe de compensation).

Compétences. — Effectuer le mesurage en utilisant des étalons familiers
et conventionnels et en exprimer le résultat.

Des récipients différents pour chaque groupe de quatre éleves.

Deux étalons dans le rapport 1/2 (ce seront les mémes pour chaque groupe),
du genre louche, petit verre, etc.

Les fiches 12 & 15 (en annexe aux pages 86 a 89).
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L’enseignant forme des groupes de quatre éleves maximum?®. Chaque grou-
pe doit mesurer le contenu d’un récipient a ’aide de deux étalons donnés
(dans notre exemple, un petit vase a long col et un pot). Il procede aux
transvasements et les résultats sont inscrits sur une fiche prévue a cet effet?.

Fiche 12 (page 86)

Fiche 13 (page 87)

a) Voici le récipient a
mesurer avec le petit
étalon :

b) Voici le méme réci-
pient & mesurer avec
le grand étalon :

GROUPE 1

Chaque fois que tu as versé
le petit étalon dans ce ré-
cipient, tu colories un petit
dessin.

M.

E
|
E
|
E
|
E
|

Chaque fois que tu as versé
le grand étalon dans ce ré-
cipient, tu colories un petit
dessin.

GROUPE 2

a) Voici le récipient a
mesurer avec le petit
étalon :

b) Voici le méme réci-
pient & mesurer avec
le grand étalon :

Chaque fois que tu as versé
le petit étalon dans ce ré-
cipient, tu colories un petit
dessin.

M.

Chaque fois que tu as versé
le grand étalon dans ce ré-
cipient, tu colories un petit
dessin.

T

1.4 4. - B R

Lorsque tous les groupes ont effectué les mesures, on fait une synthese
collective dans le but de comparer les résultats. Tout d’abord, on place
au tableau les résultats obtenus par chaque équipe pour les deux étalons.
Ensuite, on se questionne sur le lien entre la mesure obtenue avec le premier
étalon et la mesure obtenue avec le deuxieme, c’est-a-dire le passage du
simple au double (relation « fois 2 »). Enfin, on essaie d’en tirer comme
conclusion que le petit étalon « va deux fois » dans le grand ou autrement
dit, que « le grand étalon contient deux fois le petit ». Voici un exemple
de fiche de synthese :

3 Pour ne pas multiplier le matériel, on peut faire travailler les groupes & tour de role.

4 Nous proposons des exemples de fiches que I'enseignant peut adapter & la classe,
l'idée étant d’étre le plus concret possible dans les représentations proposées (photos de
récipients).
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Fiche 14 (page 88)

s

Groupe 1, le petit étalon

lva 8 fois

SYNTHESE DES GROUPES

Groupe 1, le grand étalon

=

dans

= .
~ 4 %

74

va 4 fois
dans

W

Looumld

|

Groupe 2, le petit étalon

va 6 fois
dans

Groupe 2, le grand étalon

=

74

va 3 fois
dans

A A
Le petit le grand
étalon étalon 7
DONC — va combien de fois dans T e
2 fois P
s X 4
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Pour terminer, on propose 'exercice individuel de la fiche 15, ou il s’agit
de mettre les découvertes en application sans passer par le transvasement

réel.

La consigne est de découper les images de récipients, de les classer en
deux groupes en fonction de I’étalon choisi pour les mesurer, puis, de faire
un classement général en collant les images de récipients depuis celui qui
contient le moins jusqu’a celui qui contient le plus. Pour connaitre la capa-
cité de chaque récipient, il faut se référer a la regle encadrée dans le haut
de la page, qui indique que le grand étalon vaut deux fois le petit étalon.
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Chapitre 3. Les mesures de capacité

3 Vers le systeme décimal : comparer deux éta-
lons (de 8 a 10 ans)

Utiliser deux étalons différents pour mesurer un méme contenu, ces étalons
ayant entre eux un rapport de 1/10.

Une premiere approche du systéeme décimal de mesures, par 'utilisation
du litre et du décilitre. Voir chapitre 16, section 4.5.

Le principe de compensation est en jeu ici comme a ’activité précédente,
avec en l'occurrence un rapport de 1 a 10 entre les étalons (cf. section 4.8
pour le cas général).

Compétences. — Fuire des estimations en utilisant des étalons familiers
et conventionnels. Effectuer le mesurage en utilisant des étalons familiers
et conventionnels et en exprimer le résultat. Connaitre le sens du préfixe
déci.

Deux étalons : I'un d’un litre et autre d’un décilitre.

Plusieurs récipients de 2, 3, 4 et 5 litres (nombres entiers de litres®) tels
que saladier, boite a glace, petit seau, arrosoir, etc.

Les fiches 16 et 17 (en annexe aux pages 90 et 91).

Les éleves travaillent par petits groupes. Chaque groupe doit avoir deux
étalons (1 1et 1 dl) et deux récipients a mesurer. Tout d’abord, ils doivent
comparer les deux étalons par transvasements et arriver a la conclusion
que le grand contient dix fois le petit et donc que le petit vaut le dixieme
du grand. Sachant que le grand vaut un litre, on nomme le petit décilitre.

FEnsuite, il s’agit de mesurer un des récipients regus en utilisant pour com-
mencer le litre, puis de prévoir la mesure en décilitres et finalement de
la vérifier. Pour le second récipient, on mesure d’abord avec 1’étalon d’un
décilitre, puis on prévoit la mesure en litres avant de la vérifier par trans-
vasements (chaque fois aussi soigneusement que possible). Chaque groupe
complete la fiche 16.

Enfin, 'enseignant récolte les résultats pour une synthese, par exemple le
tableau ci-apres.

Pour terminer, on propose 'exercice individuel de la fiche 17 ou il s’agit
de mettre les découvertes en application sans passer par le transvasement
réel.

La consigne est de classer les images de récipients depuis celui qui contient
le moins jusqu’a celui qui contient le plus. Pour connaitre la capacité de
chaque récipient, il faut se référer a la regle encadrée dans le haut de la
page qui indique que le grand étalon vaut 10 fois le petit étalon.

5 On peut déterminer un nombre entier de litres en faisant une marque sur le récipient
et en prévenant les éleves de s’y arréter lors du remplissage.
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Expérience mesure en litres mesure en décilitres
groupe 1 : saladier 2 litres 20 décilitres
groupe 2 : caisse 3 litres 30 décilitres
groupe 3 : seau 4 litres 40 décilitres
groupe 4 : arrosoir 5 litres 50 décilitres

Un décilitre est

CONCLUSION

Pour un litre, on a dix fois un décilitre. On écrit 1 1 = 10 dl.

le dixieme d’un litre. On écrit 1 dl = % 1 ou encore 1 dl = 0,1 1.

De quoi s’agit-il ?

Enjeux

De quoi a-t-on
besoin ?

Comment s’y
prendre ¢

4 Lecture d’étiquettes de récipients (de 10 a 12
ans)

Expérimenter les rapports entre litre, décilitre, centilitre et millilitre. At-
tribuer a des récipients des étiquettes indiquant leur capacité. Classer des
récipients en fonction de leurs étiquettes.

Quatre unités décimales de capacité : le litre, le décilitre, le centilitre et le
millilitre. Voir chapitre 16, section 4.5.

Sériations de capacités basées non plus sur une comparaison directe des
capacités (par transvasements), mais bien sur des mesures. Voir section 5.

Changements d’unités dans le systeme décimal. Voir section 4.8.

Compétences. — Effectuer le mesurage en utilisant des étalons familiers
et conventionnels et en exprimer le résultat. Etablir des relations dans un
systeme pour donner du sens a la lecture et a [’écriture d’une mesure.
Connaitre le sens des préfizes déci, centi, milli.

Des récipients gradués qui permettent d’établir les relations entre un litre,
un décilitre, un centilitre et un millilitre.

Des récipients de la vie courante étiquetés dans des unités différentes (par
exemple des berlingots avec mention en ml, cl, dl, | pour une méme capa-
cité).

Diverses bouteilles et boites avec indication de la capacité.

La fiche 18 a la page 92 a découper.

Tout d’abord, les éleves établissent les relations entre les différentes unités
(le litre, le décilitre, le centilitre et le millilitre).

Ensuite, on présente aux éléves des récipients de la vie courante (bouteille,
flacon, boite, etc.) avec mention de la capacité sur ’étiquette. Les enfants
doivent grouper les récipients qui ont la méme capacité en fonction de la
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lecture des étiquettes. On souligne a nouveau les rapports entre unités et
sous-unités. Voici un exemple de récipients :

un flacon de shampooing avec la mention 250 ml
une bouteille avec la mention 25 cl

une canette avec la mention 0,25 1

une bouteille de grenadine avec la mention 0,75 1

une bouteille d’huile avec la mention 75 cl

un bocal de mayonnaise avec la mention 1000 ml
une bouteille d’eau avec la mention 1 1

une boite de lait avec la mention 1 1

Puis, on donne a des groupes d’éleves des récipients étiquetés et une série
de mesures (en 1, dl, cl, ml) & attribuer & chaque récipient. On place égale-
ment des intrus dans les étiquettes, pour que les éleves ne se réferent pas
uniquement aux chiffres qui composent le nombre (exemple, fiche 18).

Enfin, les éleves doivent classer par ordre croissant de capacités des réci-
pients étiquetés dans des unités différentes. Ils notent les méthodes qu’ils
utilisent pour y parvenir. L’enseignant rassemble les données pour une syn-
these collective portant principalement sur le principe de compensation et
I’écriture décimale.
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REPRESENTATIONS GRAPHIQUES

Dans le cadre d’un travail sur le theme de I’eau, on se propose de traiter
certaines questions concernant les pourcentages et les conversions d’unités
de grandeurs. Au préalable, on aura suscité chez les éleves des questions
d’ordre général et fait avec eux des recherches documentaires tres larges
sur le sujet. De nombreuses données a 1'usage des classes peuvent étre
recueillies aupres des compagnies de distribution d’eau’.

1 Quelle part d’eau dans nos organes? (de 10 a
12 ans)

Compléter un graphique en batonnets pour représenter des pourcentages
d’eau dans divers organes du corps humain.

Familiarisation avec des données en pourcents. Représenter des données
chiffrées graphiquement, 1’échelle a utiliser pour le graphique étant donnée.
Voir chapitre 16, section 4.9.

Fiche 19 a la page 93 : graphique sur papier millimétré a compléter par
Iéleve.

On présente des données concernant le pourcentage d’eau dans divers or-
ganes du corps humain (dents, os, ...) : voir fiche 19. On donne un modele
de graphique en batonnets que 1’éleve doit compléter en fonction de ces
données avec le plus de précision possible. Il doit tracer un trait a I’endroit
du pourcentage a représenter, puis colorier la zone qui illustre la part d’eau
dans 'organe considéré.

L’idée est d’obtenir une image qui permette de se représenter facilement
la situation en pourcentages et de comparer les données entre elles.

! Une documentation pédagogique peut étre demandée aupres de la Société Wallonne
des Distributions d’Eau (SWDE : 065/385211).
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Chapitre 4. Grandeurs, pourcentages et représentations graphiques

2  Quelle consommation d’eau par famille ? (de 10
a 12 ans)

Lire des factures et en extraire des données, rechercher des données chiffrées
et les traiter graphiquement.

Analyser des documents réels et en extraire des données concernant des
unités de mesure, des prix.

Représentation graphique de mesures (en l'occurrence des volumes) par
des rectangles de méme base, reconnaissance de 1’échelle, confection d’une
sous-graduation. Voir chapitre 16, section 5.3.

Ramener des mesures que 1'on veut comparer a une base de comparaison
unique. 11 s’agit d’abord de ramener des consommations d’une famille & une
personne. Il s’agit ensuite de pourcentages a calculer a partir de données
brutes, puis a mettre en correspondance avec des secteurs circulaires d’'un
disque gradué en cent parties égales.

Des calculatrices.
Fiche 20 a la page 94 : un exemple de facture d’eau.

Fiche 21 a la page 95 : graphique en batonnets de la consommation moyen-

ne par famille et par an?.

Fiche 22 a la page 96 : graphique circulaire de consommation moyenne par
personne et par jour>.

Fiche 23 a la page 97 : enquéte sur la consommation.
Fiches 24 et 25 aux pages 98 et 99 : transformer les données et représenter.

Fiche 27 & la page 182 : cercles transparents prégradués en pourcentages®.

Premaiére activité

Tout d’abord, analysons des factures d’eau regues dans les familles (exem-
ple & la fiche 20). Les éleves travaillent par groupes et doivent répertorier
sur une feuille toutes les informations qui figurent sur une facture d’eau
et essayer de comprendre les fagons de calculer les prix (avec l'aide de
calculatrices si nécessaire). Lors de la mise en commun, l’enseignant note
au tableau les informations principales et questionne les éleves sur le m? :
que vaut-il en litres ? Pourquoi 'utilise-t-on dans les factures ? Voici, a titre
d’exemple, les données que I'on peut obtenir :

— nom et adresse de la société de distribution ;
— nom et adresse du consommateur ;

— numéro et date de la facture;

2 Société Wallonne des Distributions d’Eau [2000)
3 R. Depamelaere [sans date]
4 L’idée vient de Pouvrage de School Mathematics Project [1997)
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— relevé de I'index en m? : on trouve la consommation en faisant la diffé-

rence entre le nouveau relevé et le précédent ;

— consommation facturée en francs : plusieurs tarifs en fonction des tran-
ches de consommation ;

— redevance annuelle d’abonnement : frais fixes ;

— TVA sur le total de la consommation et de ’abonnement : 6 % du total
en francs;
— taxe régionale (pas de TVA) : autant de francs par m?;

— montant total a payer avant une certaine date.

On peut proposer une facture ot 'on a introduit une erreur, pour que les
éleves refassent tous les calculs nécessaires.

Deuxiéme activité

Ensuite, on s’intéresse & la consommation moyenne® des familles & partir
du document de la fiche 21. Sur base de ce document, que peut-on dire de
la. consommation de 1999 7 Calculer la différence de consommation entre
I’année ou 'on a consommé le moins et I’année ou 'on a consommé le
plus®.

Pour lire le graphique, les éleves doivent reporter le sommet des baton-
nets coloriés vers 1'axe des m>. Celui-ci comporte peu de divisions. Il y a
1,5 cm entre deux graduations successives. Donc 1,5 cm sur 'axe verti-
cal représentent 5 m> et les éleves doivent tracer une sous-graduation
chaque metre cube. Ils utilisent les sous-graduations de 1’axe vertical pour
déterminer la quantité d’eau a laquelle correspond chaque batonnet.

D’apres ce graphique, peut-on savoir combien d’eau consomme chaque fa-
mille 7 Non, parce qu’il s’agit d’une valeur moyenne qui ne montre pas les
différences individuelles.

Troisiéme activité

Quel est la consommation d’eau des familles de la classe pour les catégories
suivantes d’utilisation ?

— boisson et alimentation ;

— vaisselle;

lessive ;

entretien;

bain ou douche;

toilettes.

5 Expliquer ce qu’est une consommation moyenne.
6 1] est intéressant de se poser avec les éleves des questions complémentaires sur les
informations que nous apportent ce graphique (voir commentaires & la page 72).
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Il serait bien de mettre a la disposition des éleves des publicités sur les
machines a laver, les lave-vaisselle, ... afin qu’ils puissent déterminer les
quantités d’eau utilisées. Les éleves doivent faire quelques recherches et
questionner leur entourage sur les consommations d’eau par jour et com-
pléter chacun la fiche 23. Ils inscrivent soit les données par jour, soit les
données par semaine en fonction des catégories et completent ensuite le
tableau par calculs.

Puis, on compare les données, on se questionne sur les raisons des diffé-
rences et sur les consommations exagérées.

Ensuite, chaque éleve recherche les données de chaque catégorie pour une
seule personne. Il s’agit d’'une consommation moyenne, car les membres de
la famille ne consomment pas tous des quantités égales. De plus, certaines
catégories ne correspondent pas & des consommations individuelles (par
exemple l'entretien et la lessive). Par ailleurs, ramener les consommations
a une seule personne permet de comparer les familles, qui n’ont pas toutes
le méme nombre de membres. Les éleves completent la fiche 24 en repar-
tant des données de la premiere fiche (concernant seulement la deuxieme
colonne).

Enfin, les éleves doivent faire un graphique circulaire tel que celui de la
fiche 22 qui présente un exemple’.

Pour cela, les éleves vont tout d’abord trouver quel pourcentage repré-
sente chaque catégorie par rapport a la quantité totale d’eau utilisée : ils
completent la fiche 25. Ils font leur graphique a 1’aide du cercle prégradué
transparent (fiche 27) qu’ils appliquent sur leur feuille comme une sorte de
rapporteur.

Commentaires

Le graphique de la fiche 21 appelle deux réflexions.

Premierement, pourquoi la consommation a-t-elle diminué depuis 1990 ? C’est sans doute
d’abord parce que le prix de I’eau en nette augmentation incite a réduire la consom-
mation. D’autre part, les aménagements domestiques tels que les toilettes a réservoir
économique, les douches, les machines a laver, les lave-vaisselle demandent de moins en
moins d’eau. Les appareils ménagers utilisent souvent moins d’eau que si l'on effectue
les mémes taches a la main. Enfin les installations de distribution d’eau a domicile se
modernisent et les pertes d’eau principalement aux robinets sont moins grandes (par
exemple, un robinet qui goutte pourra consommer 35 m® par an et une toilette qui fonc-
tionne mal 220 m?® par an® 1). Ce sont la quelques raisons possibles de la diminution de
la consommation des ménages.

La seconde réflexion concerne 'aspect visuel trompeur du graphique. Sans y regarder
de pres, on a l'impression que la consommation d’eau a chuté de moitié entre 1990
et 1999, car la hauteur des rectangles diminue de moitié sur cette période. Or, si I'on
regarde I’axe vertical, on constate qu’il ne démarre pas & 0 m® mais & 100 m?, ce qui
laisse la majeure partie du graphique invisible. Donc une diminution de moitié¢ de la
consommation concernant la tranche allant de 100 m® & 130 m® n’est en fait qu’une
diminution d’environ 12% sur la consommation totale.

" Extrait de R. Depamelaere [sans date]
8 Données recueillies dans 'ouvrage R. Depamelaere [sans date].
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Fiche 11
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86 Fiche 12 (page 64)

GROUPE 1
a) Voici le récipient & mesurer Chaque fois que tu as versé le petit étalon dans ce
avec le petit étalon : récipient, tu colories un petit dessin.

b) Voici le méme récipient & mesurer Chaque fois que tu as versé le grand étalon dans ce
avec le grand étalon : récipient, tu colories un petit dessin.
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GROUPE 2
a) Voici le récipient a mesurer Chaque fois que tu as versé le petit étalon dans ce
avec le petit étalon : récipient, tu colories un petit dessin.

b) Voici le méme récipient & mesurer Chaque fois que tu as versé le grand étalon dans ce
avec le grand étalon : récipient, tu colories un petit dessin.




88 Fiche 14 (page 65)

SYNTHESE DES GROUPES

Groupe 1, le petit étalon Groupe 1, le grand étalon

va 8 fois
dans dans

va 6 fois
dans dans

Le petit étalon

DONC va combien de fois dans

Y

2 fois




Fiche 15 89

CLASSER DES RECIPIENTS (I)

Le premier cadre nous montre que |1 bol vaut 2 petites louches‘ .

Les récipients en dessous ont été mesurés soit avec les bols, soit avec les louches. A toi de retrouver
ceux qui peuvent contenir le moins et ceux qui peuvent contenir le plus. Attention, il est possible
que plusieurs récipients puissent contenir autant d’eau.

Découpe ces images de récipients et colle-les sur la fiche suivante dans I'ordre croissant.

T

1
O0E

_______________________________



90 Fiche 16

MESURER EN LITRES ET EN DECILITRES

Mesure la capacité du récipient avec le litre, puis devine la mesure en décilitres.

ESSAIE : -
11
£; va combien de fois dans
DEVINE : i R
1dl

Mesure la capacité du récipient avec le décilitre, puis devine la mesure en litres.

ESSAIE : @ va combien de fois dans
1dl

va combien de fois dans

DEVINE : -




Fiche 17 91

CLASSER DES RECIPIENTS (II)

Le cadre noir nous montre que | 1 bocal gradué vaut 10 verres a apéritif ‘ .

Les récipients en dessous ont été mesurés soit avec les bocaux gradués, soit avec les verres a apéritif.
A toi de retrouver ceux qui peuvent contenir le moins et ceux qui peuvent contenir le plus. Attention,
il est possible que plusieurs récipients puissent contenir autant d’eau.

=107

Note ici 'ordre des images A, B, C, D, E, F, G, H: ..., ... ..., ..., ..., ...
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1751 | 0751 051 | 0251
00251 751 | 251 @ 0331
1Al 075dl | 5dl | 25dl
75dl 05dl | 025d 3]
10cl | 0,75cl | 75l 50 cl
25 cl 20 cl 3 cl 0,5 cl
200ml | 02ml | 75 ml | 1000 ml
0,75 ml | 500 ml | 50 ml | 330 ml

Fiche 18



Fiche 19 : Fau dans les organes du corps

Représenter ces données en pourcentages sur le graphique

- Dents : 10% d’eau - Sang : 83% d’eau

- Os : 22% d’eau - Ceeur : 79% d’eau

- Peau : 72% d’eau - Poumons : 80% d’eau
- Muscles : 73% d’eau - Cerveau : 75% d’eau

POURCENTAGES

100% — — - - __ —_ —_ —_ - .

90%

80%

70%

60%

50%

40%

30%

20%

10%

PARTIES
DU CORPS

0%

DENTS (ON) PEAU MUSCLES CERVEAU CIUR POUMONS SANG



Fiche 20 : Facture d’eau
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Extrait du rapport annuel 1999 de la SWDE’

« La consommation moyenne en eau traitée, rapportée par raccordement et sur base d’un cycle de
12 mois, est de 111 m3, soit 2 m® de moins qu’en 1998. La diminution de la consommation observée
depuis plusieurs années se confirme. »

Voici le graphique de I’évolution de la consommation d’eau moyenne par raccorde-
ment :
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9 Voir Société Wallonne des Distributions d’Eau [2000]



96 Fiche 22 : Consommation moyenne d’eau

La consommation moyenne d’eau par les ménages en Belgique s’éleve a environ 120

litres par personne et par jour' :
pour la boisson et ’alimentation : 5 litres 4%
pour la vaisselle : 8 litres 7%
pour I'hygiene corporelle : 38 litres 31 %
pour le WC : 43 litres 36 %
pour la lessive : 16 litres 14 %
pour 'entretien : 10 litres 8 %

entretien bpisson &

8% alimentation

4%
vaisselle

7%

lessive
14%

hygiéne corporelle
31%

10 Extrait de R. Depamelaere [sans date]



Fiche 23

ENQUETE SUR LA CONSOMMATION D’EAU PAR FAMILLE

Nom et prénom :

La famille est composée de ... personnes.

1) Recherche : Combien d’eau pour...?

TOUTE LA FAMILLE LITRES LITRES
UTILISE L’EAU POUR ... | PAR JOUR | PAR SEMAINE

1. Boisson, alimentation | ...... |  ......
2. Vaisselle | ... | L
3. Lessive | ... Lol
4. Entretien, nettoyage | ...... |  ......
5. Bain, douche, évier | ...... | ...

6. Toilettes | ... L.

TOTAUX | o
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Fiche 2}

2) Consommation d’eau PAR PERSONNE, PAR JOUR
Reporter les données du tableau 1 et calculer.

. personnes

L’EAU POUR ... LITRES PAR JOUR | LITRES PAR JOUR
PAR FAMILLE | PAR PERSONNE

1. Boisson, alimentation e =......
2. Vaisselle =......
3. Lessive =......
4. Entretien, nettoyage = ... ...
5. Bain, douche, évier = ... ...

6. Toilettes . = ...

TOTAUX e =......

. personnes




Fiche 25

3) Transformer les données PAR JOUR/PAR PERSONNE en POURCENTAGES

Reporter les données du tableau 2 et calculer.

POURCENTAGES | LITRES PAR JOUR
/PAR PERSONNE
TOTAL { 100 % s }
1. Boisson, alimentation . %
TOTAL { 100 % s }
2. Vaisselle . %
TOTAL { 100 % e }
3. Lessive . %
TOTAL { 100 % s }
4. Entretien, nettoyage . %
TOTAL { 100 % s }
5. Bain, douche, évier . %
TOTAL { 100 % T }
6. Toilettes . %

4) Dessiner le graphique circulaire a 1’aide du « rapporteur en pourcents »

. Boisson, alimentation : ... %
. Vaisselle : ... %

Lessive : ... %

. Entretien, nettoyage : ... %
. Bain, douche, évier : ... %

. Toilettes : ... %

o Ul W N






Deuxieme partie

Un aspect de la linéarité

de 12 4 15 ans






TABLEAUX, GRAPHIQUES, FORMULES

De quoi s’agit-il ¢

Enjeux

De quoi a-t-on
besoin ¢

Comment s’y
prendre ¢

1 Des abaques et des graphiques pour calculer

Les éleves recueillent des données, ils élaborent des diagrammes en bandes
et des diagrammes circulaires a ’aide d’abaques; ils calculent des pour-
centages. Le terme « abaque » est employé ici dans le premier sens donné
par le Larousse : graphique permettant de résoudre de nombreux calculs.

Représentation de données par des grandeurs géométriques (segments et
angles) et conversion des données en pourcentages, par voie graphique et
par calcul. Les instruments graphiques en question permettent d’appré-
hender les rapports et proportions de maniere tres visuelle.

Voir chapitre 16, sections 4.9 et 5.3.

Compétences

Représenter des données par un graphique, un diagramme. Dans une situa-
tion simple et concréte, estimer la fréquence d’un événement sous forme
de rapport.

Calculer des pourcentages.

Interpréter un graphique, un tableau, un diagramme.

Pour les diagrammes circulaires : des maquettes de « bracelets de conver-
sion » (voir la fiche 26 & la page 181), une paire de ciseaux, un baton de
colle ou quelques trombones par groupe de trois ou quatre éleves.

Pour les pourcentages : le cercle gradué en centiemes (voir la fiche 27 a
la page 182) et les abaques de conversion de rapports de longueurs en
pourcentages (voir les fiches 28, 29 et 30 aux pages 183 & 185).

L’activité commence par une question qui se rapporte a des données re-
cueillies par les éleves.

103



104
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On dispose, pour plusieurs classes d’'une méme école, des nombres
d’éleves pour les catégories suivantes : ceux qui rentrent a la maison a
midi, ceux qui mangent des sandwiches a 1’école et ceux qui y prennent
un repas chaud. On demande de construire des diagrammes circulaires
afin de comparer rapidement les proportions d’éleves dans chaque caté-
gorie pour les différentes classes.

Pour chaque classe, déterminer le pourcentage que représente chacune
des catégories.

Le déroulement décrit ci-apres part de données fictives a propos des repas
de midi. Les éleves peuvent recueillir des informations réelles en enquétant
dans différentes classes ou en s’adressant a ’économat de 1’école. Le pro-
fesseur répartit le travail entre les groupes de fagon a ce que 1’on puisse
dégager des méthodes et des propriétés a partir d’exemples qui comportent
des effectifs différents. Traitons par exemple deux relevés, I'un qui corres-
pond a une classe de 29 éleves et I'autre a une classe de 26 éleves.

Classe 1 | Classe 2
Rentrent a la maison 11 5
Sandwiches 3 12
Diner chaud 15 9
Nombre total d’éleves de la classe 29 26

Awvec un bracelet

Le support des bandelettes aide 1’éleve a construire un diagramme circu-
laire sans qu’il soit nécessaire de fournir au préalable une définition de
rapport ou une procédure. Pour faire apparaitre un partage du disque en
29 parties égales, le professeur propose donc aux éleves de découper une
des bandelettes de la fiche 26 a la page 181 et de I’enrouler pour former un
cercle. En observant comment les éleves se débrouillent avec ce matériel,
le professeur veille a ce qu’ils traitent correctement les aspects suivants :

- 'ensemble de tous les éleves d’une classe est représenté par un disque
complet et chaque catégorie est représentée par une partie du disque
proportionnelle au nombre d’éleves,

- partager le disque revient a partager son contour et a relier les points
de partage au centre du disque.

Moyennant quelques indications (que le professeur dispensera de maniere
parcimonieuse pour bien localiser les points de blocage et laisser aux éleves
le plaisir de la découverte), on élabore un mode d’emploi. On choisit une
bandelette qui comporte plus de 29 unités et I’on repere les longueurs qui
correspondent aux différentes catégories.
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4
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30 31 3233 34

A

enrouler jusqu'ici

Fig. 1

On ferme, puis on colle ou on place un trombone pour obtenir un « brace-
let ». On trace un cercle plus grand que le bracelet et on indique le centre
du cercle de maniere tres visible. Ceci permet de centrer le bracelet & vue
et de reporter les traits qui correspondent aux différentes catégories.

Fig. 2

On obtient un diagramme circulaire qui permet de visualiser la part de
chaque catégorie. Pour la classe 2, en utilisant une autre bandelette, on
obtient le deuxieme diagramme de la figure 3. La comparaison des pro-
portions dans les différentes classes est plus aisée lorsque les cercles ont
meéme rayon. Dans le cas présent, on voit tout de suite que les proportions
d’éleves pour chaque catégorie sont tres différentes d’une classe a 'autre.

Rentrent a la
maison

O1

Mangent des
|2 sandwiches

03 Prennent un
repas chaud

Fig. 3
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Pour convertir les données en pourcentages, les éleves disposent de quatre
outils : un disque transparent gradué en centiemes (fiche 27 a la page 182),
les abaques de conversion de rapports de longueurs en pourcentages (voir
fiches 28, 29 et 30 aux pages 183 a 185).

Tout en évitant les calculs, ces outils conduisent a percevoir cette conver-
sion comme un changement de graduation d’un cercle ou d’un segment :
un partage du tout en parties égales (ici en 29 ou en 26 parties) est rem-
placé par un partage en 100. Le professeur choisit les outils qu’il exploitera
pour traiter les données recueillies. Il organise la classe de fagon & ce que
chaque éleve n’utilise qu’'un abaque, mais qu’il bénéficie des travaux des

autres éleves.

Avec le cercle gradué en centiémes

En déposant un cercle gradué transparent sur le disque comme indiqué par

la figure 4, on « lit » qu’a la fraction % correspond & peu pres 52%.

\\\\\‘E}\\\H //////////%

N A
SN wZ
%é’}c \o//
- ® ?
= S
- NS

///%0@ oy S \\\
DN\

Fig. 4

Il faut ensuite tourner le rapporteur de maniere a ajuster la fleche qui
pointe 0 sur le premier coté du secteur représentant la catégorie de 3 éleves
et de méme pour le troisieme secteur.

Avec l’'abaque de conversion des longueurs en pourcentages

Cet abaque (voir figure 5) ressemble au faisceau lumineux d’un projecteur
de diapositives ou d’un agrandisseur. Les segments paralleles a la ligne
graduée sont partagés par le faisceau en 10 (ou 100) parties égales.
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Si la perception de ce phénomene géométrique n’est pas immédiate pour
les éleves, on procedera a des expériences pour des partages plus simples :
observer par exemple ol se trouve le milieu d’'un segment que I'on place
tantot dans une position parallele a la ligne graduée, tantot dans une autre
position (voir figures 6 et 7).
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Fig. 6 Fig. 7
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La figure 8 montre comment disposer la bandelette sur ’abaque pour gra-
duer un segment de 29 unités en centiemes.

Fig. 8

On y «lit » :

- qu’a la graduation 3 sur la bandelette de 29 unités, correspond a peu
pres la graduation 10 sur le segment de 100 unités,

- qu’a la graduation 11 sur la bandelette de 29 unités, correspond a
peu pres la graduation 38 sur le segment de 100 unités,

- qu’a la graduation 15 sur la bandelette de 29 unités, correspond a
peu pres la graduation 52 sur le segment de 100 unités.

Avec le guide ligné

Pour que les éleves découvrent comment utiliser ce réseau de lignes, on peut
d’abord leur montrer comment partager une bandelette en deux, trois ou
quatre parties égales en la déposant sur une feuille lignée (voir figure 9).
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Fig. 9

La figure 10 montre comment déterminer le pourcentage qui correspond a
3 éleves sur 29 ; 11 éleves sur 29 et 15 éleves sur 29.

100% <

90%

80% ——— =

70% — =

60%

50% —~
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30% —

20%

10% e

0%

Fig. 10
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Avec le repére rectangulaire
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Le repere fourni aux éleves (figure 11) est prévu pour
opérer les conversions relatives a un groupe de 26
éleves. Il montre comment indiquer qu’a 26 sur 26
correspond le rapport 100% et qu’a 13 sur 26 corres-
pond le rapport 50%. Les éléves ont a découvrir com-
ment convertir les autres rapports (5 sur 26, 12 sur
26 et 9 sur 26) en pourcents de la grandeur de réfé-
rence choisie. L’image du partage en deux qui s’effec-
tue dans trois directions, celles des cotés du rectangle
et celle de sa diagonale, donne I'idée de la construc-
tion : pour convertir 5 sur 26, on part de la graduation
5 (voir figure 12), on trace un segment vertical, on re-
pere l'intersection de cette verticale avec la diagonale
du rectangle, on trace un segment horizontal et on lit
le nombre de pourcents correspondant. La figure 13
montre les conversions pour la classe de 29 éleves.
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Ces deux graphiques peuvent servir de supports pour réaliser des dia-

grammes en batons. Il suffit pour chaque donnée, de prendre comme hau-
teur du baton, la longueur du segment correspondant sur le graphique. On
obtient ainsi le diagramme de la figure 14.
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100%
90%
80%
70%
60%
50%
40%
30%
20%

D Classe 1 10%

. Classe 2

Eléves qui mangent
des sandwiches

Eléves qui rentrent
a la maison

Eléves qui prennent
un repas chaud

Fig. 14

Les abaques de conversion fournissent des pourcentages approximatifs qui
bien souvent suffisent pour construire des diagrammes. On réalise cepen-
dant que si I'on veut traiter les données avec plus de précision, on ne peut
pas recourir a de tels supports. Le professeur peut tabler sur les images vi-
suelles suscitées par 'activité pour mettre en place une méthode de calcul
des pourcentages.

Calculons d’abord le pourcentage exact que représentent 3 éleves d’une
classe de 29. Pour ce faire, on remplace les correspondances lues sur les
abaques par un tableau de proportionnalité dans lequel 29 correspond a

100.
Nombre d’éleves | Pourcentage
29 100
3 ?

Chaque éleve est 1/29 de ce tout, trois éleves en constituent trois fois plus
c’est a dire 3/29. C’est ce que montre le tableau

Nombre | Pourcentage
d’éleves
{ 29 100

129 : 29
100

3 { 1 2_9 3
100x3

3 2

On procede de maniere analogue pour calculer quel pourcentage de la classe
représentent 11 éleves sur 29 puis 15 éleves sur 29.
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Nombre d’éleves | Pourcentage
29 100
1 3,448. ..
3 10,344... | soit 10,3%
11 37,931... soit 37,9%
15 51,724. .. soit 51,7%

A ce stade, le professeur pose une nouvelle question.

Déterminer I’opération qui permet de passer d’un nombre de la premiere
colonne du tableau au nombre correspondant de la seconde. Ecrire une
formule qui généralise cette relation entre le « nombre d’éleves » et le
« pourcentage ».

On retourne au tableau pour y déceler par quelles opérations (toujours
les mémes) on passe de la premiere a la deuxieme colonne. Il s’agit d’une
division par 29 et d’'une multiplication par 100. Les éléeves utilisent ensuite
un aspect de la notion de fraction : elle remplace la succession de deux
opérations par une seule opération : une multiplication par la fraction

100

29
Nombre d’éleves | Pourcentage | Opérations
29 100

100

1 3,448. .. 1 x 29

100

3 10,344. .. 3 x 29

100

11 37,931. .. 11 x 29

100

15 51,724. .. 15 x 29

Il faut ensuite traduire ce calcul par une formule. Si on appelle x le nombre
d’éleves de la catégorie, et si y est le pourcentage qui exprime le rapport
entre ce nombre et le nombre total d’éleves de la classe, on a

100 100

yZLL‘X% ou y:ECE

2 Proportionnalité : divers contextes

Nous présentons ici une suite de situations qui éclairent les différentes pro-
priétés d’un tableau de proportionnalité et du graphique qui lui correspond.

La richesse d’un tableau de proportionnalité est telle que les éleves ne
peuvent en apercevoir toutes les propriétés sur un seul exemple : le choix
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De quoi s’agit-il ?

Enjeux

De quoi a-t-on
besoin ¢

Comment s’y
prendre ¢

de chaque situation est donc particulierement important pour favoriser
I’émergence de telle ou telle propriété. Nous essayons pour chaque acti-
vité de bien préciser quelle facette de la proportionnalité est visée afin
de permettre aux enseignants de modifier le contexte de 'activité, s’ils le
souhaitent, tout en conservant les objectifs précis qu’elle doit atteindre.
Les contextes choisis ici nous permettent simplement de réactiver des no-
tions acquises a 1’école primaire, telles que multiples, échelles, conversions
d’unités, ...

Les éleves créent des tableaux de nombres, étudient des régularités dans
ces tableaux, étendent des tableaux de proportionnalité, établissent les gra-
phiques ou les formules qui leur correspondent, explorent des graphiques.
On les confronte également & des situations de non-proportionnalité.

Mettre en évidence les différentes facettes de la proportionnalité.
Identifier, & partir d’un tableau de nombres, d’un graphique ou d’une for-
mule, une situation de proportionnalité parmi d’autres.

Pour une situation donnée, faire le va-et-vient entre le tableau de nombres,
le graphique et la formule. Voir a ce sujet le chapitre 16, sections 2 et 5.3.
Compétences

Résoudre des problemes simples de proportionnalité directe.

Dans une situation de proportionnalité directe, compléter, construire, ex-
ploiter un tableau qui met en relation deur grandeurs.

Reconnaitre un tableau de proportionnalité directe parmi d’autres.

Déterminer le rapport entre deux grandeurs, passer au rapport inverse.

Matériel. — Des feuilles de papier, des crayons, des feuilles préparées
pour la réalisation des graphiques, éventuellement une calculatrice.

2.1 Un probleme de troc

Dans la cour de récréation, les enfants font du troc : cinq petites billes
s’échangent contre deux grosses. Représenter les échanges possibles dans
un tableau.

Apres un temps de recherche libre, le professeur examine les résultats des
éleves. Il nous semble qu'une premiere étape dans 'apprentissage de la
proportionnalité consiste a repérer dans un tableau figuratif (sans nombres)
les premieres propriétés de proportionnalité. C’est la raison pour laquelle
I’analyse d’un tableau comme celui présenté ci-dessous est importante,
méme s’il semble un peu simpliste pour des éleves de 12 ans!.

! On peut susciter la réalisation de ce type de tableau en distribuant aux éleves des
petits cartons sur lesquels seront dessinés des paquets de deux billes et des paquets de
cinq billes qu’ils n’ont plus qu’a placer dans les colonnes du tableau.
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Nombre de petites billes Nombre de grosses billes
555 OO
o S OO OO
B B o OO OO OO

@@ @@ @@ @@

coo ooo | OO OO OO OO

Dans ce type de représentation, visuellement plus parlant, certaines pro-
priétés apparaissent de facon plus évidente que dans un tableau de nombres.
Chaque fois qu’on ajoute cinqg billes dans la colonne de gauche, on ajoute
deux billes dans la colonne de droite. Si on double le nombre de billes dans
la colonne de gauche, on le double aussi dans la colonne de droite, etc.
Il est ensuite plus simple de retrouver ces propriétés dans les tableaux de
nombres réalisés dans un deuxieme temps.

Q
Q
@)
Q
Q
@)

On arrive a I’élaboration d’un tableau de nombres dans lequel les éleves
reportent les observations faites précédemment.

Nombre de Nombre de Nombre de Nombre de
petites billes | grosses billes petites billes | grosses billes
{ 5 2 } 5 2

+5 +2

10 4 10 4
+5 +2

15 6 x2 15 6 x2
+5 +2

20 8 20 8
+5{ } +2

25 10 25 10

On poursuit activité en posant les questions suivantes.

Combien de petites billes faut-il donner pour en recevoir 24 grosses, 35
grosses, ... ! Combien de grosses billes recevra-t-on si on dispose de 15
petites billes, de 24 petites billes, ...7

Apres un temps de recherche libre, les éleves comparent leurs résultats et
leurs démarches. Il est important de les laisser expliquer ces démarches, en
espérant évidemment que celles-ci seront suffisamment variées pour per-
mettre de dégager plusieurs propriétés de la proportionnalité. Le choix
des nombres dans 1’énoncé induit ici la découverte des propriétés liées aux
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facteurs? internes a une colonne. Par contre, le facteur externe, qui per-
mettrait de passer directement de la premiere a la deuxieme colonne du
tableau (x %), ne viendra pas spontanément a ’esprit des éleves de cet age.
Voici quelques exemples de calculs que 'on peut voir surgir dans une classe
en réponse a la question « combien de petites billes faut-il donner pour en

recevoir 24 grosses 7 »

e Continuer de 2 en 2, dans la deuxiéme colonne, de 10 jusqu’a 24, et
donc de 5 en 5 dans la premiere colonne, de 25 jusqu’a 60.

o Accélérer en allant de 4 en 4 dans la deuxiéme colonne et donc de 10
en 10 dans la premiere.

e Remarquer que pour 10 grosses billes, il en faut 25 petites, en conclure
que pour 20 grosses, il en faudra 50 petites et enfin aller jusqu’a 24
en ajoutant 4 d’un co6té et donc 10 de l'autre.

e Remarquer que pour 12 grosses billes, il en faut 30 petites, en conclure
que pour 24 grosses, il en faudrait deux fois plus, c’est-a-dire 60 pe-
tites.

e Remarquer que pour 14 grosses billes, il en faut 35 petites, que pour
10 grosses il en faut 25 petites, en conclure que pour 24 grosses il en
faudra 35 + 25 = 60 petites.

L’examen de chacune des méthodes de calcul permet de découvrir les diffé-
rentes propriétés liées aux rapports internes du tableau de proportionnalité.

Dans deux des exercices proposés, le nombre de billes dont on dispose ou
dont on souhaite disposer ne correspond pas exactement & un échange pos-
sible : combien de grosses billes peut-on obtenir si on dispose de 24 petites
billes 7 Combien de petites billes faut-il pour en obtenir 35 grosses ? C’est
le moment, si ce n’est déja fait, d’analyser les propriétés arithmétiques
des nombres contenus dans les deux colonnes du tableau : on trouve les
multiples de 5 dans la premiere et les multiples de 2 dans la deuxieme.
Répondre aux deux questions précédentes revient donc a situer un nombre
entre deux multiples consécutifs, par exemple ici, 24 est compris entre 20
et 25 dans la liste des multiples de 5.

La découverte des multiples de 5 dans une colonne et des multiples de 2

dans 'autre permet d’établir le tableau suivant :

Nombre de Nombre de
petites billes | grosses billes

5 2
2x5 10 4 2x2
3x5 15 6 3x2
4x5 20 8 4x2
5%x5 25 10 5x 2

2 Nous préférons parler ici de « facteur » interne ou externe et non de « rapport »,
car il s’agit ici de trouver le nombre par lequel on multiplie un résultat pour en obtenir
un autre (que ce soit au sein d’une méme colonne ou d’une colonne & lautre).
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C’est une étape importante qui fournit une méthode générale pour complé-
ter n’importe quelle ligne du tableau en posant simplement une division et
une multiplication. Les éleves vérifieront son efficacité sur des exercices ou
la grandeur des nombres ne permet plus de travailler de proche en proche.

On peut ensuite passer a la réalisation du graphique associé a ce tableau
de nombres. On donne aux éleves une feuille de papier munie d’un systeme
d’axes prégradués, on leur demande de placer les points correspondant
aux nombres repris dans le tableau. Une simple observation du graphique
permet de voir que les points s’alignent avec l'origine des axes et que
chaque fois que I'on augmente de 5 sur I’axe horizontal, on augmente de 2
sur ’axe vertical, ce qui traduit bien les conclusions tirées des tableaux de
la page précédente. L’activité se termine par la recherche sur le graphique
de quelques valeurs non encore calculées.

Petites billes
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+5
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Fig. 15

2.2 Une épargne intéressante

Cette activité permet de fixer les acquis de la précédente, tout en faisant
découvrir de nouvelles propriétés. Elle peut paraitre plus simple a certains
et il est tout a fait possible d’intervertir ces deux activités a condition de
bien garder a ’esprit les objectifs précis de chacune d’elles.

A I’école, on organise une épargne pour financer le départ en classes de
neige. Chaque fois qu'un éleve a apporté 400 francs, la caisse de ’ami-
cale de ’école en ajoute 80. Etablir un tableau qui montre I’évolution
de I'épargne de 1’éleve, la participation correspondante de ’amicale et
I’épargne totale de 1’éleve.




2. Proportionnalité : divers contextes 117

Apres un temps de recherche libre, le professeur regroupe les résultats des
éleves dans un tableau comme ci-dessous.

Epargne de Bonus de Epargne
I’éleve en BEF | I'amicale en BEF | totale en BEF
400 80 480
800 160 960
1200 240 1440
1600 320 1920
2000 400 2400

Les objectifs de cette activité sont doubles : susciter I’apparition du facteur
externe et montrer que les méthodes de calcul mises en évidence dans la
premiere situation sont encore efficaces.

Le facteur externe, c’est-a-dire le coefficient de proportionnalité, lié a cette
activité est donc volontairement plus simple que dans la situation précé-
dente : il suffit de diviser les nombres de la premiere colonne par 5 pour
obtenir ceux de la deuxieme. Il sera intéressant de voir comment les éleves
réagiront a cette situation apres avoir résolu la premiere. Vont-ils repro-
duire les mémes automatismes et calculer avec les facteurs internes ou
vont-ils directement recourir au facteur externe? Il faut espérer que les
deux méthodes apparaissent dans la classe et permettent de découvrir une
nouvelle propriété qui vienne s’ajouter a celles déja dégagées. Si les éleves
n’évoquent pas spontanément le facteur externe, il appartiendra au pro-
fesseur de le faire émerger.

De méme, au niveau du graphique, il convient de faire remarquer que les
points sont toujours alignés avec I'origine et que chaque fois que I'on avance
de 400 horizontalement, on monte de 80 verticalement.

Bonus

640 .
560 s

480 e

400 e

320, .

240 e

160 »

80 .

0 400 800 1200 1600 2000 2400 2800 3200
Epargne

Fig. 16
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Les similitudes évidentes entre les deux situations imposent un bref retour
a la premiere. N’existe-t-il pas aussi dans le premier cas une opération
qui permette de passer directement d’une colonne a lautre? Les éleves
feront sans doute une premiere proposition sous la forme d’une composée
d’opérateurs, comme par exemple : on divise par 5 et puis on multiplie
par 2. Il appartiendra au professeur de juger du moment ot il convient de
rapprocher les deux situations en passant aux facteurs multiplicatifs x%
et x % Cette étape représente un véritable seuil épistémologique pour les
éleves de cet age. Peut-étre faudra-t-il attendre la synthese finale pour le
franchir.

2.3 Une situation non proportionnelle

Cette question amene une situation de non-proportionnalité qui permet de
contraster les propriétés du tableau de nombres et du graphique avec celles
des deux situations précédentes.

Sur une feuille quadrillée, tracer des carrés de 1, 2, 3, 4, 5, .. .unités®
de coté. Calculer le nombre total de petits carrés de chaque figure.
Compléter le tableau ci-dessous. Faire la représentation graphique. Que
remarque-t-on ?

Les éleves travaillent d’abord sur du papier quadrillé pour dessiner les car-
rés successifs et déterminer le nombre de petits carrés des figures, ensuite
ils établissent le tableau de nombres suivant.

Nombre d’unités | Nombre de petits carrés
du coté de la figure
2 4
3 9
4 16
5 25
6 36
7 49

L’analyse du tableau fait ressortir ’absence d’un facteur commun qui per-
mettrait de passer d’une colonne a l'autre et la difficulté de prévoir un
résultat en se référant a d’autres lignes du tableau, puisque les méthodes
de calcul mises en évidence lors des situations précédentes se révelent ici
inefficaces. Par exemple,

si le coté vaut 2 unités, le carré compte 4 petits carrés,
si le coté vaut 3 unités, le carré compte 9 petits carrés,
si le coté vaut 5 unités, le carré compte 25 petits carrés.

Or, si 24 3 =5, il est clair que 4 + 9 # 25.

3 L’unité de longueur du coté est celle induite par le quadrillage du papier.
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De méme, si on multiple par 2 un nombre de la premiere colonne, on ne
multiplie pas par 2, mais par 4, le résultat correspondant de la deuxieme

colonne.
Nombre d’unités | Nombre de petits
du coté carrés de la figure
1 1
2 4
x2 3 9 x4
4 16
5 25

Il est aussi intéressant d’étudier les écarts entre deux lignes successives du
tableau et de voir que, contrairement aux situations précédentes, si I’écart
est toujours constant dans la colonne de gauche, il ne l'est pas dans la
colonne de droite. On peut se demander si cela va influencer I'allure du
graphique. Certains émettront 1'idée que les points ne sont sans doute plus
alignés.

Nombre d’unités | Nombre de petits

du coté carrés de la figure
1 1
+ +3
2 4
+1

3 9
+1{

4 1

5 25

(@)

—e N
+

Les éleves élaborent ensuite, sur une feuille quadrillée, le graphique qui
correspond a la situation.
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Fig. 17

Dans ce cas-ci, on peut les laisser se débrouiller seuls pour placer et graduer
le systeme d’axes. Une fois les points dessinés sur le graphique, ils vérifient
leur conjecture, a savoir que les points ne s’alignent pas. Ce n’est pas
pour autant que les éleves pourront tracer seuls la courbe qui relient les
différents points du graphique. En effet, si on les laisse faire, la plupart
d’entre eux relient, deux par deux, les différents points du graphique par
un segment de droite. Dans ce cas, on peut choisir une valeur intermédiaire
calculée entre deux points présents sur le graphique et montrer que le point
correspondant ne se trouve pas sur le segment qu’ils ont tracé et donc que
leur graphique n’est pas correct.

2.4 Le plan de la classe

Cette situation introduit deux sous-unités d’une méme grandeur et de ce
fait, entraine a l'utilisation de nombres décimaux. Elle permet également
d’apprendre a écrire une formule a partir d’un tableau de proportionnalité.

On veut faire le plan de la classe. Pour cela, on décide de représenter
une longueur de 1 m dans la classe par 4 cm sur la feuille. Voici des
mesures relevées dans la classe: 8 m; 6,4 m; 1,2 m; 3 m. Quelles sont
les mesures correspondantes sur le plan ? Si on trouvait sur le plan les
dimensions 5 cm; 6,8 cm; 25 cm; 40 cm, a quoi correspondraient-elles
dans la réalité ?
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On laisse les éleves chercher librement. Dans un premier temps, ils né-
gligent les unités de mesure et construisent spontanément leur tableau en
multipliant par 4 les nombres de la colonne de gauche pour obtenir ceux

de la colonne de droite, comme ci-dessous.

Longueurs en m | Longueurs en cm
dans la classe sur le plan
1 4
8 32
6,4 25,6
1,2 4,8
3 12
1,25 5
1,7 6,8
6,25 25
10 40

Il est indispensable d’attirer ’attention des éleves sur le probleme que pose
le rapport externe. En effet, si on considere le tableau de nombres sans se
préoccuper des mesures (reprises seulement dans les titres de colonnes),
on peut dire que le facteur externe est 4. Par contre, si on tient compte
des unités de mesure, les nombres de la premiere colonne représentent des
metres et ceux de la deuxiéme colonne des centimetres. Dans ce cas, 4 ne
peut étre considéré comme le facteur externe du tableau, car en multipliant
1 metre par 4, on n’obtient pas 4 centimetres. Il faut donc travailler avec
des longueurs exprimées dans la méme unité dans les deux colonnes et
élaborer un autre tableau qui tienne compte de 1’échelle : & 1 m dans la

classe correspond 4 cm, c’est-a-dire 0,04 m. L’échelle du plan est donc de
1
%.

25

S

Longueurs en m | Longueurs en m
dans la classe sur le plan

1 0,04

8 0,32
6,4 0,256
1,2 0,048

3 0,12
1,25 0,05
1,7 0,068
6,25 0,25

10 0,4

On demande ensuite aux éleves d’écrire les opérations qui permettent de
passer d’un nombre de la premiere colonne au nombre correspondant de la

deuxieme. Par exemple

6,4:25 = 0,256

ou

1
6,4 x — =0,256.
Y X25 9y
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On les encourage ensuite a généraliser ces calculs pour obtenir les formules
suivantes; si x représente la longueur en metres dans la réalité, y la lon-
gueur en metres sur le plan, il vient

=x:25 ou = — Xz
Yy Yy o5
L’échelle d’une carte est donc le rapport externe d’un tableau de propor-
tionnalité. Ainsi, ce tableau permet-il de répondre aussi bien & une question
relative a une mesure réelle, a une mesure sur le plan ou a 1’échelle de ce
plan.

2.5 Remplir un réservoir d’essence

Les objectifs de cette activité sont doubles. Premierement, elle introduit
des grandeurs de types différents (masse et capacité) et donc une grandeur
composée comme facteur externe (kg/1). Deuxiemement, elle débouche sur
I’étude de deux fonctions, I'une linéaire, ’autre affine. Cette derniere per-
met de mettre en évidence le fait qu'un tableau de nombres non propor-
tionnels peut donner un graphique dont les points sont alignés entre eux,
mais pas avec l'origine des axes.

Un réservoir d’essence a une masse a vide de 8 kg. On le remplit d’es-
sence. La masse volumique de I’essence est de 0,75 kg/1. Calcule la masse
du réservoir au fur et & mesure du remplissage.

Il est probable que certains éleves aient besoin d’éclaircissements sur la
notion de masse volumique. Le professeur veillera donc a donner les expli-
cations indispensables a la bonne compréhension de 1’énoncé.

Il invitera ensuite les éleves a calculer la masse d’essence correspondant a
4, 8, 12, 14, 36, 50 litres et la masse totale du réservoir a chaque étape.
Apres un temps de recherche libre, on regroupe les résultats des éléeves dans
le tableau suivant.

Nombre de | Masse du | Masse
litres contenu totale
Venl M en kg | T en kg

4 3 11
8 6 14
12 9 17
14 10,5 18,5
36 27 35
50 37,5 45,5

L’analyse du tableau se fait en deux temps. On se concentre d’abord sur
les deux premieres colonnes, ce qui permet de mettre en évidence la pro-
portionnalité des grandeurs V et M. Les différents volumes n’ont pas été
choisis au hasard, ils permettent d’insister une nouvelle fois sur quelques
propriétés d’un tableau de proportionnalité.
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Nombre de | Masse du
litres contenu
Venl M en kg

4 3
8 6
12 9
14 10,5
36 27
50 37,5

Le professeur demande alors aux éleves d’élaborer la formule qui lie les
deux grandeurs, a savoir M = 0,75 x V, et de réaliser le graphique cor-
respondant a cette fonction (le choix de I’échelle est laissé a l'initiative des
éleves). Ils constatent une fois de plus que le graphique de la figure 18 est
une droite passant par 'origine des axes.

kilo
40

35
30
25
20
15

10

litre

0 5 10 15 20 25 30 35 40 45 50 55
Fig. 18
On examine dans un deuxieme temps la relation qui lie le volume d’essence

et la masse totale du réservoir. L’analyse du tableau de nombres permet de
constater rapidement que ces deux grandeurs ne sont pas proportionnelles.

Nombre de | Masse
litres totale
Venl T en kg

4 11
8 14
12 17
14 18,5
36 35
50 45,5
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Peut-on néanmoins trouver une formule qui permette de calculer la masse
totale du réservoir en fonction du nombre de litres d’essence ? Si les éleves
ne proposent pas spontanément la formule, le professeur les aidera en met-
tant en évidence les opérateurs qui permettent de passer d’une colonne a
I'autre du tableau.

Nombre de | Masse du Masse
litres contenu totale
Venl M en kg T en kg

4 3 11
8 6 14
\%4 0,75 xV | 0,75 xV +8

Les éleves réalisent ensuite le graphique correspondant a cette situation.
Ils constatent que, méme si la masse totale n’est pas proportionnelle au
volume d’essence, les points du graphique de la figure 19 sont alignés.
Néanmoins, la droite qui joint ces points ne passe pas par l'origine des
axes.

45 kilo
40
35
30
25

20

litre

0 5 10 15 20 25 30 35 40 45 50 55

Fig. 19

Ces deux caractéristiques de la fonction affine méritent d’étre analysées un
peu plus profondément. Pourquoi les points du graphique s’alignent-ils ?
Pour répondre a cette question, on demande aux éleves de compléter le
tableau suivant en calculant systématiquement litre apres litre les masses
totales du réservoir, puis de relever, dans chaque colonne, les écarts entre
deux lignes successives du tableau.
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48
44
40
36
32
28
24
20
16

Nombre de | Masse
litres totale
Venl T en kg

1 8,75
2 9,5
3 10,25
4 11
5 11,75
6 12,5

Chaque fois que 'on augmente de 1 dans la colonne de gauche, on aug-
mente de 0,75 dans la colonne de droite. C’est normal puisque chaque litre
d’essence ajouté dans le réservoir a une masse de 0,75 kg. Comment cela
se traduit-il graphiquement ? Si on reprend le graphique 19 en graduant
les axes en unités, la densité des points obtenus ne permet pas d’analyser
clairement la situation. Pour mieux voir, on effectue un zoom sur la partie
du grahique concernée par les nombres repris dans le tableau ci-dessus.

kilo kilo

13

12 )

1

10

9

8

litre | litre

048 T3 16750 54 58 35736 40 44 48 o 1 2 3 4 5 6 7 8

Fig. 20

Fig. 21

On se place alors en un point du graphique, on avance de 1 cm horizontale-
ment, puis de 0,75 cm verticalement, et on arrive bien au point suivant du
graphique. En répétant cette opération de proche en proche, on construit
ce que les éleves appellent un « escalier ». L’image d’une planche posée sur
cet escalier suffit a les convaincre de I'alignement des points du graphique.
Il reste a régler le probleme de I'ordonnée a ’origine. Pour ce faire, on pose
deux questions : quelle est I’'ordonnée du point d’intersection du graphique
avec 'axe des y 7 Quel rapport a 'ordonnée de ce point avec ’énoncé du
probleme ?

On peut d’ailleurs envisager la question de maniere plus générale en com-
parant toutes les ordonnées des points du graphique de la figure 19 aux
ordonnées des points d’abscisses correspondantes sur le graphique de la
figure 18. On en conclut rapidement que la différence des ordonnées est
constante et vaut 8. Si on superpose les deux graphiques, on s’apercoit que
le graphique de la figure 19 est 'image de celui de la figure 18 par une
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translation verticale de huit unités.

kil
40, °

35
30
25
20
15
10

litre

0 5 10 15 20 25 30 35 40 45 50 55

Fig. 22

Toute fonction dont le graphique est constitué de points alignés est dite
affine ; si de plus les points sont alignés avec 'origine, elle est dite linéaire.

On peut introduire quelques transformations de formules en posant, par
exemple, les questions suivantes.

e Quel est le volume d’essence qui correspond & une masse d’essence
de 40,5 kg ?

e Quel est le volume d’essence qui correspond a une masse totale du
réservoir de 38 kg ?

2.6 Proportionnel ou non proportionnel ?

Cette derniere activité a pour objectif de faire le point sur les différentes
images mentales que les éleves se sont forgées tout au long des activités
précédentes. Nous leur présentons donc volontairement divers types de
représentation : textes, tableaux, graphiques, photos, dessins. Nous avons
également pris soin de varier les contextes.

Observe attentivement les différents textes, tableaux et graphiques qui
suivent. Classe chacune des situations ainsi décrites dans le tableau
vierge de la page 128. Indique dans la colonne de gauche les situations
proportionnelles, et dans la colonne de droite celles qui ne le sont pas.
Justifie soigneusement ton choix dans chacun des cas.
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Situation 1
Distance de freinage d’un véhicule

d(m

100
80
60
40
20

0 20 40 60 80 100 Wkm/h)

Situation 2

Prix en EUR | Prix en BEF
10 403.399
50 2016.995
100 4033.99
200 8067.98
500 20169.95
1000 40339.9

Situation 3
Agrandissements photos

10 x 15 cm 0,20 EUR
13 x 18 cm 0,71 EUR
20 x 23 cm 2,45 EUR
30 x 45 ¢cm 4,93 EUR
40 x 60 cm 6,17 EUR

Situation 4

Longueur du | Pointure de
pied en cm | la chaussure
18 27
22 33
26 39
28 42

Situation 5
Jean court le 100 m en 13 secondes et
le 200 m en 29 secondes.

Situation 6

Pour la rentrée scolaire, un supermar-
ché annonce des prix sacrifiés sur les
fournitures scolaires :

1 bloc de feuilles pour 1,50 EUR

5 blocs de feuilles pour 6 EUR

10 blocs de feuilles pour 12 EUR

Situation 7
Pierre et Marc sont deux fréres; on a
indiqué dans le tableau ci-dessous leurs
ages respectifs a différentes dates
age de Pierre ‘ 1 ‘ 3 ’ 8 ’ 15
dge de Marc [ 4|6 |11 | 18

Situation 8
Course en taxi

EUR

L. .+ . =
0 10 20 30 km

Situation 9

On roule a bicyclette. Notons N le
nombre de tours de roue et d la dis-
tance parcourue en metres,

N|5]10] 23 |30
d | 11|22 |506 | 66

Situation 10
Triangles rectangles

20 B 50

10
40

20 30

127
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Situations proportionnelles Situations non proportionnelles

De quoi s’agit-il ¢

Enjeux

A ce stade, les éléeves reconnaissent pratiquement une situation de propor-
tionalité lorsque

e dans un tableau présenté en colonnes, les nombres de la deuxieme
colonne s’obtiennent en multipliant ceux de la premiére par un méme
nombre,

e sur un graphique, les points sont tous alignés avec ’origine des axes.

Si la situation de départ ne présente ni tableau de nombres, ni graphique
de fonctions, les éleves élaborent spontanément leur propre tableau de
nombres, ils recourent tres rarement au graphique.

Au terme de cette activité, une petite synthese reprendra donc ces deux
propriétés essentielles qui devraient faire partie du bagage minimum d’un
éleve a l'issue du premier degré du secondaire.

3 Patterns de cubes et proportionnalité

Nous avons emprunté le terme « pattern » a la langue anglaise, faute de
lui avoir trouvé un équivalent frangais qui exprime la méme chose de fagon
aussi breve. On appelle « pattern », toute régularité, tout rythme que 'on
découvre dans des formes diverses, qu’elles soient numériques ou géomé-
triques et qui invitent ’esprit a conjecturer des propriétés mathématiques,
des lois.

Les propriétés que 'on découvre dans cette section se rapportent a des
tableaux de nombres et a des graphiques. Les lois d’engendrement des
différents patterns sont écrites sous la forme d’expressions algébriques.

Les éleves sont mis en présence de patterns faits d’assemblages de cubes qui
s’enchainent selon une loi de progression qui n’est pas énoncée. Ils doivent
imaginer les solides qui suivent « logiquement » ceux qui sont donnés et
déterminer le nombre de cubes d’un tel solide en fonction de sa position
dans la suite.

Ils examinent ensuite les propriétés des tableaux de nombres et des gra-
phiques qui correspondent a chacune des suites.

L’enjeu de cette activité est la capacité de circuler, selon les besoins, entre
les représentations imagées des objets, les graphiques et les formules.

La construction de formules est au centre de 'activité : c’est ainsi que les
éleves expriment la loi d’engendrement d’un pattern.
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Les graphiques qui représentent les lois d’engendrement des différents pat-
terns sont des ensembles de points alignés. Un des enjeux de cette activité
réside dans la fagcon dont on explique I'alignement des points du graphique,
au départ de propriétés du rectangle, sans faire appel au théoreme de Tha-
les, ni aux similitudes.

Sur les diverses opérations qui sont nécessaires pour construire un gra-
phique, voir chapitre 16, section 5.3.

Compétences. — Représenter des données par un graphique, un dia-
gramme.

Interpréter un graphique, un tableau, un diagramme.

Relever des régularités dans des suites de nombres.

Identifier et effectuer des opérations dans des situations variées.

Utiliser les conventions d’écriture mathématique.

Calculer les valeurs numériques d’expressions littérales.

Des fiches de travail 31, 32 et 33, proposées en annexe (voir pages 186 a
188).
Pour la troisieme activité, il est utile de disposer en classe, d’au moins

vingt cubes de méme dimension.

Prérequis. — Les éleves doivent savoir construire un tableau de nombres
qui met en relation deux grandeurs et étre capables de réaliser un graphique
qui correspond au tableau.

3.1 Des cubes et une table

Chacun des solides de la figure 23 est formé de cubes identiques. Com-
bien faudrait-il de cubes pour construire le quatriéme solide, le dixieme,
le centieme ?

Réaliser un tableau qui mette en relation le nombre de cubes avec le
numéro d’ordre du solide dans la suite, puis le graphique qui montre le
nombre de cubes en fonction du numéro d’ordre du solide.

Fig. 23

Cette premiere situation est simple. Lors de la résolution, le professeur
met en place une méthode de travail et un langage utiles pour traiter les
questions suivantes.
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Huit cubes sont nécessaires pour construire le quatrieme solide, vingt pour
le dixieme, deux cents pour le centieme. Les éleves associent rapidement
a cette suite de solides, une table de multiplication par 2. La formule qui
traduit le calcul est donc

c=2n,

dans laquelle n est le numéro d’ordre et ¢ le nombre de cubes.

Les propriétés d’une table de multiplication sont familieres, ce sont celles-
la mémes qui ont servi a mémoriser les tables et qui sont utiles en calcul
mental. Il se fait que ce sont aussi des propriétés d’un tableau de propor-
tionnalité. Ainsi par exemple, si on sait que 3 x 75 = 225, alors on sait
que 6 x 75, c’est 450, le double de 225; on peut aussi calculer 9 x 75 en
calculant 225+ 450. Ces propriétés seront mises en évidence dans 'activité
suivante, lorsqu’il s’agira de comparer ce tableau a un autre.

Pour faire un graphique, les éleves doivent réaliser que les abscisses sont
des numéros d’ordre et les ordonnées des nombres de cubes, que chaque
point du graphe condense les deux informations.

La figure 24 montre les premiers points du graphe. On constate qu’ils
s’alignent. On peut expliquer cet alignement en examinant les points trois
par trois et en se référant aux propriétés géométriques du graphique. C’est
ce que montre la figure 25.

Dans le rectangle EC'F' A, les segments [HG] et [K J] sont des médianes. Le
point d’intersection de ces médianes est aussi I'intersection des diagonales
du rectangle. Le point B appartient donc au segment [AC]. Ceci explique
pourquoi les points A, B et C sont alignés.

On explique de la méme fagon pourquoi les points B, C' et D sont alignés.
De méme pour tout autre ensemble de trois points consécutifs du graphe.

On attire ensuite l'attention des éleves sur le fait que la droite qui passe
par tous ces points, passe aussi par l'origine du repere (voir figure 26).
Pour expliquer ceci, on considere le rectangle EBFO dans lequel le point
A, intersection des médianes, est aussi I'intersection des diagonales.
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3.2 Une table décalée

Comment s’y

prendre ? Chacun des solides de la figure 27 est formé de cubes identiques. Com-

bien faudrait-il de cubes pour construire le quatrieme solide, le dixieme,
le centieme ? Réaliser un tableau qui mette en relation le nombre de
cubes avec le numéro d’ordre du solide dans la suite, puis le graphique
qui montre le nombre de cubes en fonction du numéro d’ordre du solide.
Comparer le tableau et le graphique a ceux qui ont été réalisés a propos
de la premiere question.

Fig. 27

Les éleves réalisent que pour passer d’un solide au suivant, il faut ajouter
trois cubes. Cela permet de calculer de proche en proche le nombre d’élé-
ments de chacun des solides suivants. Par contre, pour prévoir le nombre
de cubes du centieme solide, il faut aborder les choses autrement. Cette
recherche est plus aisée au départ du tableau.

Numéro d’ordre | Nombre de | Accroissements
dans la suite cubes

1 1

2 4 3

3 7 3

4 10 3

5 13 3

n

Pour établir une loi de calcul qui permettrait de prévoir le nombre de cubes
de n’importe quel solide dont on connaitrait le numéro d’ordre, plusieurs
démarches sont possibles. Nous en proposons deux.

1. Chercher quels sont les calculs (toujours les mémes) qui permettent
de passer de la premiere a la deuxiéme colonne de calcul. On y arrive
en triplant le numéro d’ordre, puis en retranchant 2. Ce que l'on
traduit dans le langage de 'algébre en écrivant la formule

c=3n—2,

ou ¢ est le nombre de cubes et n le numéro d’ordre.
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2. Partir du premier terme et ajouter l'accroissement un « certain »
nombre de fois : une fois de moins que le numéro d’ordre. Ce qu’on
traduit par la formule

c=1+3(n-1).
C’est 'occasion d’attirer 'attention des éléves sur le sens de I'égalité pour

des expressions algébriques. Les expressions établies sont égales pour deux
raisons.

1. Elles prennent les mémes valeurs pour chaque nombre n.

2. On peut passer d’'une expression a ’autre en appliquant une propriété
de calcul. Ici, on passe de la seconde a la premiere par la distributivité
de la multiplication sur ’addition.

Le tableau et la formule expriment, dans des langages différents, le mode
d’engendrement du pattern. Comme dans la table de multiplication par 3,
a chaque étape, il y a trois unités de plus, mais cette table est « décalée »
de deux unités.

Pour étudier les propriétés de ce tableau, on le compare au tableau de
Iactivité précédente.

n | 2n | Accroissements n | 3n — 2 | Accroissements
1] 2 1 1

2| 4 2 2 4 3

316 2 3 7 3

41 8 2 4 10 3

5110 2 5 13 3

Dans la table de multiplication, on dégage les propriétés suivantes.

1. Chaque fois qu'une multiplication (ou une division) envoie un nombre
d’une colonne sur un autre de la méme colonne, la méme multiplica-
tion (ou division) envoie I'une sur l'autre les valeurs correspondantes
de I’autre colonne.

2. Une méme multiplication (ici par 2) envoie un nombre quelconque de
la premiere colonne sur son correspondant dans la deuxieme colonne.

3. A la somme de deux valeurs de la premiere colonne, correspond la
somme des valeurs correspondantes de I'autre colonne.

4. Lorsqu’un nombre de la premiere colonne augmente de 1, ’accroisse-
ment correspondant dans la deuxieme colonne est toujours le méme.

Les trois premieres propriétés ne peuvent pas s’appliquer au deuxieme
tableau, seule la quatrieme propriété est commune.

Il reste & construire le graphique (voir figure 28 a la page suivante) et a le
comparer a un graphique qui représente une proportionnalité, par exemple
celui de la figure 24 a la page 130.
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La figure 28 montre que les points sont alignés, mais que la droite qui passe
par ces points ne passe pas par 'origine du repere.

La figure 29 montre pourquoi les points A, B et C sont alignés.

La figure 30 montre pourquoi les points O, A et B ne sont pas alignés : le
point A appartient a une médiane du rectangle FBHO mais pas a ['autre,
il n’appartient donc pas a la diagonale du rectangle.

3.3 Un escalier de cubes

Comment s’y

prendre ? Chacun des solides de la figure 31 est formé de cubes identiques. Com-

bien faudrait-il de cubes pour construire le quatriéme solide, le dixieme,
le centieme 7 Réaliser un tableau qui mette en relation le nombre de
cubes avec le numéro du solide dans la suite, puis le graphique qui
montre le nombre de cubes en fonction du numéro d’ordre du solide.
Comparer le tableau et le graphique a ceux qui ont été réalisés a propos
des questions précédentes.

Fig. 31

Une premiere impression : d’étape en étape, pour passer d’un solide au
suivant, on ajoute de plus en plus de cubes. On sait déja qu’on ne pourra
pas tabler sur des accroissements constants pour établir une formule.
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Pour y voir clair, la construction d’un tableau s’impose.

Numéro d’ordre | Nombre de | Accroissements
dans la suite cubes

1 1

2 3 2

3 6 3

4 10 4

5 15 5

n

Si 'on veut élaborer une formule au départ des accroissements, il faut
partir du nombre 1 et ajouter successivement 2, 3, 4, ... Le dernier terme
de cette somme correspond chaque fois au numéro d’ordre du solide. On a
donc la formule

c=14+24+3+4+...4+n.

Il existe une formule classique pour calculer rapidement une telle somme.
Elle peut étre découverte par des éleves de 12-13 ans pour peu qu’on leur
suggere I'une ou 'autre méthode. Celle qui suit est tres visuelle, et peut
étre proposée aux éleves a partir d’'une question.

Compléter chaque solide de la figure 31 pour former un parallélépipede
qui a un volume double. Trouver une relation entre le numéro d’ordre
du solide et le nombre de cubes du parallélépipede.

Les éleves réalisent d’abord I'un des parallélépipede demandé avec les cubes
dont ils diposent, ils complétent ensuite le dessin correspondant. La figure
32 montre trois parallélépipedes construits de cette fagon.

Fig. 32

Chaque solide repose sur une base qui comporte n cubes et a une hauteur
de (n 4 1) cubes. Ce qui conduit & la formule

2c =n(n+1).
On a donc

1
c= % (n est le numéro d’ordre et ¢ le nombre de cubes).
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Il s’agit a présent de construire le graphique, puis de le comparer aux
graphiques précédents.
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Si 'on place une regle sur graphique de la figure 33, on constate qu’on ne
trouve jamais trois points sur une méme droite.

La figure 34 montre pourquoi les points A, B et C' ne sont pas alignés.

La figure 35 montre pourquoi les points O, A et B ne sont pas alignés.

Synthése

Ces trois questions font progresser les éleves dans la maitrise du tryptique
tableau-graphique-formule. Lors de la synthese, avec 'aide du professeur,
ils dégagent les méthodes qui ont été élaborées sur le tas et formulent les
propriétés établies de facon a ce qu’elles soient disponibles pour d’autres
situations.

TABLEAU DE PROPORTIONNALITE

Pour préparer cette partie de la synthese, les éleves rassemblent les diffé-
rents tableaux réalisés sur une méme feuille. Trois propriétés caractérisent
un tableau de proportionalité, il s’agit de les dégager.

Le professeur peut s’inspirer des énoncés ci-dessous? pour examiner les
différents tableaux réalisés en classe: il demande aux éleves de représenter
par une fleche, dans chaque tableau qui s’y préte, 'un ou 'autre opérateur
qui correspond a la propriété.

S’il n’est pas utile de faire mémoriser ces énoncés, il importe par contre
que les éleves en saisissent la portée.

1. Chaque fois qu’une multiplication (ou une division) envoie un nombre
d’une colonne sur un autre de la méme colonne, la méme multiplication
(ou division) envoie l'une sur l’autre les valeurs correspondantes de I’autre
colonne.

4 Ce sont les formulations utilisées dans F. Van Dieren-Thomas et al. [1993]
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2. A la somme de deux wvaleurs de la premiére colonne, correspond la
somme des valeurs correspondantes de l’autre colonne.

3. Une méme multiplication (ou une division) envoie un nombre quel-
conque de la premiére colonne sur son correspondant dans la deuziéme
colonne.

Des qu’on reconnait une de ces propriétés, on sait qu’on trouvera les deux
autres dans le tableau.

Par ailleurs,

lorsque dans un tableau de proportionnalité, on passe d’un terme au sui-
vant dans la premiere colonne en ajoutant toujours le méme nombre, par
exemple 1, les accroissements correspondants dans la deuzxiéeme colonne
sont constants.

Cette derniere propriété apparait dans d’autres tableaux, elle ne permet
donc pas a elle seule de reconnaitre un tableau de proportionnalité.

FORMULES

La formule ¢ = 3n exprime qu’on calcule ¢ en fonction de n. Pour établir le
tableau correspondant, on place dans la colonne de gauche, les valeurs de
n que I'on choisit de calculer et on place le résultat de chaque calcul dans
la colonne de droite. On exprime cela en disant que, dans cette formule, n
est la variable et que c est fonction de cette variable.

La suite engendrée par cette formule est une table de multiplication par
3. Cette table commence par 0 ou par 3, selon que les valeurs de n com-
mencent a 0 ou a 1.

Voici deux tableaux qui correspondent, I'un a la formule ¢ = 3n (n est un
naturel) et 'autre a la formule y = 5z — 3 (z est un naturel).

n | 3n T | br—3
010 0 -3
1 3 1 2
2 16 2 7
10 | 30 3 12

Le premier tableau est un tableau de proportionnalité, le second n’en est
pas un.

Traitons a présent la situation inverse : écrire une formule & partir d’un
tableau de nombres. Nous nous limitons ici aux tableaux qui correspondent
a des fonctions affines et qui se présentent comme ceux qui ont été élaborés
en cours d’activité: ils présentent une liste de valeurs de la variable qui
commence par le nombre 1 et qui croit a chaque étape d’'une unité.

Deux méthodes ont été dégagées. Rappelons-les au départ du tableau ci-
dessous. On calcule d’abord les accroissements et on vérifie qu’ils sont
constants.
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x| y | Accroissements
Ty
115 15
2|7 2
2|7
319 319 2
111 4 |11 2
5113 2

Premiere méthode : partir de la premieére valeur de la fonction et ajouter
(x — 1) fois 'accroissement. On trouve la formule

y =54 2(x — 1) (z est un naturel non nul).

Deuxieme méthode : comparer la liste des valeurs de y a la table de mul-
tiplication par 2 (parce que 2 est I’accroissement).

T | 2x | vy
112 |5
214 |7
3169
41 8 |11

On constate que y vaut chaque fois 3 unités de plus que 2z. D’ou la formule :
y = 2z + 3 (x est un naturel non nul).

Un simple calcul algébrique montre I’équivalence de ces deux formules.

(GRAPHIQUES
A
y
9pF-=-=--- 'C
- w Pour construire le graphique, on place dans un repere
n w les points dont 1’abscisse est une valeur de la variable
i }; | et dont 'ordonnée est la valeur correspondante de la
B b fonction. Voici le graphique qui correpond a la formule
| Co y = 3z ( x est un naturel).
A Tous les points d'un graphique qui correspond a un
T tableau de proportionnalité appartiennent a une méme
m droite qui passe par 'origine du repere.
1 - ! | |
L >
o 1 2 3 4 -
X
Fig. 36
Prolongements Le pattern qui est proposé dans la premiere question se préte a un prolonge-
possibles ment intéressant lorsqu’on consideére la suite des aires totales des différents

solides.
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Fig. 87

Un tableau, établi en observant 'aire totale de chacun des solides, met en
évidence les accroissements constants.

Numéro d’ordre | Aire totale | Accroissements
dans la suite en cm?
1 10
2 16 6
3 22 6
4 28 6
n

L’accroissement constant apparalt aussi dans la figure 37 comme ceci :
lorsqu’on accole un nouveau module de deux cubes au solide précédent,
on perd 2 faces externes du solide et on ajoute 8 nouvelles faces externes.
l'aire est donc augmentée de 6 cm?. En appliquant la premiere méthode
indiquée dans la synthese, on arrive a la formule

a =10+ 6(n — 1) (n est un naturel non nul),

dans laquelle a représente l’aire et n le numéro d’ordre. La deuxieme mé-
thode conduit plus directement & la formule

a = 6n + 4 (n est un naturel non nul).

Ces activités ont été expérimentées de nombreuses fois dans différentes
classes de premiere et de deuxieme années du secondaire. Pour les éleves
de premiere, la construction de tableaux ne souleve aucune difficulté et
la plupart du temps, ils arrivent d’eux-mémes a déterminer le nombre de
cubes d’'un rang quelconque. Ce qui fait probleme, c’est la transposition
de ces calculs dans le symbolisme algébrique. Ils n’y arrivent seuls que s’ils
ont déja été confrontés a des situations dans lesquelles ils ont manipulé de
telles expressions. On ne s’attendra donc pas a ce qu’ils maitrisent tout a
fait cette compétence apres cette seule activité.

La construction de graphiques de cette sorte fait franchir une étape : les
graphiques demandés ne montrent pas une relation entre deux grandeurs,
mais une relation entre un numéro d’ordre et une grandeur (un nombre de
cubes, c’est un volume). Les éleves ont de la peine & considérer le numéro
d’ordre comme une variable.

Les éleves de deuxieme année résolvent les mémes questions avec plus d’au-
tonomie.
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4 Points alignés et calcul avec les entiers

Préambule

Cette section parcourt toutes les regles de calcul avec des entiers dans un
méme contexte : celui d’ensembles de points alignés, situés dans un repere
cartésien. A chaque étape, nous montrons en quoi les regles de calcul sont
nécessaires pour assurer que des points qui vérifient une formule du premier
degré, demeurent alignés lorsque leurs abscisses deviennent négatives. Ces
activités peuvent étre proposées a des éleves de niveaux différents.

Une grande partie des activités s’adresse aux éleves de premiere année qui
découvrent le calcul avec des entiers. Le contexte est certes assez abstrait
(il est constitué de points dans un repere), mais les éleves sont mis devant
des configurations simples et les taches sont agencées dans une progression
assez lente.

Dans ce cas le professeur doit orienter les éleves dans 1’observation de
régularités numériques et géométriques ainsi que sur la mise en relation de
ces deux types de régularités. Vers 13 ans, les éleves sont capables de décrire
ce type de phénomeme, ils peuvent en tirer des trucs qui leur permettent
de s’en tirer dans des situations analogues. Mais le plus souvent, ils ne
savent pas formuler les raisons qui lient leurs observations et leurs trucs.
Cette phase du travail est prise en charge par le professeur. Il s’agit alors,
pour les éleves d’une initiation a un mode de pensée et d’expression.

Chaque section doit étre complétée par des exercices qui integrent ’opéra-
tion nouvellement apprise dans d’autres contextes et qui illustrent les regles
au départ d’autres images mentales. La derniere section peut se situer bien
plus loin dans I’année scolaire, voire I’année suivante.

Toutes les sections de ce chapitre ne doivent pas étre enseignées d’une
traite, le calcul avec des entiers est un seuil dans la formation, qui mérite
qu’on veille soigneusement a ce que chaque étape soit significative pour les
éleves et que ceux-ci dépassent la seule pratique du calcul pour s’approprier
les raisons de ces regles.

Pour faciliter la distinction entre nombre négatif et nombre soustrait, dis-
tinction essentielle pour saisir la construction des opérations avec les en-
tiers, nous avons adopté la notation qui consiste a placer le signe moins
au-dessus du nombre lorsqu’il est négatif. Il ne faut y voir qu'une faci-
lité d’écriture pour les plus jeunes. Cette distinction peut aussi bien étre
signifiée par des parentheses qui encadrent le nombre négatif.

Dans cette approche, le calcul avec des entiers est introduit dans un contexte
ou il sert : celui de la géométrie analytique qui exhibe la cohérence glo-
bale de toutes les regles. C’est pourquoi, ces activités peuvent s’adresser,
moyennant quelque adaptations et des raccourcis, a des éleves de troisieme
année. Ceux-ci découvriront, en méme temps que les premieres équations
de droites, des liens entre les raisons qui font que des points s’alignent sur
un graphique et les regles de signes qu’ils ont apprises précédemment.
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Les éleves caractérisent des ensembles de points alignés situés dans un
repere, en termes de relations entre abscisses et ordonnées. Ils écrivent ces
relations sous forme algébrique et ce faisant, ils construisent les lois de
calcul dans I’ensemble des entiers.

Les lois de calcul dans I’ensemble des entiers et le lien entre ces lois et 1'ali-
gnement pour des points qui vérifent y = ax + b. L’extension des tableaux
de proportionnalité aux nombres négatifs. Voir aussi le chapitre 16 section
6.

Compétences

Les compétences socles visées par ces activités sont :
Interpréter un graphique, un tableau, un diagramme.

Classer, situer, ordonner, comparer des entiers.

Relever des régularités dans des suites de nombres.

Identifier et effectuer des opérations dans des situations variées.
Utiliser les conventions d’écriture mathématique.

Construire des expressions littérales dans lesquelles les lettres ont le statut
de variables.

Calculer les valeurs numériques d’une expression littérale.

Utiliser, dans leur contexte, les termes usuels et les notations propres aux
nombres et auxr opérations.

Les activités et les questions s’enchainent de facon a développer des com-
pétences transversales, notamment celles qui suivent.

Reconnaitre des situations comme semblables ou dissemblables.
Se poser des questions pour étendre une propriété, une régle, une démarche.

Se servir dans un contexte neuf de connaissances acquises antérieurement
et les adapter a des situations différentes.

Procéder a des variations pour en analyser les effets sur le résultat et
dégager la permanence de liens logiques.

Les fiches de travail 34 a 41 proposées en annexe aux pages 189 a 196.

Prérequis
Situer un point de coordonnées positives dans un repere orthonormé.

Représenter graphiquement des fonctions de proportionnalité et des fonc-
tions du premier degré dans lesquelles variable et fonction ne prennent que
des valeurs positives.

Repérer un entier sur une droite munie d’un repere.

Repérer et écrire ’'opposé d’un entier (un nombre et son opposé sont situés
a meéme distance de I’origine choisie sur la droite, de part et d’autre de cette
origine). Ordre dans l’ensemble des entiers.
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4.1 Ensembles de points, couples de nombres

Comment s’y

prendre ¢ Fiche 34

Les questions ci-dessous se rapportent aux ensembles montrés par les
figures 38 et 39. Ces ensembles s’étendent implicitement au-dela de ce
que montrent les dessins.
1. Les points donnés par les couples
(8,9) 5 (25,15) 5 (13,36) ; (27,37) ;
(10,10) ; (100,13) ; (120,19) ; (119,73) ;
(45,20) ; (45,62) ; (17,105) ; (17,106) ;
sont-ils représentés dans la figure 38 par une croix, un point noir

ou un point blanc ?

2. Méme question pour les mémes couples, a propos cette fois de la

figure 39.
y y
I SRR R S S SR SRR P X R SRR SRR S SRRy
R R R R BRI R SR R
09000000 Ok w0 e
oo e 0 e e es O e XD e X0
QOO0 0O OO O X0 O 8
0 X 0 X
Fig. 38 Fig. 39

Les éleves écrivent une liste de couples pour chaque ensemble de points
de la figure 38. Ils constatent alors que ceux qui sont alignés ont la méme
ordonnée, elle suffit donc pour caractériser chaque ensemble de points.

Ensuite, comme les coordonnées sont trop grandes et qu’ils ne peuvent
situer les points sur la figure elle-méme, ils réalisent qu’il suffit de savoir
si 'ordonnée est un multiple de 3, un multiple de 3 plus 1 ou un multiple
de 3 moins 1 (ou plus 2).

Dans la deuxieme figure, les roles respectifs de ’abscisse et de ’'ordonnée
sont échangés.
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Fiche 35

Les questions ci-dessous se rapportent aux ensembles montrés par les
figures 40 et 41. Chacun de ces ensembles s’étendent seulement dans
une seule direction, celle de la droite qui porte les points.

1. Les points donnés par les couples ci-dessous sont-ils ou non alignés
avec une suite de croix, de points noirs ou de points blancs de la
figure 407

(7.8) 5 (8,8) 5 (8,7) 5 (9,8) 5 (9,10)
(25,24) ; (30,30) ; (30,29) ; (41,40) ; (40,40).
Comment caractériser les ensembles de points alignés 7

2. Meéme question a propos des couples ci-dessous, qui se rapportent
a la figure 41.

(7,14) ; (7,15) ; (7,13) ; (8,17) ; (8,15) ;
(20,50) ; (25,49) ; (30,61) ; (29,60) ; (29,59).

Comment caractériser les ensembles de points alignés ?

y
777777777 ’
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fffffffff
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j e
© X 0 X
Fig. 40 Fig. 41

Une relation entre abscisse et ordonnée caractérise chaque fois des points
alignés. Apres que les éleves aient énoncé cette relation dans le langage
courant, le professeur introduit la notation algébrique.

Les points alignés avec les croix de la question 1 ont leur abscisse égale a
leur ordonnée. A cet ensemble de points correspond la formule

Y=

Ensuite, 'ordonnée de chaque point noir vaut chaque fois une unité de plus
que son abscisse ; on écrit la formule

y=x+1.
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Enfin, 'ordonnée de chaque point blanc vaut chaque fois une unité de
moins que ’abscisse ; on écrit la formule

y=x—1.

Dans ces trois formules, = et y sont des nombres naturels non nuls.

Trois autres formules caractérisent respectivement les ensembles de la fi-
gure 41, a savoir

y =2x, y=2xr+1, y=2x—1,

les lettres x et y représentant des nombres naturels non nuls.

4.2 Points a coordonnées entieres

C ts’ ‘
ormmens sy Fiche 36
prendre ¢ . . Lo .
Les points qui correspondent aux coordonnées ci-dessous sont-ils ou non
alignés avec une suite de croix, de points noirs ou de points blancs ?
Envisager successivement les figures 42, 43 et 44.
(3,2); (2.3); (3.3) ;5 (3,3)
(3,3) 5 (3,2) 5 (3,4); (3,2).
Comment caractériser les ensembles de points alignés ?
y
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o
b4 I
@X’ ,,,,,
y o e
i T R O K@
bbbt R
R R L IR SR
o RN IO RRD SRXE
0 X 0 X 0 X
Fig. 42 Fig. 43 Fig. 44

Comme les coordonnées proposées sont des nombres petits, les éleves vé-
rifient I'alignement en plagant les points sur le graphique. Ils s’entrainent
ainsi a situer des points dans les quatre quadrants.

La caractérisation des points alignés dans les figures 42 et 43 se présente
de la méme fagon pour les points a coordonnées négatives que pour les
autres : elle n’engage a chaque fois qu'une seule coordonnée. Les éleves
écrivent les six équations
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Dans ces six équations z et y sont des nombres entiers.

Lorsqu’ils situent des points qui se rapportent a la figure 44, ils réalisent
que les nouveaux points qui s’alignent avec les croix ont toujours la méme
caractéristique : ’abscisse et 'ordonnée sont égales.

En caractérisant les points noirs et les points blancs qui appartiennent
a la figure 44, les éleves les situent par rapport aux croix. Ceci conduit
le professeur a leur montrer & partir de mouvements sur un axe orienté,
comment ajouter ou retrancher 1 a un entier.

y
+1 4 ¢
3 X N
-1 5 o A ces mouvements corres-
pondent les calculs
0 X 3+1 = 4,
3—1 = 2,
° 1 2 _ _
§ +€3 3+1 = 32,
. My 3-1 = 1.
Fig. 45

Nous retiendrons que

sur l'aze vertical, lorsqu’on ajoute 1, on monte et lorsqu’on retranche 1,
on descend.

On écrit ensuite les trois équations qui caractérisent ces ensembles de
points, a savoir

Lorsqu’on attire I'attention des éleves sur les nombres que les lettres re-
présentent, il faut envisager les points d’abscisse nulle. Ils noteront ensuite
que les lettres x et y représentent des entiers.

Le professeur propose alors une série d’exercices qui fixent, puis étendent
ces premiers acquis. Par exemple, repérer la température indiquée par un
thermometre, imaginer qu’elle monte d’'un degré, puis de deux, de trois
degrés ; repartir de la méme valeur et imaginer qu’elle descende, écrire les
additions et les soustractions correspondantes. Partir ensuite d’une tem-
pérature négative. On pratique des exercices analogues de mouvements en
avant et en arriere, sur un axe horizontal.

Premier bilan de ce que les éleves savent faire : ajouter et retrancher un
nombre positif & un entier quelconque.

Cela introduit la suite : il faut apprendre a ajouter, puis a retrancher, un
entier quelconque & un entier quelconque.
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4.3 Alignement et addition d’entiers

Fiche 37
Représenter sur le graphique quelques points dont les coordonnées vé-
rifient ’équation

=3+

Fig. 46

Les éleves commencent par les additions qui leur sont familieres ; ils com-
pletent donc le tableau en partant de valeurs positives de x.

Comme il s’agit ensuite de situer des points d’abscisse négative, le profes-
seur suggere de placer les couples dans un tableau ordonné par valeurs dé-
croissantes de x. C’est le tableau montré dans la marge. Les éleves placent
les points correspondants sur le graphique.

Le professeur demande alors de lire 'ordonnée du point d’abscisse 1 qui
s’aligne avec les autres points, puis 'ordonnée du point d’abscisse 2 et ainsi
de suite. On complete ainsi le tableau sans faire aucun calcul. Le professeur
pose alors la question suivante.

Quelle est la regle d’addition qui fournit de tels résultats ?

Pour aider les éleves a y voir clair, le professeur place en regard du tableau,
la colonne d’additions suivante.
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|y |3+ax=

316|13+3=6 )

25 312= Observons ce tableau : dans la premiere co-

114321 lonne les nombres se succedent comme sur

0l3/310= un thermometre, ils diminuent chaque fois
d’une unité. En parallele, dans les autres co-

1(2|3+1=2 lonnes, la somme 3 + z diminue aussi. On

211 |3+2= note que ce principe persiste lorsque = est

310|3+3= négatif.

411(3+4=1

512|3+5=2

Attardons-nous a la deuxieme partie de la troisieme

colonne, qui montre ce que nous cherchions : une 3+1 = 2,
série d’additions dans lesquelles il s’agit d’ajouter 3—-1 = 2,
un nombre négatif. 3+2 = 1,
Les résultats de ces additions indiquent que cela 3_9 — 1
)

revient a retrancher un positif, ce que nous sa- S -
. fen oo . . i’ 3+1 = 4,
vions déja faire. Ceci est illustré par les exemples _ -
3—1 = 4.

ci-contre.

Le bilan est complété par ’énoncé qui suit.

Ajouter un négatif et retrancher le positif opposé, cela revient au méme.

4.4 Alignement et soustraction d’entiers

Fiche 38
Représenter sur le graphique quelques points dont les coordonnées vé-
rifient ’équation
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Les éleves commencent par les soustractions qui leur sont familieres : celles
dans lesquelles le nombre & retrancher est un positif, plus petit que le
%% premier terme. Au fur et a mesure qu’ils découvrent des points par calcul,
419 ils les placent sur le graphique et le professeur compléte un tableau ordonné
313 par valeurs décroissantes de x.
214
115
016

Le professeur demande ensuite de repérer sur le graphique, le point d’abs-
cisse 1 qui s’aligne avec les autres; puis les points d’abscisse 2, 3, ... Les
couples correspondants sont reportés dans le tableau.

Fig. 48 Fig. 19

On enchaine avec la question :

Quelle est la regle de soustraction qui correspond a ce graphique et a ce
tableau de nombres ?

Voici les soustractions qui montrent la correspondance entre la formule et
les couples de nombres.

L’analyse de la colonne de soustractions

z|6—xz=y montre la permanence d’un principe : plus
le nombre que [’on enléve diminue, plus le

516—-5= , .

Al 64— résultat devient grand.

o Les résultats des trois dernieres soustrac-
316-3= . ..
9| 6_9— tions montrent que retrancher un négatif
e N 1 B revient o ajouter un positif ! Ainsi,
016-0= 6-1 = 7
116-1=7 6+1 = 7,
2/6-2=38 -3 = 9,
316-3=9 6+3 = 9.

On conclut avec I’énoncé qui suit.

Retrancher un nombre revient a ajouter ’opposé de ce nombre.
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Fiche39
1.

3. Méme question pour les points d’abscisse 3 et d’abscisse 7.

4. Dresser les tableaux de nombres qui correspondent au graphique

. Quel est le point d’abscisse 1 qui est aligné avec les croix, avec les

Qu’est-ce qui caractérise chacun des trois ensembles de points ali-
gnés de la figure 507

points blancs, avec les points noirs ?

tel qu’il a été complété.

1.

Fig. 50

Chacune des croix de la figure 50 est située a égale distance de I'axe
des x et de 'axe des y. Les abscisses de tous ces points sont néga-
tives, les ordonnées sont positives. Déterminer ’ordonnée d’une croix
revient donc a prendre I'opposé de son abscisse.

Pour trouver I'ordonnée d’un point noir, il faut ajouter 1 apres avoir
pris 'opposé de I’abscisse.

Pour trouver 'ordonnée d’un point blanc, il faut retrancher 1 apres
avoir pris 'opposé de 'abscisse.

Avant d’écrire les équations qui caractérisent ces ensembles de points,
le professeur explique comment noter 'opération qui consiste a pren-
dre I'opposé d’'un nombre : puisque retrancher un nombre revient a
ajouter son opposé, on considere que prendre I'opposé d’un nombre
c’est comme soustraire ce nombre. Ainsi, 'opération « prendre 1’op-
posé » se traduit-elle par le symbole « — », placé devant le nombre.
Par exemple, I'opposé de 3 est noté —3, 'opposé de 3 est noté —3 et
I'opposé de x, qui peut étre aussi bien négatif que positif, est noté
—x. Les trois ensembles de points sont décrits par les équations

Yy=—x, y:—iﬁ—l-l, y:—x—l

Le point d’abscisse 1 aligné avec les croix a comme ordonnée 1 (voir
figure 51). Ici aussi, il suffit de changer le signe de I’abscisse pour
déterminer ’ordonnée.
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Le point d’abscisse 1 aligné avec les points noirs a comme ordonnée

0. La regle de calcul est la méme
points noirs.

que celle utilisée avec les autres

Le point d’abscisse 1 aligné avec les points blancs a comme ordonnée
2. La regle de calcul est la méme que celle des autres points blancs.

Fig. 51

. On tire des conclusions analogues

apres avoir repéré les trois points

dont I'abscisse est 3, puis ceux dont 1’abscisse est 7.

. Les tableaux mettent en relation

le graphique et les équations. Le

professeur incite les éleves a écrire dans la troisieme colonne, les
opérations qui montrent ces relations. Les réponses confirment ce
qui a été abordé a partir de mouvements a la fiche 36.

T|Yy|ly=—=x z|y|ly=—az+1
114| -1 4|5 -4+1=4+1
313|-3 314 -34+1=3+1
2121 -2 213 -24+1=2+1
11| -1 1|12|-1+1=1+1
0/01]0 0|1]0+1

1111 -1 110 -1+1=1+1
313]-3 312 -3+1=3+1
717 =7 716 —7T+1=7+1

r|ly|ly=—x—-1
413 -4—-1=4-1
312 -3-1=3-1
211 -2-1=2-1
1/0]-1—-1=1-1
0/1]0-1

12| -1—-1=1+1
312 -3-1=3+1
718 —7T—1=7+1

Le professeur rassemble & présent les différentes significations du signe
« — » et introduit les simplifications d’écriture habituelles. Ainsi « —3 »
peut représenter le nombre négatif « —3 » ou signifier dans d’autres con-
textes

e retrancher 3,

e prendre 'opposé de 3.

Les simplifications d’écriture consistent a remplacer les soustractions par
des additions, a supprimer les signes d’addition et a placer le signe du
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nombre devant. L’expression obtenue est souvent appelée « somme algé-
brique ». On l'effectue en considérant le signe qui précede chaque nombre
comme étant le signe du nombre et en appliquant les regles d’addition.
Exemple :

7—54+3-4=7+54+3+4=7+5-3—-4

4.5 Alignement et multiplication par un entier

Fiche 40
Les points qui correspondent aux couples ci-dessous sont-ils ou non ali-
gnés avec une suite de croix, de points noirs ou de points blancs ?

(an) ) (075) ) (Ta 2) ) (Tv §) )
(2 4) ) (57 Z) ) (3’ 6) ) (37 6) )
(3,75 B.7): 3.7)5 (3,7).

Comment caractériser les ensembles de points alignés ?

Fig. 52

Les éleves vérifient I’alignement en placant, un a un, les points sur le gra-
phique. Pour écrire la formule, ils cherchent une relation entre abscisse
et ordonnée. Cette recherche est plus facile lorsqu’on rassemble dans un
tableau ordonné, tous les couples visibles sur le graphique.

Les quatre premiers couples évoquent la table de multiplication par 2, mais
est-ce la méme opération qui envoie 1 sur 2, 2 sur 4 et 3 sur 67

Oui, si 'on considere la multiplication par un entier positif comme une
addition itérée et qu’on calcule :

=
—|

NG|
O]
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3+ 3.
On retrouve les résultats du tableau.
L’équation est donc
y = 2z.
La regle de la multiplication par un entier positif s’ensuit tres naturelle-
ment :

Lorsqu’on multiplie un nombre par un entier positif, le produit a le méme
signe que ce nombre.

La recherche des équations relatives aux deux autres ensembles de points
consiste a traduire dans une méme expression algébrique ’enchainement
de deux opérations : doubler puis ajouter 1, ou doubler puis retrancher 1.

Fiche 41
Les points qui correspondent aux couples ci-dessous sont-ils alignés avec
une suite de points noirs 7

(1,2); (1,2); (1,2) ; (5,10)
(3,6); (3,6) 5 (3,6); (7,14)
(100,200) ; (100,200) ; (100,200) ; (100,200).

Comment caractériser les points alignés ?

Fig. 53

Les couples représentés sur le graphique ont cette fois une abscisse néga-
tive. Ainsi, la fiche n’induit-t-elle pas la construction d’un tableau partant
d’opérations sur des positifs qui conduisent, via les régularités de calcul, a
des abscisses négatives. Ici, ce qui est mis en avant, c’est I'alignement des
points. Le travail est donc amorcé par 'observation du graphique. Pour
des éleves plus jeunes, il est évidemment plus facile d’aborder la question
au départ d’un graphique qui montre des points d’abscisse positive et qui
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conduit a un tableau dont on observe les régularités (voir le tableau situé
dans la marge) .

Les éleves plus agés recourent donc au graphique pour traiter les sept ou
huit premiers couples. Ils observent que seuls ceux dont ’abscisse et l'or-
donnée sont de signes différents s’alignent avec les autres. Ils en concluent
que pour déterminer l'ordonnée, il faut doubler ’abscisse, puis prendre
I'opposé de ce produit. Ils font parfois ces deux opérations dans l'ordre
inverse et s’apercoivent que cela revient au méme. Ceci leur permet de
répondre a la question pour les derniers couples qu’ils n’ont pu situer dans
le repere.

Le professeur intervient ici pour introduire une définition de la multiplica-
tion par 2 : elle combine ces deux opérations.

L’équation est donc
y = 2z.

Pour mieux réaliser les effets de cette opération, on construit en parallele
un tableau de nombres, une liste d’opérations et un graphique. Les couples
sont ordonnés par valeurs croissantes de x.

x|yl|2x=y

316|12x3=6

214(2x2=4 j
T[2]2xT=2 §
0/0[2x0=0 j

: X

1[T]2x1=2 ;

2|2 |2x2=1 |
313|2x3=6 ;

Les fleches qui figurent sur ce graphique attirent I'attention sur les varia-
tions : chaque fois que le multiplicateur augmente d’une unité, le produit
diminue de deux unités.

Synthése

La synthese est réalisée par les éleves avec 'aide du professeur qui donne
la consigne qui suit.
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3|6
2|4
1|2
010
12
211
316

Parmi les multiplications qui ont été amenées par les fiches 40 et 41,
constituer un échantillon qui comporte tous les cas qui peuvent se pré-
senter lorsqu’on multiplie deux entiers.

Conjecturer les regles de multiplication et vérifier si elles s’appliquent
aux autres produits que ’on peut « voir » sur les différents graphiques.

Voici quatre multiplications :

2x3=6, 2x3=6, 2x3=6, 2x3=60.

Les éleves distinguent assez facilement deux cas : soit les deux nombres
ont méme signe, soit ils ont des signes différents.

Dans le premier cas, le produit est positif; dans le second, il est négatif.
Toutes les vérifications graphiques confirment ces regles.

4.6 Regle des signes et proportionnalité

Cette activité suppose que les éleves connaissent les propriétés d’un tableau
de proportionnalité et savent que dans toute proportion, le produit des
moyens est égal au produit des extrémes.

Le tableau qui correspond & y = 2z est-il un tableau de proportionna-
lité ?

On part du tableau situé dans la marge. Pour vérifier ’égalité entre rap-
ports internes, les éleves écrivent un rapport entre deux nombres de la
premiere colonne et le rapport entre les nombres correspondants de la
deuxiéme, par exemple

Pour obtenir que ces rapports soient égaux, il faut étendre aux entiers la
propriété qui dit que

a c .
— = — entraine ad = bc.

b d
Apres avoir vérifié de cette fagcon plusieurs égalités, on dispose de tous les
éléments nécessaires pour conjecturer la regle des signes d’un quotient de
deux entiers.

Pour déceler 'existence d’un rapport externe, il faut considérer les rapports
entre un nombre d’une colonne et son correspondant dans I'autre et vérifier
si ces rapports sont égaux. On vérifie par exemple que

2
T

1
5=
Examinons a présent la propriété de la somme en partant des couples
(2,4) et (1,2). A la somme de deux termes de la premidre colonne, cor-
respond bien la somme des termes correspondants. En effet, le couple
(2 + 1,4 +2) est bien un couple du tableau.
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EN GEOMETRIE

1 Quand un triangle rencontre un carré

Etudier des tableaux de nombres et les graphiques associés a ces tableaux a
partir de situations simples basées sur les périmetres de polygones. Etablir
les formules associées aux tableaux de nombres. Etablir les graphiques
correspondants.

Etudier, a partir des tableaux de nombres, la proportionnalité des coor-
données et celle des accroissements et la linéarité du graphique associé.

Contraster une fonction linéaire et une fonction affine. Voir le chapitre 16,
section 6.4.

Associer proportionnalité des accroissements et alignement du graphique.

Prouver l'alignement des points du graphique d’une fonction linéaire ou
d’une fonction affine. Voir le chapitre 16, section 5.3.

Déterminer l'intersection de deux graphiques de fonctions.

Compétences
Savoir, connaitre et définir les expressions relatives auz fonctions.

Modéliser des problémes de maniére a les traiter au moyen des fonctions
de référence.

FEsquisser, construire un graphique pour mettre en évidence des caractéris-
tiques du phénomene traité.

Interpréter un graphique en le reliant au probleme qu’il modélise.

Calculer l’ensemble des solutions d’une équation, d’un systéme d’équations
linéaires.

Matériel. — Du papier, un crayon et une calculatrice.

Prérequis
Les cas de similitude des triangles.

Les propriétés des tableaux de proportionnalité.

154
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Dessine un segment [AB] de 10 cm de long. Sur ce segment, place un
point X & 3 cm de A. Sur [AX], construis un triangle équilatéral, sur
[BX] un carré. Calcule les périmetres de ces deux figures.

A X B
Fig. 1

Lorsque les éléves ont terminé pour |[AX| = 3, on leur demande de faire
varier la position du point X sur le segment [AB] et de calculer les péri-
metres pour toutes les valeurs entiéres de |[AX]| (de 0 & 10). On en arrive
a élaborer le tableau suivant :

|AX| | | XB| | Périmetre triangle | Périmetre carré
0 10 0 40
1 9 3 36
2 8 6 32
3 7 9 28
4 6 12 24
5 5 15 20
6 4 18 16
7 3 21 12
8 2 24 8
9 1 27 4
10 0 30 0

Lorsque tous les calculs sont terminés pour des valeurs entieres de |AX]|,
on observe les différents résultats. En comparant les deux colonnes de pé-
rimetres, on s’apercoit que les valeurs du périmetre du triangle vont en
croissant de 0 a 30 et que celles du carré vont en décroissant de 40 a 0. On
peut alors poser la question qui suit.

Existe-t-il une valeur de |AX| pour laquelle les périmetres du triangle
et du carré sont égaux?

L’intuition de continuité amenera sans doute les éleves a dire qu’il existe
nécessairement une valeur pour laquelle ces deux résultats sont égaux et
que cette égalité a lieu pour une valeur de |AX| comprise entre 5 et 6.
Pour la déterminer, certains proposent d’affiner les calculs au dixieme,
puis au centieme pres. Si 'estimation devient de plus en plus précise, le
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résultat n’est toujours pas exact. Les calculs devenant fastidieux, certains
éleves demandent s’il n’est pas possible de trouver ce résultat autrement.
C’est le moment de les amener a mettre la situation en équation. S’ils ont
été habitués a élaborer des formules a partir de tableaux de nombres, ils
proposeront sans doute immédiatement d’appeler = le coté du triangle et
une breve analyse de la deuxieme colonne du tableau devrait amener 10 —x
pour le coté du carré. L’égalité des périmetres des deux figures se traduit
finalement par I’équation

3z =4(10 — z),

ce qui donne apres résolution

10

=

Le professeur pose ensuite cette question.

Pourrait-on visualiser les résultats obtenus en représentant dans un re-
pere les périmetres des deux figures en fonction de la longueur |[AX|?

Les éleves commencent par placer les points correspondant au périmetre
du triangle. A premiére vue, ils sont alignés. Comment cela se fait-il 7 Pour
répondre a cette question, on analyse le tableau de nombres correspondant.

accroissements T Yy accroissements
des x coté du triangle | périmetre des y

0 0

+1 +3
1 3

+1 +3
2 6

+1 +3
3 9

+1 +3
4 12

On observe tout d’abord que ’on peut obtenir la colonne des y en multi-
pliant la colonne des x par 3. Les valeurs de y sont proportionnelles aux
valeurs de x. On peut donc associer a ce tableau de nombres la formule
y = 3z. On remarque ensuite que chaque fois que  augmente de 1 unité,
y augmente de 3 unités. Les accroissements des y sont proportionnels aux
accroissements des x. On traduit alors cette derniére constatation sur le
graphique : on se place en un point du graphique, on avance de 1 cm ho-
rizontalement et puis de 3 cm verticalement, on arrive bien ainsi au point
suivant du graphique. On poursuit de proche en proche et on construit de
cette fagon ce que les éleves appellent spontanément un « escalier ». On
retrouve une situation analogue a celle déja traitée a la page 125.



1.

Quand un triangle rencontre un carré 157

30,
27
24
21
18
15
12

L’image d’une « planche » posée sur un
escalier suffira sans doute dans un pre-
mier temps pour convaincre les éleves que
les points du graphique sont bien alignés
comme le montre la figure 2. On peut
dans un deuxieme temps, si le niveau de
la classe le permet, proposer une démons-
tration de cette propriété.

0 1234567891011

Fig. 2

Comment justifier que les points du graphique sont alignés ?

Afin de rendre cette démonstration plus éclairante, nous raisonnerons sur
un graphique légerement faux au départ (voir figure 3).

Soient A, B et C' trois points quelconques du graphique. Par B
et C', menons les paralleles a 'axe QY. Par A, menons la paral-
lele a I'axe OX. Soient F et D les points d’intersection de cette
droite avec les deux précédentes. Montrons que les triangles
ABE et AC'D sont semblables. Les angles ADC et AEB ont
la méme amplitude car ce sont des angles droits. Si (x4,3z4),
(rp,3zp), (xc,3zc) sont les coordonnées des points A, B, C,
les segments [C'D], [BE], [AD] et [AE] mesurent respective-
ment

3(xc—x4), 3(xp—1x4), Tc—x4, T — x4 unités de longueur.

On obtient ainsi

|C'D] B |AD| To— T4

Fig. 3

|BE|  |AE| =z —xa

Les angles AEB et ADC sont adjacents a des cotés correspondants pro-
portionnels ; nous sommes donc en présence du cas de similitude : « deux
triangles sont semblables lorsqu’ils ont un angle égal compris entre deux
cOtés proportionnels. » Les triangles A/BE et AC'D sont donc semblables.
Par conséquent, les angles CAD et BAFE ont la méme amplitude et les
points A, B, C sont alignés. On fera alors remarquer que la figure sur la-
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35

30

25

20

15

10
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n’est pas correcte. Un travail analogue se fait pour le
ce qui nous donne le tableau suivant.

Accroissements | y Accroissements
des x coté | périmetre des y

0 40

+1 -4
1 36

+1 -4
2 32

+1 -4
3 28

+1 -4
4 24

0123456728 910I11

Fig. 4

Cette fois il n’est pas possible de trouver un facteur
multiplicatif pour passer de la colonne des x a la co-
lonne des y du tableau. On voit de cette facon que y
n’est pas proportionnel a x. Mais les accroissements
des y sont encore proportionnels aux accroissements
des x et on obtient donc de nouveau un escalier régu-
lier pour passer d’un point a 'autre du graphique. On
fera toutefois remarquer que, dans ce cas, chaque fois
que l'on avance de 1 unité horizontalement, on descend
de 4 unités verticalement et que ’escalier est incliné
dans 'autre sens. Il reste a noter que le graphique de
cette fonction ne comprend pas le point (0,0). On peut
de nouveau bien entendu démontrer 1’alignement des
points du graphique en recourant au méme cas de si-
militude.

A partir de ces constatations, on peut élaborer une premiere synthese.
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Synthése
Fonction Tableau de nombres Graphique
y =3z Les ordonnées sont proportionnelles | Le graphique est une droite qui passe
aux abscisses. par 'origine du repere.
Les accroissements sont proportion-

nels.

y =40 — 4z | Les ordonnées ne sont pas propor- | Le graphique est une droite qui ne
tionnelles aux abscisses. passe pas par 'origine du repere.

Les accroissements sont proportion-
nels.

40
35
30
Les deux fonctions sont donc représentées par deux
25 droites. En affirmant cela, on conjecture que tous les
nouveaux points qu’on pourrait calculer seraient eux
20 aussi chaque fois sur la méme droite. Il ne nous parait
P pas nécessaire de nous appesantir sur ce fait, qui va
15 de soi pour les éleves a ce niveau. Les deux droites se
coupent en un point P. Il convient alors de faire réflé-
10 chir les éleves sur la signification de ce point d’intersec-
tion et de faire le lien avec I’équation 3z = 4(10 — x).
5

0 1234567891011

Fig. 5

Echos des classes Cette situation a été expérimentée dans deux classes de troisieme technique
de transition a option scientifique. Le niveau des éleves était faible dans la
premiere classe et moyen dans la deuxieme. Dans les deux classes, les éleves
se sont pris au jeu de la recherche d’une valeur exacte pour 1'égalité des
périmetres. Certains ont poursuivi leur recherche jusqu’au dix-millieme.
Dans la premiere classe, le professeur a du interrompre ces recherches et
proposer lui-méme d’algébriser ; dans la deuxieme, les éleves ont demandé
si le professeur n’avait pas un truc pour aller plus vite. Par contre, dans
les deux classes, 1’élaboration des formules a posé le probleme du choix
des inconnues. Si tous les éleves ont immédiatement posé |AX| = z, peu
ont pensé a exprimer la longueur |BX| en fonction de z. Comme un des
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objectifs du professeur était I’élaboration d’équations a une inconnue, il
a incité les éleves a exprimer les deux longueurs en fonction de la méme
variable. On pourrait envisager de les laisser introduire une deuxieme va-
riable y pour la longueur |BX| et on obtiendrait alors un systeme de deux
équations a deux inconnues

z+y = 10,
3z = 4y.

Il nous semble cependant que ce type de mise en équation est plus difficile
conceptuellement. En effet, la premiere traduit non pas une question mais
une donnée du probleme et les éleves n’auront pas tendance a 1’énoncer
spontanément. De plus, ces situations-problemes ont été testées en début
d’année scolaire et il est difficile de confronter a ce moment les éleves a la
résolution d’un systeme de deux équations a deux inconnues.

On peut envisager une activité dont le déroulement serait semblable a
Iactivité précédente, mais qui étudierait les aires des deux figures. On
obtient alors deux équations du deuxieme degré

A= (10 — z)?,
Az?-x?

L’élaboration du graphique de ces deux fonctions amene naturellement
I’analyse du tableau de nombres associé a chacune d’elles et la découverte
de leur caractere non linéaire. Nous avons choisi ici d’expliquer la propriété
de non-linéarité a partir d’une autre situation.

2 Des rectangles de méme périmetre

Etudier des tableaux de nombres et les graphiques associés a ces tableaux a
partir d’une situation faisant intervenir la base, la hauteur et 'aire de rec-
tangles isopérimétriques’. Etablir les formules correspondant aux tableaux
de nombres. Etablir les graphiques correspondants.

Contraster les tableaux de nombres et les graphiques associés a une fonc-
tion affine et une a fonction du deuxieme degré. Associer proportionnalité
des accroissements et alignement du graphique. Voir le chapitre 16, section
3.

Compétences

Savoir, connaitre et définir les expressions relatives auz fonctions.

Modéliser des problémes de maniére a les traiter au moyen des fonctions
de référence.

! Pour plus de détails J. Bretton et al. [1991].
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Esquisser, construire un graphique pour mettre en évidence des caractéris-
tiques du phénomene traité.

Interpréter un graphique en le reliant au probléme qu’il modélise.

Calculer la solution d’une équation.

De quoi a-t-on Matériel. — Du papier non tramé, un crayon, une calculatrice.
besoin ¢

Comment s’y

prendre ? Dessiner quelques rectangles dont le périmetre mesure 30 cm.

Dans un repere orthonormé, dessiner les points qui ont pour abscisse la
base des rectangles et pour ordonnée leur hauteur.
Comment ces points se disposent-ils les uns par rapport aux autres ?

Les éleves commencent par rechercher les dimensions des rectangles. Ils
doivent pour cela répondre a la question « Comment calculer la hauteur
d’un rectangle quand on connait sa base ? ». Une simple transformation de
la formule du périmetre du rectangle permet de répondre a cette question.
On obtient successivement les équations

P = 2 (z+y),

30 = 2x+4 2y,

2y = 30— 2z,
30 — 2z

y:Ta

y = 15—z

On aboutit a la construction du tableau suivant, ou x désigne la base du
rectangle et y sa hauteur.

z Y
base du rectangle | hauteur du rectangle

1 14
13

3 12
4,5 10,5
5 10
5,5 9,5
7,2 7,8
7,3 7,7

14 1
14,9 0,1
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Fig. 6

Dans un repere orthonormé, le fait de dessiner les rectangles en portant
en abscisse les bases et en ordonnée les hauteurs fait clairement apparaitre
I’alignement des sommets supérieurs droits. Cet alignement est-il 1lié¢ au
périmetre choisi? Si nous modifions celui-ci, la conclusion sera-t-elle la
méme ? L’activité se poursuit en répétant la méme procédure pour d’autres
données et, force est de constater que les sommets supérieurs droits des
rectangles s’alignent de nouveau. Pourquoi ?

Comment justifier que ces points sont alignés ?

L’analyse du tableau montre que la base et la hauteur ne sont pas pro-
portionnelles. Pour conserver un périmetre constant, il faut ajouter a la
hauteur ce que l'on enléve & la base ou réciproquement. On ne peut donc
passer de I'une a 'autre grace a un facteur multiplicatif. Par contre, les ac-
croissements en x et en y sont proportionnels : on peut passer des premiers
aux seconds en les multipliant par —1. Ceci est confirmé par le graphique :
lorsqu’on se déplace d’une unité vers la droite sur l'axe des abscisses, on
se déplace d’une unité vers le bas sur ’axe des ordonnées.
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Accroissements x y Accroissements
des z Base | Hauteur des y
1 14
+1 -1
2 13
+1 -1

3 12
4,5 10,5
+0,5 -0,5
5 10
+0,5 —0,5
5,5 9,5
7,2 7.8
+0,1 —0,1
7,3 7,7
14 1
+0,9 -0,9
14,9 0,1

En retournant a la synthese de l'activité précédente, on peut conclure
que cette fonction est du méme type que y = 40 — 4x. Il est donc normal
d’obtenir une droite qui ne passe pas par 'origine du repere ; en effet quand
=0,y #0.

On peut maintenant poser les questions suivantes.

Tous les rectangles ont-ils la méme aire ?

Dans le cas contraire, comment peut-on décrire la situation ?

Quelles sont les dimensions du rectangle de 30 cm de périmetre ayant
la plus grande aire possible ?

Les éleves ont manipulé beaucoup de tableaux de nombres au cours du pre-
mier degré de ’enseignement secondaire. Il est naturel d’y recourir encore
et de compléter celui ci-dessous. Manifestement, les rectangles n’ont pas
la méme aire. Le tableau semble indiquer un effet de symétrie. On passe
d’aires petites a des aires plus grandes pour revenir ensuite a des aires pe-
tites. Conjecturer qu’il existe un rectangle présentant une aire maximale
est raisonnable et on peut méme penser qu’il s’agit d’un carré dont le coté
mesure entre 7 et 8 cm (les éléves annonceront probablement 7,5 ¢cm spon-
tanément). Dessiner la situation dans un repere orthonormé conduira a
confirmer la conjecture.

On constate que le graphique prend cette fois I'allure d’une courbe (pa-
rabole) présentant un sommet correspondant a l’aire maximale, celle d’'un
carré de 7,5 cm de cOté.
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60 |
|
T y Ty
Base | Hauteur | Aire
1 14 14
2 13 26
3 12 36
4,5 10,5 47,25
5 10 50
5,9 9,5 52,25
7,2 7.8 56,16
7,3 7,7 56,21
12 3 36
13 2 26
14 1 14
14,9 0,1 1,49

0 1 23456 718 9101112131415

Fig. 7

Le graphique confirme Ueffet de symétrie (deux points symétriques du gra-
phique correspondent d’ailleurs a deux rectangles identiques, I'un « posé »
sur sa longueur, Pautre sur sa largeur); il est d’ailleurs facile de dessiner
I'axe de cette symétrie. Il comprend évidemment le point milieu du seg-
ment déterminé par les points (0, 0) et (15, 0) — extrémités de l'intervalle
sur lequel le probleme & un sens — c’est-a-dire le point (7,5 ; 0) ou 7,5 est
la mesure de la base et de la hauteur du rectangle (et c’est un carré!) de
30 cm de périmetre et de plus grande aire.

Quelle est ’équation de cette courbe ?

Chacun de ses points a pour abscisse la base d’un rectangle et pour or-
donnée l'aire du méme rectangle, donnée par I’équation A = z - (15 — x)
ou A = 152 — 22. Nous sommes maintenant en présence d’une fonction du
deuxieme degré.

Le tableau de nombres montre que les accroissements en = et les accrois-
sements d’aire ne sont pas proportionnels. De méme, la base et ’aire des
rectangles ne le sont pas non plus.
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Accroissements x x -y | Accroissements
des x Base | Aire des x -y
1 14
+1 +12
2 26
+1 +10
3 36
4.5 | 47,25
+0,5 +2,75
5 50
+0,5 +2,25
5,5 | 52,25
7,2 | 56,16
+0,1 +0,05
7,3 | 56,21
12 36
+1 -10
13 26
+1 -12
14 14
+0,9 12,51
149 | 1,49

On peut démontrer assez facilement que 'aire du carré est bien 'aire maxi-
male d’'une famille de rectangles isopérimétriques. Si on appelle p le demi-
périmetre du carré, L est la mesure du coté du carré. Tout autre rectangle
a comme dimensions § —a et § 4+« avec a > 0. L’aire du rectangle devient

donc » »
(5-2)(5+e)
(5) o

ce qui est toujours strictement inférieur a (%)2 qui représente l'aire du
carré.

c’est-a-dire

3 Des rectangles de méme aire

Etudier le tableau de nombres et le graphique associé a ce tableau a partir
d’une situation basée sur les rectangles de méme aire.

Etablir le tableau de nombres, la formule et le graphique associés a la fonc-
tion x -y = k a partir de la situation géométrique des rectangles de méme
aire. Comparer avec les fonctions découvertes lors des activités précédentes.
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Compétences
Savoir, connaitre et définir les expressions relatives auz fonctions.

Modéliser des problémes de maniére a les traiter au moyen des fonctions
de référence.

FEsquisser, construire un graphique pour mettre en évidence des caractéris-
tiques du phénomene traité.

Interpréter un graphique en le reliant au probleme qu’il modélise.

Calculer la solution d’une équation.

Matériel. — Du papier, un crayon et une calculatrice.

Rechercher tous les rectangles dont 'aire vaut 24 cm?. Dans un repere
orthonormé, dessiner les points qui ont pour abscisse la mesure de la
base des rectangles et pour ordonnée celle de leur hauteur. Comment
ces points se disposent-ils les uns par rapport aux autres ?

prendre ¢
€z Y
1 24
2 12
3 8
4 6
5 | 4,8
6 4
24
T 7
10 | 24
4
11| 2
24 1

Dans un premier temps, les éleves proposeront sans doute les rectangles
dont les dimensions sont des nombres entiers. En suggérant certaines va-
leurs particulieres pour la base, on les amenera a proposer des valeurs
décimales ou fractionnaires et a élaborer la formule qui permet de calculer
la hauteur en fonction de la base. On aboutit finalement a la construction
d’un tableau du type suivant, ou x désigne la base et y la hauteur. L’ana-
lyse du tableau permet de voir rapidement que la hauteur des rectangles
n’est pas proportionnelle a leur base. Pour les accroissements, une breve
observation du tableau reprenant les premieres dimensions entieres permet
de conclure qu’il n’y a pas non plus proportionnalité.

Accroissements x Y Accroissements
des x Base | Hauteur des y

1 24

+1 —12
2 12

+1 —4
3 8

+1 -2
4 6

On peut maintenant demander aux éleves s’ils pensent que les points du
graphique de cette fonction seront ou non alignés. La réalisation concrete
du graphique dans un repere permettra de vérifier leurs conjectures. Pour
donner une allure convenable a la courbe, il sera indispensable d’augmen-
ter le nombre de valeurs pour x dans le tableau de nombres. Le professeur
proposera éventuellement d’étendre le domaine de la fonction aux nombres
négatifs afin d’obtenir le graphique complet de la fonction y = 290—4. 11 choi-
sira également, en fonction du niveau de sa classe, de parler ou non d’hy-
perbole, d’asymptote, de domaine de définition, ...
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Synthése. — On peut proposer a ce moment de rassembler les différentes

observations des trois activités afin
ébauché a la page 159.

de compléter le tableau de synthese

Fonction Tableau de nombres Graphique
y=3r Les ordonnées sont proportionnelles aux | Le graphique est une droite qui
abscisses. passe par l'origine du repere.
Les accroissements sont proportionnels.
y =40 —4x | Les ordonnées ne sont pas proportion- | Le graphique est une droite qui
y=15—=x nelles aux abscisses. ne passe pas par l'origine du re-
Les accroissements sont proportionnels. pere.
y = 152 — 2% | Les ordonnées ne sont pas proportion- | Le graphique n’est pas une droite
nelles aux abscisses.
Les accroissements ne sont pas proportion- | Il s’agit ici d’une parabole.
nels.
Yy = % Les ordonnées ne sont pas proportion- | Le graphique n’est pas une
nelles aux abscisses. droite.
Les accroissements ne sont pas proportion- | Il s’agit ici d’une hyperbole.
nels.
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4 De la perspective au théoreme de Thales

Dessiner, en perspective parallele, un cube dont les faces sont munies d’'un
quadrillage régulier.

Découvrir le théoreme de Thales par le biais du partage d’un segment
par un réseau de paralleles équidistantes, dans le contexte du dessin en
perspective.

Voir chapitre 16, section 3.3.

Compétences

Savoir, connaitre, définir les théorémes de la géométrie classique relatifs
aux rapports de longueurs.

Choisir des propriétés, organiser une démarche en vue de déterminer des
éléments d’une figure, dégager de nouvelles propriétés géométriques, Té-
soudre des problémes de construction.

Effectuer et interpréter des représentations planes de figures de l’espace en
se fondant sur les propriétés de telles représentations.

Matériel. — Une copie par éleve des fiches 42 a 44. Regle et équerre pour
chacun.

Prérequis. — La perspective parallele conserve le parallélisme, 'incidence
et le milieu (cf. par exemple les six premieres activités du chapitre 7 de
CREM [2001b] qui sont centrées sur le dessin de cubes et d’assemblages
de cubes en perspective parallele).

4.1 Dessiner un cube de Rubik

Le cube de Rubik est un casse-téte en trois dimensions. Il est formé de 27
petites cubes colorés, articulés de maniere astucieuse pour se préter a des
mouvements de rotation. Le jeu consiste a faire pivoter ces cubes de fagon
a ce que chacune des 6 faces du cube 3x3 qu’ils forment, soit d’'une méme
couleur. Le cube de Rubik porte le nom de son inventeur Erno Rubik,
un architecte hongrois, passionné de géométrie. Créé en 1974, ce jeu a
rencontré tres rapidement un vif succes dans de nombreux pays.

Nous ne nous intéressons pas ici au jeu lui-méme mais seulement aux ques-
tions que souleve le dessin d'un tel cube.

/LT

La figure 9 constitue une figure de référence
pour passer du partage en deux a un partage
en n parties égales : elle rappelle I’ensemble
des propriétés des médianes et des diagonales
des parallélogrammes qui apparaissent dans
la perspective parallele d’un cube.

Fig. 9
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Les éleves recoivent la fiche 42.
Fiche 42 (page 197)

Un dessin d’un cube de Rubik est ébauché ci-dessous; achever ce dessin sans procé-
der a aucune mesure. Utiliser une regle non graduée et une équerre pour tracer les
paralleles nécessaires. Décrire les différentes étapes de la construction.

En un premier temps, les éleves travaillent
seuls, ils tracent les paralleles aux fuyantes
comme le montre la figure 10. Mais comment
partager ces fuyantes sans recourir a des me-
sures ?

Fig. 10

La difficulté vient de ce que le milieu des diagonales n’est pas un élément
de la figure. Mais dés qu’une diagonale de la face frontale est tracée (avec
ou sans 'aide du professeur), la situation s’éclaire : cette diagonale passe
par les nceuds du quadrillage et est partagée ainsi en trois parties égales
(figure 11a). La familiarité des éleves avec les tracés sur papier quadrillé
est telle qu’il n’est pas opportun de soulever, pour le carré, la question de
I’alignement des nceuds, ni celle du partage en trois de la diagonale. On y
reviendra a propos des autres faces.

LN e

Fig. 11 (a,b,c,d)

Comme les autres faces sont des images de carrés, I'idée vient de tracer la
diagonale de la face supérieure et celle de la face de gauche (figure 110),
ensuite, de transposer sur ces faces les propriétés d’incidence. La figure 11
montre une correspondance entre ce qui se passe sur la face frontale et les
autres faces. On poursuit en tragant les paralléles aux arétes (figures 11c
et d).

A Tissue de cette construction, une question théorique peut étre soulevée.
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Les arétes fuyantes sont-elles partagées par ces paralleles en trois seg-
ments de méme longueur ?

Il arrive en effet souvent que les mesures que 'on prend pour vérifier ré-
velent des différences de longueurs entre les trois parties déterminées sur
I’aréte fuyante. Sont-elles dues a des imprécisions dans le tracé ou faut-il
incriminer le procédé ?

Pour amorcer une réponse a la question, le professeur attire I’attention des
éleves sur le fait que, s’ils ne disposent d’aucune propriété sur le partage
en trois, ils en connaissent par contre a propos du milieu de segments
dans les parallélogrammes. Il rappelle aussi qu’ils disposent d’une figure
de référence (figure 9 a la page 168). Les propriétés utiles ici sont :

— dans un parallélogramme, diagonales et médianes se coupent en un méme
b
point, milieu de chacune d’elles;
— dans un parallélogramme, chaque médiane est parallele a une paire de
cOtés.

On revient au dessin du cube, on observe d’abord les carrés de la face
frontale qui sont ombrés sur les figures 12 a et b.

RN

Fig. 12 (a,b)

Bien str, les éleves savent que la diagonale de la face frontale passe par deux
nceuds du quadrillage et est partagée en trois parties égales, néanmoins en
conjuguant les figures 12 a et b, ils comprennent pourquoi les égalités sur
une aréte de la face frontale se propagent sur la diagonale de cette face. Par
ailleurs, cette premiere étape met en évidence les sous-figures qui seront
en jeu pour aborder les égalités sur les fuyantes.

Considérons a présent les parallélogrammes ombrés des figures 13.

J G H

P\ \ VIRV Y K
F \Z F N\ 7
D N b D

Fig. 13 (a,b)
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Le quadrilatere ABC'D est un parallélogramme (puisque ses cotés sont
deux & deux paralleles par construction);

— le segment [DB] est une diagonale de ce parallélogramme et le segment
[N P] est une médiane (par construction N est le milieu de [DC] et NP
est parallele & AD, ainsi donc cette médiane est déterminée par un de
ses points et sa direction) ;

le point F, intersection de cette diagonale et de cette médiane est donc
le milieu de la diagonale, c’est a dire :

|DE| = |EBJ;

le méme point F appartient a 'autre médiane F'E, par conséquent F'
partage [AD] en deux segments de méme longueur. On a donc :

|FD| = |FA|.
On montre de méme que dans le parallélogramme GHIFE,
|[EB| = |BH],
que le segment [PK| est une médiane et que
|GP| = |PE]|.

Comme

IGP| = |JA| et |PE| = |AF]|,

on a aussi

|JA| = |AF).

Ceci acheéve la démonstration.

La construction terminée, il importe de sortir du contexte du dessin en
perspective et de mettre en évidence un procédé plus général. La figure 14
et son commentaire montrent comment partager le segment [AC] en trois
parties égales, sans mesurer.

C C

A A g

B

() (5)

&) C

T T
/ M

A # # ‘ A
(c) B (d) B

Fig. 14
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Pour partager un segment [AC] en trois, on peut le considérer comme une
diagonale d’un parallélogramme :

(a) on trace a partir de A, une demi-droite non alignée avec [AC];

(b) a partir du point A, on gradue la demi-droite en y portant trois seg-
ments de méme longueur, on détermine ainsi [AB], premier co6té d'un
parallélogramme ;

(¢) on joint les points B et C', on détermine ainsi le second c6té du paral-
lélogramme ;

(d) par chacun des points de graduation du premier c6té, on mene une
parallele au second coté ;

chaque point d’intersection d’une de ces paralleles avec la diagonale est un
point de division de celle-ci.

4.2 Partager les arétes d’un cube

Dans cette deuxieme activité, il s’agit d’adapter le procédé mis au point a
propos du partage en trois, au partage en cing, et ensuite au partage en n
parties égales. Les éleves regoivent la fiche 43.

Fiche 43 (page 198)

L’aréte verticale de ce cube est partagée en cing parties de méme longueur ; partager
les autres arétes en cing, sans procéder & aucune mesure. Utiliser une regle non
graduée et une équerre pour tracer les paralléles nécessaires, décrire les différentes
étapes de la construction.

Dans cette activité comme dans la précédente, trois réseaux de paralleles
sont implicitement présents : les paralleles aux arétes du cube. On s’attend
a ce que les éleves aient recours aux diagonales des faces.

La figure 15 montre une facon de procéder.
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Le professeur pose a présent une nouvelle question.

Décrire comment partager un segment en n parties égales en utilisant
un réseau de paralleles. Enoncer les propriétés utilisées.

Le professeur veille a ce que chaque éleve se donne un segment a partager
et prenne conscience des choix a faire, a savoir

— la direction de la demi-droite qui servira d’intermédiaire ;
— D'unité sur cette demi-droite.

Il s’ensuit un travail collectif pour dégager une méthode de partage et
pour la rattacher aux propriétés du parallélogramme. La figure 16 montre
les étapes d’une telle construction. La figure 17 avec ses commentaires en
donne une démonstration.

(a) (6)

Fig. 16

Supposons qu’il s’agisse de partager le segment [OB] en six parties égales.

(a) Par O menons la demi-droite [OA et portons, a partir de O six seg-
ments de longueur égale;

(b) joignons le point N (extrémité du dernier segment sur [OA) et le point
B. Par chacun des points de graduation, faisons passer la parallele a

BN.

Montrons a présent que par ce procédé, le segment [OB] est bien partagé
en six parties égales.

Z B
G ~T 1
| LT FMM
£ -7 177
0 L= A 0 i A
(a) N N
(&)

Fig. 17
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(a) Par chaque point C, D, E, .. .déterminé sur [OB] par le premier réseau
de paralleles, menons la parallele a [OA. Nous obtenons un réseau de
parallélogrammes.

(b) Sélectionnons les parallélogrammes ombrés. Une configuration appa-
rait. Elle rappelle la figure 13 a la page 170; on applique donc de
proche en proche le raisonnement qui mobilise les propriétés des dia-
gonales et des médianes de ces parallélogrammes et on montre ainsi
I'égalité des segments déterminés sur [OB].

Apres cette mise au point, on peut revenir a
la fiche de travail et chercher un moyen de
partager les arétes sans passer par le partage
des diagonales. La construction est illustrée
par la figure 18.

Fig. 18

Tout en exergant le procédé mis au point, cette construction constitue une
bonne préparation a l'activité suivante.

A présent, les éleves sont préts a utiliser la conservation des rapports par
une projection parallele. Notons au passage que, dans le contexte d’une
étude des propriétés de la projection parallele (ce qui n’est pas le cas
ici), on montrerait que cette propriété assure le caractere linéaire de cette
transformation.

4.3 Dessiner sur une table

Comment s’y Dans cette activité, on introduit la conservation des rapports rationnels.
prendre ¢

Fiche 44 (page 199)

Voici une table sur laquelle on veut dessiner un triangle dont le modele, vu en vraie
grandeur, est placé juste en-dessous. Dessiner le méme triangle, dans la méme posi-
tion, sur la table représentée en perspective parallele. Décrire les étapes de la construc-
tion. Utiliser une équerre et une régle non graduée, ne rien mesurer.
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A

Les bords de la table sont divisés en par-
ties égales sur le modele. Commencons par
reporter ces graduations sur [D;C] qui est
vu en vraie grandeur. Le point Y7 est situé
aux deux septiemes de [D1C1] & partir de
D;.

Le point X (voir figure 19b) est situé aux
six septiemes du segment [DA| & partir de
D. 1l s’agit donc de partager le segment
[D1 A1) en sept. On se sert évidemment des
graduations de [D1C4].

Fig. 19 (a,b)

On joint C7 et Aj, et on mene les paralleles & C1 A1 qui passent par les
graduations de [D1C4]. On trouve X;. Les éleves réalisent a posteriori que
seule la parallele qui passe par la sixieme graduation (& partir de Dy) est
utile!

Le point Z (voir figure 20a) est situé aux quatre septiemes du segment [C' B]
a partir de C. Il s’agit donc de déterminer le point aux quatre septiemes
de [C1B1]. On se sert a nouveau des graduations de D;C}.

On joint Dy et B; et on mene la parallele a D1 B qui passe par la quatrieme
graduation de [D;C1] & partir C7. On trouve Z; et on trace le triangle
§/1X1Z1 (ﬁgure 20 b)

. 4 B, 4, B,
1 X
Zl L Zl
) D
1 —fc 1 c
A B
4 B
X
z z
D ol D
; ’ -
¥ ¥y
Fig. 20 (a,b)

A Tlissue de cette activité, le professeur met en évidence quelques expres-
sions et notations relatives aux rapports et proportions. Par exemple, ’éga-

2
lité [DY| = 2| DC,
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Prolongements
possibles

Comment s’y
prendre ¢
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signifie que le segment [DY] vaut les deux septiemes du segment [DC].
|DY|

|DC| 7
pression : |[DY| est & |[DC/| comme 2 est a 7.

Cette égalité est équivalente a , qu’on traduit souvent par 'ex-

A partir des égalités
IDX| 6 ; |D1X1| 6

DAl ~ 7 DA T T

on en écrit une autre :
IDX|  |D1 X

IDA|  [D1Aq]”
Une telle égalité entre deux rapports est appelée proportion. On dit que

les segments [DX], [DA],[D1X1] et [D1A1] sont proportionnels ou encore
que |DX| est a |DA| comme |D;X| est a |D; Al

L’exploration du théoreme de Thales et de sa réciproque se poursuit pour
des rapports de longueurs a propos desquels il faut imaginer des gradua-
tions de plus en plus fines. Le lecteur trouvera dans FESeC [1996b], sous
le titre Une toile d’araignée autour de Thalés, une suite d’activités qui
poursuivent cet objectif.

4.4 Synthese

La synthese est préparée par une fiche qui apprend aux éleves a traduire
les propriétés de différentes configurations de Thales par des égalités de
rapports.

Fiche 45 (page 200)

Pour chaque figure, écrire 'une ou 'autre proportion qui fait intervenir le rapport

|oc|
A
D c
B
o @)
D B
A c

[OA]”
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Fig. 21

La figure 21 sert de référence lorsque les éleves n’arrivent pas a imaginer
le réseau de paralleles équidistantes. On y revient aussi pour réaliser la
translation qui permet d’analyser la troisieme figure, ou encore la rotation
de 180° qui permet d’analyser la quatrieme.

Ensuite, on rédige des énoncés qui couvrent I’ensemble de ces situations.
Voici des exemples de tels énoncés. Leur formulation peut varier selon les
classes et selon la culture mathématique des éleves (s’ils sont familiers des
projections paralleles, la formulation sera plus concise).

Enoncé 1. — Dessinons une graduation réguliére sur une droite. Tracons
des paralleles par les points de cette graduation. Dans ces conditions, toute
droite qui coupe les paralleles est partagée en parties égales.

Enoncé 2. — Si dans un triangle on mene une parallele & un coté, cette
parallele détermine sur les deux autres cotés des segments proportionnels.
De plus, dans les notations de la figure 22, on peut aussi écrire que

0X| |oY| |XY|
|OA| — |OB|  |AB|’

Fig. 22
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Fiche 26 : Bracelets de conversion

27

26

25

24

23

22

21
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182 Fiche 27 : « Rapporteurs en pourcents » a photocopier sur transparent

7 77
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Fiche 28 : conversion d’un rapport de longueurs en un pourcentage : abaque 1 183
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184 Fiche 29 : conversion d’un rapport de longueurs en un pourcentage : abaque 2
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Fiche 30 : conversion d’un rapport de longueurs en un pourcentage : abaque 3 185
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186 Fiche 31 : Patterns de cubes 1

Chacun des solides de la figure est formé de cubes identiques. Combien faudrait-il de cubes pour
construire le quatrieme solide, le dixieme, le centieme ?

Réaliser un tableau qui mette en relation le nombre de cubes avec la position du solide dans la
suite, puis le graphique qui montre le nombre de cubes en fonction du numéro d’ordre du solide.

NN

Tableau et graphique

A
C
Numéro d’ordre | Nombre de | L---.- [
. | I | | ,
dans la suite cubes A S S
! ! ' 1 |
,L,,\,J,J,,‘,,:
! ! | 1 | |
I O A S B
! ! ' 1 | '
R S T S R
Ry Tl Sl
! l | l | )
! [ [ 1 | '
! ! | 1 | |
'7T777777\77‘77‘
! l | l | )
i B Bl Bl Bl
! ! | 1 | |
R B B R
[ | ' | | )
I e I T
! ! | 1 | |
! 1 i i L Ny,
0 1 Z
n

Formule



Fiche 32 : Patterns de cubes 2 187

Chacun des solides de la figure est formé de cubes identiques. Combien faudrait-il de cubes pour
construire le quatrieme solide, le dixieme, le centieme 7 Réaliser un tableau qui mette en relation
le nombre de cubes avec la position du solide dans la suite, puis le graphique qui montre le
nombre de cubes en fonction du numéro d’ordre du solide.

Comparer le tableau et le graphique a ceux qui ont été réalisés a propos de la premiere question.

Tableau et graphique

A
C
Numéro d’ordre | Nombre de | |- --.- S
. | I | I , ,
dans la suite cubes I S
! l | l |
-,L,,\,J,,\,,‘,,:
! | | | | |
I o B
! ! | 1 | |
L B B B
R Bl it
! l | l | )
! [ [ 1 | '
! ! | 1 | '
L T
! l | l | )
A Hie el Sl
! ! | 1 | |
iR B B R
! l | l | )
1 p-L-d—d -y
! ! | 1 | |
| | | i . Ny,
0 1 ,
n

Formule



188 Fiche 33 : Patterns de cubes 3

Chacun des solides de la figure est formé de cubes identiques. Combien faudrait-il de cubes pour
construire le quatrieme solide, le dixieme, le centieme 7 Réaliser un tableau qui mette en relation
le nombre de cubes avec la position du solide dans la suite, puis le graphique qui montre le
nombre de cubes en fonction du numéro d’ordre du solide.

Comparer le tableau et le graphique a ceux qui ont été réalisés a propos de la premiere question.

Tableau et graphique

A
c
Numéro d’ordre | Nombre de |  F----- I
. | I | I ,
dans la suite cubes S N P
! ! ' l |
,L,,\,J,J,,‘,,:
! ! | I | '
I e I IO B
! ! ' l | )
! ! | l | '
I Bl Bt B
! l | l | )
! ! ! ! l l
! ! | I | '
L e R H
! ! ' 1 | '
A Ay B
! ! | I | '
-+ =4 =4 = -1 == -
! ! ' l | )
[ e e B
! ! | | | '
! 1 1 1 . Ny,
0 1 ~
n

Formule



Fiche 34 : Ensembles de points, couples de nombres 189

Les questions ci-dessous se rapportent aux ensembles montrés par les figures 38 et 39. Ces
ensembles s’étendent implicitement au-dela de ce que montrent les dessins.

1. Les points donnés par les couples
(8,9) ; (25,15) ; (13,36) ; (27,37) ;
(10,10) ; (100,13) ; (120,19) ; (119,73) ;
(45,20) ; (45,62) ; (17,105) ; (17,106);
sont-ils représentés dans la premiere figure par une croix, un point noir ou un point blanc ?

2. Méme question pour les mémes couples, & propos cette fois de la deuxieme figure.

y

00060
0 X
y

AR SO A SR S
0 X




190 Fiche 35 : Ensembles de points, couples de nombres, suite

Les ensembles montrés par les figures ci-dessous s’étendent seulement dans une seule direction :
celle de la droite qui porte les points.

1. Les points donnés par les couples ci-dessous sont-ils ou non alignés avec une suite de croix,
de points noirs ou de points blancs de la premiere figure ?

(7,8) 5 (8,8); (8,7); (9,8) 5 (9,10)
(25,24) ; (30,30) ; (30,29) ; (41,40) ; (40,40).
Comment caractériser les ensembles de points alignés 7
2. Méme question a propos des couples ci-dessous, qui se rapportent a la deuxieme figure.
(7,14) 5 (7,15) 5 (7,13) ; (8,17); (8,15) ;
(20,50) ; (25,49) ; (30,61) ; (29,60) ; (29,59).

Comment caractériser les ensembles de points alignés 7




Fiche 36 : Points a coordonnées entieres 191

Les points qui correspondent aux coordonnées ci-dessous sont-ils ou non alignés avec une suite
de croix, de points noirs ou de points blancs ?
Envisager successivement les trois figures ci-dessous.

(3’ 2) ) (273) ) (gag) ) (gv 3) ;
(3,3)5 (3,2) 5 (3,4): (3,2).

Comment caractériser les ensembles de points alignés 7

Y@
A
y oxe
R St S OX’
0 X 0 X




192 Fiche 37 : Alignement et addition d’entiers

Représenter sur le graphique quelques points dont les coordonnées vérifient I’équation

y=3+z.




Fiche 38 : Alignement et soustraction d’entiers 193

Représenter sur le graphique quelques points dont les coordonnées vérifient I’équation

y=6—uzx.




194 Fiche 39 : Nombres opposés

1. Qu’est-ce qui caractérise chacun des trois ensembles de points alignés de la figure ci-
dessous ?

2. Quel est le point d’abscisse 1 qui est aligné avec les croix, avec les points blancs, avec les
points noirs ?

3. Méme question pour les points d’abscisse 3 et d’abscisse 7.

4. Dresser les tableaux de nombres qui correspondent au graphique tel qu’il a été complété.




Fiche 40 : Alignement et multiplication par un entier 195

Les points qui correspondent aux couples ci-dessous sont-ils ou non alignés avec une suite de
croix, de points noirs ou de points blancs ?

(0,0); (0,2); (1,2); (1,2) ;
(2,4); (2,4); (3,6); (3,6) ;
(3,7); (3,7); 3.7); (3,7).

Comment caractériser les ensembles de points alignés ?




196 Fiche 41 : Alignement et multiplication par un entier, suite

Les points qui correspondent aux couples ci-dessous sont-ils alignés avec une suite de points
noirs ?

(1,2) ;
(3,6); (3,6); (3,6); (
(100,200) ; (100,200) ; (100,200

Comment caractériser les points alignés ?

i
[a—
W

~—




Fiche 42 : Dessiner un Rubick’s cube (page 169) 197

Un dessin d’un cube de Rubick est ébauché ci-dessous; achever ce dessin sans procéder a aucune
mesure. Utiliser une regle non graduée et une équerre pour tracer les paralleles nécessaires. Décrire
les différentes étapes de la construction.




198 Fiche 43 : Partager toutes les arétes d’un cube (page 172)

L’aréte verticale de ce cube est partagée en cinq parties de méme longueur; partager les autres
arétes en cing, sans procéder a aucune mesure. Utiliser une regle non graduée et une équerre pour
tracer les paralleles nécessaires, décrire les différentes étapes de la construction.




Fiche 44 : Dessiner sur une table (page 174) 199

Voici une table sur laquelle on veut dessiner un triangle dont le modele, vu en vraie grandeur, est
placé juste en-dessous. Dessiner le méme triangle, dans la méme position, sur la table représentée
en perspective parallele. Décrire les étapes de la construction. Utiliser une équerre et une regle non
graduée, ne rien mesurer.




200 Fiche 45 : Déceler des égalités de rapports (page 176)

Pour chaque figure, écrire I'une ou 'autre proportion qui fait intervenir le rapport %.

A
D C
B
0]
o
D B
A c
C
A
O C
B
{io 1
[0k D
E F A

OD| . |EB| . |EB|
|OB] » |BA| * [EA[®

A
A
c
c E
o
o D E D B
B

Meéme question a propos des rapports
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LA LINEARITE A TRAVERS QUELQUES SIECLES

Avant-propos

Dans toutes les branches des mathématiques et de diverses autres sciences,
le probleme qui se pose le plus souvent et le plus concretement est de
trouver des solutions d’équations. C’est ’algébre qui permet de réaliser
cela et, a ce titre, c’est une discipline fort ancienne. On trouve en effet des
résolutions d’équations dans des tablettes mésopotamiennes et des papyrus
égyptiens datant de plus de deux mille ans avant notre ere.

Dans les Eléments d’EUCLIDE, qui datent du troisieme siecle avant Jésus-
Christ, il y a également une forme d’algebre en ce sens qu'on y trouve
des méthodes générales de résolution d’équations, par des procédés géo-
métriques. Chez DIOPHANTE D’ALEXANDRIE, que les historiens situent
entre 250 et 350 de notre ére, on trouve également de ’algebre ; mais, tout
comme les tablettes babyloniennes et les papyrus égyptiens, le texte de
DIOPHANTE consiste en un recueil de problemes particuliers avec solutions
et ne peut donc étre considéré comme un traité théorique qui aurait pour
souci de donner une méthode générale de résolution.

Quant aux méthodes dites « de fausse position » (simple ou double), qui ont
été utilisées pendant des siecles, elles fournissent des méthodes générales de
résolution des problemes du premier degré, mais par des procédés purement
arithmétiques.

I1 est admis par les spécialistes d’histoire des mathématiques que 'acte de
naissance officiel de I’algebre en tant que discipline avec un nom, des objets,
des outils, des algorithmes, des preuves et des domaines d’application, a été
la publication d’un petit ouvrage intitulé Muhtasar fi hisab al-jabr' wa I-
mugqabala (Abrégé de calcul par le jabr et la muqabala). Ce texte est 'ceuvre
du savant d’origine persane MUHAMMAD IBN MUSA AL-HUWARIZMI? (vers
780 - vers 850) qui travaillait & Baghdad, dans la Maison de la Sagesse,
fondée par le calife abbasside al-Ma’mun. La dédicace au calife, qui régna
jusqu’en 833, permet de situer I'ceuvre dans le temps.

1 Al-jabr (qui a donné naissance au mot algébre) et al-muqgabala sont les deux prin-
cipales opérations qui permettent de réduire les équations algébriques a une des formes
canoniques dont la solution est donnée dans le traité.

2 Comme son nom l’indique, il est originaire du Hawarizm, région au sud de la mer

d’Aral.
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De quoi a-t-on
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Chapitre 7. La linéarité a travers quelques siécles

1 La fausse position simple chez les Egyptiens

Montrer comment les Egyptiens résolvaient des équations du premier degré
il y a quatre mille ans.

Analyser la méthode de fausse position simple et établir le lien avec les
tableaux de proportionnalité.

Donner du sens au concept de linéarité en situant son émergence dans un
contexte historique et culturel.

Montrer par contraste la commodité de la méthode algébrique d’aujour-
d’hui. Cette méthode nécessitait une longue élaboration, comme en té-
moigne le chapitre 16.

Le probleme 24 du Papyrus mathématique Rhind repris ci-apres et proposé
en annexe a la page 469 sous une forme photocopiable pour les éleves.
Les quelques hiéroglyphes qu’il faut pouvoir décrypter pour comprendre le
probleme sont donnés dans un petit lexique a la page 206 et en annexe a
la page 470.

Prérequis. — La résolution des équations du premier degré.

1.1 Introduction

L’une des méthodes utilisées depuis la plus haute Antiquité est ce qu’on
appelle la méthode de fausse position (simple). Elle consiste & donner une
valeur a I'inconnue, a opérer les calculs décrits dans ’énoncé puis, en fonc-
tion de l'erreur qui apparait, a ajuster la valeur donnée a priori a I'incon-
nue.

Nous nous proposons ici d’analyser cette méthode a partir du probleme
24 du Papyrus mathématique Rhind conservé au British Museum (ou il
est catalogué sous les numéros BM 10057 et BM 10058). Ce papyrus est
I’une des principales sources d’information sur les connaissances mathéma-
tiques égyptiennes. Outre des tables de multiplication, on y trouve quelque
quatre-vingt sept problemes d’arithmétique et de géométrie, avec les solu-
tions.

1.2 Quelques caractéristiques des mathématiques
égyptiennes

Le systeme numérique utilisé par les Egyptiens de I’ Antiquité est purement
décimal mais non positionnel.

Qu’il s’agisse de n’importe quelle opération, tout est ramené a des addi-
tions. Les mathématiques égyptiennes ont ainsi un caractére nettement
additif et linéaire.

Les Egyptiens emploient presque exclusivement les fractions de numérateur
1 (fractions unitaires). La technique qu’ils utilisent pour opérer les divisions
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favorise ’apparition de ce type de fractions. Il y a cependant une exception

pour la fraction = et le scribe semble avoir une certaine facilité a trouver les

deux tiers de n’importe quel nombre. En fait, les tables de multiplication
qui se trouvent au début du document sont des tables de multiplication
par deux des fractions unitaires & dénominateurs impairs (de 3 a 101).
Comme nous le verrons ci-dessous, la technique utilisée par le scribe lors

1
des multiplications est la « duplication ». Pour dupliquer la fraction = par

exemple, le scribe ne peut se satisfaire d’une réponse du type £ 11 utilise

alors les tables qui lui donnent le résultat de 'opération exprimé en termes

. .. 1 1
de fractions unitaires : 2 X — = = + —.
5 3 15

1.3 Quelques hiéroglyphes

En ce qui concerne I’écriture des nombres, il existe un symbole pour toute
puissance de 10, symbole qui se répete autant de fois qu’il est nécessaire
lors de I’écriture du nombre.

|1 n 10 () 100 21000 m 10000 ﬁlOOOOO \EIOOOOOO

Ainsi, par exemple, 12345 g’écrit de droite a gauche

1 aR999f Y

Pour désigner une fraction (unitaire, rappelons-le), on utilise le symbole
<> qui se prononce r¢ et signifie bouche, ouverture.

1, it < . 1 P
— g’écrit : et — .

1
Il existe cependant deux exceptions, I'une pour 3 /A et lautre,

2
pour la fameuse fraction 3 : ﬁ'-]) .
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Voici encore quelques hiéroglyphes utiles :

S L
; adjectif possessif | ‘h quantité, inconnue | ‘k ajouter
Il — ,<§
d;t le reste | dmd somme, total | f elle
-4
T~ e T
<<
hpr = devenir | hr donc, alors | hr - sur
in donc, ainsi | ir faire, prendre | ir-t calculer
A I prnn
m considéré comme | m 'y selon que, ce que | n de
<
[l N 3 9
ANVNVNR .
pn ceci | pr't ou pr soustraire | w d il reste

1.4 Opérations

Le scribe égyptien décrit en détail la technique qu’il utilise pour opérer
les multiplications et les divisions. Nous en verrons un exemple ci-apres.
Par contre, il est totalement muet en ce qui concerne les additions et sous-
tractions. Le peu d’erreurs commises dans ces dernieres opérations laisse
supposer qu’il disposait de tables, mais aucune n’est arrivée jusqu’a nous
et ce n’est donc la qu'une hypothese. Peut-étre apprenait-il des tables d’ad-
dition par coeur des son plus jeune age ?

La multiplication s’effectue par duplications successives. Par exemple, pour
effectuer 37 x 47, le scribe procede ainsi :

\ 1 47
2 94
\ 4 188
8 376
16 752
\ 32 1504

Total 37 1739

Le scribe coche les termes qui interviennent effectivement dans le calcul.
Remarquons que ce tableau est un tableau de proportionnalité dans lequel
les lignes sont obtenues, soit en multipliant la ligne précédente par deux,
soit en additionnant des lignes sélectionnées en vue d’obtenir un résultat
bien déterminé (37 dans cet exemple).
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La division est traitée comme opération inverse de la multiplication. Ainsi,
pour diviser 133 par 9 %, le scribe se demande par quoi il faut multiplier
9% pour obtenir 133.

o = DN =
w
oo

\
\
\
Total 14 133

1.5 Probleme 24

-O-

,i:zi”, o .
2>UNEIYoz MN3SBNS 20T
kD=5 7 had B¢ ‘,‘ X

=N . tii < )y | ‘%) = =) S
nin @ ¥
it A Pl . e I 0N \
(he st m f-nph fonip f -7 the
< 11 ﬁ pg —~< —
iy — e 111 (1
th m = = ST 1 T 4 e | 1t 1/ 2
& L bl Aph ym Tond & 4 2z 2 4 g 7 '
v - / e /
e B ey =S 117 e tan 3
31 dmd 8 i 2 7 & 2 4 2 i & 61 2
TR =/
._.D::{ 1 [T — | II‘I‘I 4‘
2 9 4 ¢ 2 P

Fig. 1 : Probléme 24 du papyrus Rhind

Seule la partie supérieure de la figure 1 se trouve sur le papyrus. Il s’agit
d’un texte en écriture hiératique qui est 1’écriture cursive du scribe. Les
égyptologues qui ont étudié le manuscrit 'ont transcrit en hiéroglyphes,
plus faciles a décrypter. Cette transcription apparait dans la partie infé-
rieure de la figure. Notons que le texte du papyrus Rhind est écrit de droite
a gauche.
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L’énoncé du probleme apparait a la premiere ligne a droite. Le voici en
écriture hiératique :

<~ |4 Y272
IMZO3, 7537

et en hiéroglyphes :

L1t ) RSN W
N @ d,c;fnu
ul ﬂ_ﬁr Y e (L

f-nph f-nh f oo (}_\(

Une traduction littérale en est :

Une quantité, un septieme d’elle sur elle devenir elle en tant que 19,

ce que nous écririons aujourd’hui

1

Le scribe suppose au départ que la quantité cherchée vaut 7. Il

\ L7 utilise la méthode de fausse position simple. Il choisit un nombre
\ % 1 qui permet d’éviter I'apparition trop rapide de fractions. Il calcule
Total 1% ] alors la quantité et son septieme : 74 1 = 8 (voir lignes 2 et 4 a
Pextréme droite de la figure 1).

1 8 Ce résultat est faux puisqu’il aurait du trouver 19. Le raisonnement
\ 2 16 qu’il tient alors est le suivant : la proportion de 19 a 8 est la méme
1y que celle de la quantité cherchée a 7, nombre qu’il avait choisi au
2 départ pour des raisons de facilité. Il est ainsi amené a diviser 19
\ % 2 par 8 selon la méthode que nous avons exposée ci-dessus, c¢’est-a-
\ % 1 dire qu’il recherche par combien il faut multiplier 8 pour obtenir
11 19. Nous lisons cela & la colonne 2 (& partir de la droite), lignes 2,

Total 245 19 3 et 4 et ala colonne 3, lignes 2 et 3.
Il obtient 2 1 i 8, rapport de la proportion qu’il doit maintenant
multiplier par 7 (quatrieme colonne, lignes 2, 3 et 4). Notons que
\ 1 2%% le scribe multiplie 2% % par 7 et non 7 par 2 ; 1 1 . Or, dans l’esprit
de la méthode de fausse position, lorsqu’on a trouve le coeflicient
\ 2 4%% de proportionnalité qui permet de passer de 8 & 19 (dans le se-
\ 4 9% cond membre), il serait logique de multiplier ensuite 7 (la fausse
11 position) par ce méme coefficient. Cette inversion de l'ordre des
Total 71635 facteurs, qui simplifie le calcul, semble indiquer que les Egyptiens

avaient une connaissance intuitive de la commutativité de la mul-
tiplication.
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%% Dans la partie gauche du fragment, nous trouvons a la ligne 1 le
11 hiéroglyphe signiﬁant « la quantité », a la ligne 2, sa valeur, a
48 savoir 16 % %. A la ligne 3, le scribe ajoute son septieme et vérifie
19 que cela fait bien un total de 19.

Le raisonnement qui sous-tend cette méthode de résolution peut étre condensé
dans le tableau de proportionnalité suivant

x x +

z
7

11 11
Paslgll | o) s

ou on passe de la deuxieme a la troisieme ligne en multipliant par le facteur

11
21 3 Le principe de la méthode se base sur la proportionnalité de z et z+7%.

La fausse position simple a été utilisée tres longtemps. On la retrouve
notamment dans les textes arabes, dans le Liber abaci de Leonardo F1BO-
NACCI (XIII® siecle) et dans La summa de Luca PAcioLl (XV¢ siecle).
Notons que I'inconnue peut étre calculée a partir d’'un rapport interne du
tableau, comme c’est le cas ici, mais également a partir du rapport externe,
comme nous le verrons a la page 213.

Echos des classes Les éleves ont été stupéfaits d’apprendre que les méthodes de résolution
anciennes n’étaient pas « exactes ». Le fait qu’il fallait supposer une valeur
(qui avait toutes les chances d’étre fausse) pour la réponse afin de la cor-
riger ensuite leur parait une démarche beaucoup plus lourde que l'algebre
d’aujourd’hui.
Ils sont étonnés d’apprendre que les méthodes de résolution des équations
sont le fruit d’'une évolution, qu’on n’a pas toujours procédé comme ac-
tuellement.

IIs estiment qu’il faudrait plus souvent introduire les chapitres du cours de
mathématique par un peu d’histoire, pour mieux en percevoir la portée.

Prolongements Nous proposons en annexe a la page 471 les problemes 25 et 27 du papyrus
possibles Rhind, qui peuvent étre traités de la méme maniere.

2 La double fausse position chez les Arabes

De quoi s’agit-il ? Comprendre la méthode de double fausse position a partir d'un exemple
extrait d’un texte attribué au juif espagnol ABRAHAM IBN EzrA (Tolede,
vers 1089 — Rome, vers 1167).

Justifier la méthode en interprétant les différents éléments qui interviennent
dans la formule sur le graphique de la fonction linéaire liée au probléme.
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Enjeuz

De quoi a-t-on
besoin ¢

Chapitre 7. La linéarité a travers quelques siécles

Voir les enjeux de la section 1 a la page 204. Cette activité illustre en
outre le pouvoir éclairant des graphiques linéaires (voir la section 5.3 a la
page 581).

Le texte attribué & ABRAHAM IBN EZRA proposé ci-aprés et repris en
annexe a la page 473.

Prérequis. — La résolution des équations du premier degré et la repré-
sentation graphique des fonctions linéaires.

2.1 Introduction

Ying buzu (excédent et déficit), al-hata’ayn (Verreur), requla duarum fal-
sarum positionum, regola delle doi false positioni, regle des plateaur de la
balance. Ce sont la quelques appellations qui toutes, désignent un méme
procédé permettant de résoudre des problemes exprimables par des équa-
tions linéaires & une inconnue ou par des systemes linéaires a deux incon-
nues.

Cette fameuse regle des deux fausses positions était sans doute connue a
Baghdad a I’époque de I'algébriste AL-HUWARIZMI dans la premieére moi-
tié du neuvieme siecle. Nous l'illustrerons par un extrait d’un manuscrit
traduit de I’arabe en latin, intitulé Liber augmenti et diminutionis vocatus
numeratio divinationis ex eo quod sapientes Indi posuerunt quem Abraham
compilavit et secundum librum qui Indorum dictus est composuit, ¢’est-a-
dire le Livre sur l'agrandissement et la diminution nommé le calcul de la
conjecture d’apres ce que les sages de I’Inde ont établi et qu’Abraham a
rassemblé et composé selon le livre appelé indien.

L’auteur arabe de cet ouvrage est inconnu; certains historiens pensent
ou ont pensé qu’il pourrait s’agir ’ABU KAMIL SUGA IBN ASLAM IBN
MUHAMMAD AL-HASIB AL-MISRI, qui florissait vers les années 900. D’autres
attribuent le texte, ou du moins sa traduction en latin, au juif espagnol
ABRAHAM IBN EZRA. Le titre pourrait laisser croire que la paternité de
la regle revient aux savants indiens. Cependant la ressemblance de la ter-
minologie avec les expressions chinoises ying (excédent) et buzu (déficit)
donne a penser que cette regle, connue bien avant en Chine — voir a ce sujet
le chapitre sept du Jiuzhang Suanshu, titre généralement traduit par les
Neuf Chapitres sur I’Art du Calcul, qu’on peut dater d’un peu avant le dé-
but de notre ere —, ait pénétré dans la littérature arabe par un chemin qui
est passé par I'Inde ou par la « route de la soie ». Il faut en effet constater
que, dans les ouvrages mathématiques indiens connus a ce jour, qui sont
antérieurs au douzieme siecle, on ne trouve pas trace de cette regle.

Ce procédé de résolution d’équations linéaires se perpétue chez de nom-
breux auteurs arabes comme AL-KARAGI (mort vers 1025) et en Europe,
chez Leonardo Pisano FIBONACCI au treizieme siecle et chez Luca PACIOLI
au quinzieme.
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Le principe en est le suivant. On donne a 'inconnue deux valeurs « quel-
conques® » qui se révelent le plus souvent étre de fausses valeurs et, & partir
de 1a, il est possible de calculer la solution vraie. Trois cas évidemment se

présentent :

— Les deux fausses valeurs sont plus petites que I'inconnue.
— Les deux fausses valeurs sont plus grandes que 'inconnue.

— L’inconnue se situe entre les deux fausses valeurs.

Le texte qui suit illustre la résolution d’un probleme par la méthode de
double fausse position dans le cas ou l'inconnue se situe entre les deux
fausses valeurs.

2.2 Un probleme linéaire

Voici une traduction d’un extrait de 'ouvrage attribué & ABRAHAM IBN
EZRA. Le texte original en latin est disponible en annexe a la page 472.

Apres la louange a Dieu, voici ce qu’il est dit. J’ai écrit ce livre selon ce que les sages de 1'Inde
ont découvert a propos du calcul de la conjecture, en examinant attentivement et en étudiant ce
qui est utile en soi, en persévérant dans cette direction et en en saisissant 'application pratique.
De cela donc, voici ce qu’il vient : soit un census* duquel on dte un tiers et un quart et il reste
huit. Que vaut le census? Pour aborder son calcul, suppose un plateau de balance de douze
dont on considere un tiers et un quart ; tu otes ce tiers et ce quart qui font sept, il restera cing.
Compare alors a huit, a savoir le reste du census et il t’apparaitra clairement que tu as fait une
erreur de trois en déficit : mets cela de coté et suppose ensuite que tu places sur le plateau de la
balance une seconde quantité, qui est divisée par la premiere, que ce soit vingt-quatre, et ote le
tiers et le quart qui font quatorze, il restera dix. Compare alors cela a huit, a savoir le reste du
census. Et c’est ainsi qu’il t’apparaitra clairement que tu as commis une erreur de deux en plus.
Multiplie donc I'erreur du dernier plateau de la balance qui vaut deux par le premier plateau
qui vaut douze et il viendra 24. Et multiplie I’erreur du premier plateau, erreur qui vaut trois,
par le dernier plateau, qui vaut 24, et on obtiendra 72. Additionne donc 24 et 72, et cela car
I'une des erreurs est par défaut et 'autre par exces. Mais si les deux étaient par défaut ou par
exces, tu soustrairais la plus petite de la plus grande. Donc apres avoir ajouté vingt-quatre et
septante-deux, le résultat sera nonante-six; ensuite ajoute les deux erreurs qui valent trois et
deux, il viendra cinq; ensuite donc nonante-six par cing qui est ce a quoi on est arrivé, il te
viendra dix-neuf drachmes et un cinquieme de drachme.

Par cette regle, il s’ensuit que tu poses douze pour la chose inconnue et tu otes son tiers et son
quart et il restera cinq; comment récupérer douze ? La chose effectivement inconnue. Il faut en
fait deux et deux cinquieémes : multiplie donc deux et deux cinquiémes par huit et il viendra
dix-neuf et un cinquieme.

Remarquons tout d’abord que, méme s’il est question de census, ce pro-
bleme est en fait un probleme du premier degré. L’auteur nous explique la
reégle des plateaux de la balance (figure 2).

3 En fait, elles sont généralement « bien choisies » pour simplifier les calculs.
4 Terme désignant le carré de I'inconnue recherchée.
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Fig. 2

La premiere fausse position qu’il choisit est 12. C’est une valeur dont il est
facile de soustraire le tiers et le quart. On trouve 5, c’est-a~dire qu’il y a
un déficit de 3 par rapport a la valeur 8 qu’il faudrait obtenir. On place
ce 3 en-dessous du plateau de la balance qui contient la valeur 12, comme
le montre la figure 2. On recommence 'opération pour la seconde fausse
position, dont la valeur choisie est 24. Le résultat 10 présente un exces de
2 par rapport a la valeur attendue 8. Cette valeur 2 est placée au-dessus
du deuxieme plateau. Il faut ensuite effectuer 'opération suivante :

2x12+3x24 96

2+3 5
La traduction moderne du probleme nous donne I’équation
5 96
m—%—%zS ou 1—;=8 (*)  c’est-a-dire T=—

Nous constatons que la réponse obtenue par la méthode de fausse position
est bien celle que nous trouvons en résolvant 1’équation (*). Comment
pouvons-nous expliquer cela ?

Représentons graphiquement la fonction linéaire y = 1 qui correspond

au premier membre de ’équation (*). La valeur de cette fonction est
5 pour x =12,
10 pour z =24,

comme le montre la figure 3.

y
10 fmmmmmm ;
I
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I
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5T | |
LoXx12 !
I I I
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I I I
3 3 1
0 12 X 24 x
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Prolongement
possible

La valeur cherchée est celle, notée X, pour laquelle la fonction prend la
valeur 8. La figure montre deux triangles rectangles semblables, dont les
bases sont respectivement X — 12 et 24 — X, et dont les hauteurs sont 3
et 2. Les relations de proportionnalité entre les mesures des cotés de deux
figures semblables nous permettent d’écrire

X—-12 3

24 —-X 2

Résolvons cette équation sans effectuer les multiplications,
2-(X-12)=3-(24 -X),
2X —2x 12 =3 x 24 — 3X,

X +3X =2x1243x24 (34+2)X=2x12+3 x 24,

et finalement
X = 2x124+3x24

2+3

Nous retrouvons ainsi la formule de la double fausse position.

L’auteur tente de convaincre le lecteur de la généralité de sa méthode en
multipliant les exemples. 11 justifie a chaque fois le résultat obtenu en trai-
tant le probleme d’une autre maniere. Ainsi, dans le dernier paragraphe,
il termine son exposé en résolvant 1’équation par la méthode de fausse
position simple.

T T
La fausse position choisie est 12, ce qui donne 5 pour la valeur de x — 37T

Il se demande alors par combien il faut multiplier 5 pour retrouver 12; il
cherche donc le facteur qui permet de passer de la deuxieme colonne du
tableau ci-dessous a lzi premiere. Il trouve 2%, qu’il multiplie par 8 pour
trouver la solution 19—. Remarquons que comme dans le probleme 24 du

papyrus Rhind, 'ordre des facteurs est inversé.

T
T r——=——
3 4
12 5
1
19— 8
5
XQ%
-

Voici donc un exemple de fausse position simple ot I'inconnue est calculée
a partir du rapport externe du tableau de proportionnalité.

La regle peut étre appliquée aux problemes généraux du premier degré.
Soit ’équation
ar+b=y.

Considérons les deux fausses positions xq1 et xo qui produisent les deux
valeurs y; et yo.
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ax1+b =
ars+b = 1o
Ar = [y —y
Ay = [y2 —y

Echos des classes

Fig. 4

Dans la figure ci-dessus, qui illustre le cas ou la valeur cherchée est située
entre les deux fausses positions, nous avons

A=y —yl=y—y =alz—z1),
Ay =y —yl=y2 —y = a(x2 — x).
Al _Sﬂ—l’l

De I’expression de la proportion —
Ny 19—

, on peut tirer la valeur de
x qui vaut
. ngl + (IZlAQ
Ar+Ay

Ceci montre que la valeur de x obtenue par la regle de la balance peut
encore étre interprétée comme le barycentre des deux fausses positions xy
et x9, munies des poids Ay et Ay.

Un raisonnement similaire permet d’établir la formule dans les cas ou les
deux fausses positions sont, soit plus petites, soit plus grandes que I'incon-
nue. Nous obtenons

oA — 2109 2109 — 29y

A A, OV TT A A,

en tenant compte du fait que toutes les quantités qui interviennent dans le
calcul sont nécessairement positives (« Mais si les deux étaient par défaut
ou par exces, tu soustrairais la plus petite de la plus grande... », nous
indique ABRAHAM IBN EZRA).

Les éleves ont été surpris de voir que les problemes de mathématique pou-
vaient étre résolus en langage courant, par un texte dépourvu de formules,
mais que ¢’était « encore plus compliqué qu’avec des maths ». Apres avoir
constaté les difficultés et la lourdeur de ce mode d’expression, ils acceptent
mieux le formalisme actuel dont I'utilité leur parait plus évidente, et sur-
tout percgoivent que « ce n’est qu’'une question de convention ».
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3 Les combinaisons linéaires chez Léonard de Pise

De quoi s’agit-il ¢ Montrer comment Léonard de Pise, dit FIBONACCI résout un systeme li-

néaire indéterminé.

Enjeux Introduire et travailler la notion de combinaison linéaire. Celle-ci est une
généralisation du rapport interne (voir la section 7.3 a la page 589).

De quoi a-t-on Le texte du probleme des oiseaux ci-dessous, repris en annexe a la page

besoin ¢ 475.

¥, M&oﬁ&ﬁ?‘ig‘ir ““'e-u?aﬁ‘c.'rqwlwn 8:‘“3:121; aucg—fo

3.1 Introduction

On possede peu de renseignements sur Léonard de Pise, autres que ceux
qu’il nous livre dans le prologue du Liber abaci : son pere était publicus
scriba, scribe pour les commercants de Pise, a la douane de Bougie, en
Algérie. Il fit venir aupres de lui le jeune Léonard afin de lui faire ap-
prendre au contact des Arabes, les méthodes de calcul au moyen de figures
indiennes (ce que nous appelons « chiffres arabes »). Plus tard, FIBONACCI
parcourra tout le bassin méditerranéen (Egypte, Syrie, Grece, Sicile, Pro-
vence) pour étancher sa soif de savoir. Il a contribué a répandre en Occident
larithmétique basée sur la numération de position (chiffres indo-arabes).

Dans le chapitre onze du Liber abaci, FIBONACCI introduit la notion de
« compensation » des monnaies; ce sont des probléemes de proportion-
nalité qui montrent comment calculer le nombre de livres-monnaie qu’on
peut battre a partir d’un certain nombre de livres-poids d’argent, lorsqu’on
se fixe un taux d’argent dans l'alliage de la livre-monnaie. La technique
de résolution qu’il expose a cette occasion lui permet, plus loin dans le
chapitre, de résoudre des équations diophantiennes (dans ’ensemble des
fractions positives) indéterminées. Voici le texte d’un de ces problemes ou
I’auteur utilise des combinaisons linéaires pour rechercher des solutions.
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3.2 Le probleme des oiseaux

De homine qui emit aves triginta trium generum pro denariis 30

Le texte original en latin est disponible en annexe a la page 474. En voici
la traduction.

De I'homme qui a acheté trente oiseaux de trois espéces pour 30 deniers

Quelqu’un a acheté 30 oiseaux pour 30 deniers, parmi lesquels il y a des perdrix, des colombes et
des moineaux. En fait, il a acheté les perdrix pour 3 deniers, les colombes pour 2 et 2 moineaux
pour 1 denier, a savoir 1 moineau pour % denier. On demande combien d’oiseaux de chaque
espece il a achetés. Divise 30 deniers par 30 oiseaux, il viendra 1 denier. Je dis donc que j’ai de
I’argent-monnaie a % et a 2 et a3; et je veux faire de 'argent-monnaie a 1. En effet, dans de
semblables questions, nous devons procéder par la méthode des compensations, puisque nous
avons un nombre entier d’oiseaux. C’est pourquoi, pour que ’espece des oiseaux les moins chers
soit compensée en nombre par les especes plus cheres, tu dois dire : j’ai de I’argent-monnaie a %
et & 2 et a 3 et je veux faire de I'argent-monnaie a 1, c’est-a-dire j’ai de I’argent-monnaie a 1 et
a4 etab et je veux faire de 'argent-monnaie a 2. Fais des moineaux et perdrix une premiere
compensation et il y aura 5 oiseaux pour 5 deniers, a savoir 4 moineaux et 1 perdrix; et, des
moineaux avec les colombes, fais-en une seconde ; et tu auras 3 oiseaux pour 3 deniers, a savoir
2 moineaux et 1 colombe. Ensuite, pour avoir 30 oiseaux compensés, tu prendras trois fois la
premiere compensation dans laquelle il y aura 12 moineaux et 3 perdrix. Et il restera 15 oiseaux
compensés, pour lesquels tu prendras cing fois la seconde compensation et tu auras 10 moineaux
et 5 colombes. Et ainsi, en ce qui concerne les 30 oiseaux dont il a été question auparavant, il y
aura 22 moineaux et 5 colombes et 3 perdrix, comme il est montré en marge. Et tu dois savoir
que, de ce qui est suscrit, tu peux avoir autant d’oiseaux qu’on voudra pour la méme quantité
de deniers au-dela de 15, mais en deca, ce n’est pas possible, si ce n’est pour 13 et 11 et 8. En
vérité, dans le cas des 13 oiseaux, la premieére compensation apparaitra deux fois et la seconde,
une fois. Et pour 11 oiseaux, la seconde compensation apparaitra deux fois et la premiere, une

fois. Et pour 8 oiseaux, chacune des compensations apparaitra une fois.
Le systeme linéaire qui traduit ce probleme est

33:—1—2y+§ — 30,
r+y+z = 30.

FiBoNAcCcCI observe tout d’abord que, pour acheter 30 oiseaux pour 30
deniers, il faut constituer des ensembles de n oiseaux pour n deniers de
maniere que [’espéce des oiseaur les moins chers soit compensée en nombre
par les espéces plus chéres. Réaliser une telle égalité avec trois especes
d’oiseaux semble difficile; une maniere de simplifier le probleme consiste
a rechercher des combinaisons de deux especes d’oiseaux dans la méme
proportion.

FiBoNACCI observe que
1
1x3 -+ 4 x 5 = 5,

ce qui lui fournit un ensemble de cing oiseaux (une perdrix et quatre
moineaux) pour cing deniers (ensemble E; du tableau ci-dessous).
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I1 observe encore que

1
1><2+2><§:3,

ce qui lui donne cette fois un ensemble de trois oiseaux (une colombe et
deux moineaux) pour trois deniers (ensemble Fy du tableau ci-dessous).

En considérant une combinaison linéaire convenable des deux relations
qui précedent, il obtiendra alors trente oiseaux pour trente deniers. Cette
combinaison linéaire consiste a prendre trois fois le premier ensemble de
volatiles et cing fois le second (E = 3E; + 5E»).

perdrix colombes moineaux nombre cotut
a 3 deniers | a 2 deniers a 1/2 denier d’oiseaux
Ey 1 4 14+4=5 1x3+4x3=5
E, 1 2 14+2=3 Ix2+2x3=3
B 3 5 3x4+5x2=22 | 3+5+22=30 | 3x3+5x2+22x 1 =30

L’ensemble E = 31 +5Fs fournit bien une solution du probléme, puisqu’il
s’agit d’un ensemble de 30 oiseaux, de trois especes différentes pour une
somme de 30 deniers.

L’auteur termine en nous signalant qu’il est possible de trouver des com-
binaisons linéaires qui réalisent des ensembles de n’importe quel nombre n
d’oiseaux pour n deniers, si n est supérieur a 15. Mais pour n inférieur a
15, il affirme que le probleme n’est possible que pour 8, 11 et 13 oiseaux,
et il décrit la combinaison qui fournit la solution dans chacun des cas.

Montrer qu’il y a une solution pour toute valeur de n supérieure a 15.
FIBONACCI n’a-t-il pas oublié une possibilité pour n inférieur a 157

On peut obtenir
16 oiseaux pour 16 deniers par la combinaison 2FE] + 2F5,
17 oiseaux pour 17 deniers par la combinaison 1E] + 4F5,
18 oiseaux pour 18 deniers par la combinaison 3F; + 1FEs,

et a partir de 1a, on obtient 19, 20 et 21 oiseaux en ajoutant 1FE5 a chacune
des combinaisons précédentes, et ainsi de suite.

On peut aussi obtenir 14 oiseaux pour 14 deniers par la combinaison 1F7 +
3FE5.



INTRODUCTION AU CALCUL VECTORIEL

De quoi s’agit-il ¢

Enjeux

Avant-propos

Au fil de leur parcours scolaire, les éleves ont calculé, d’abord avec des
nombres, ensuite avec des lettres qui représentent des nombres. Afin de les
motiver, on leur annonce qu’on va leur faire découvrir quelque chose de
nouveau sur le plan du calcul. Ce nouveau mode de calcul permettra de
traduire des problemes géométriques sous forme algébrique. En troisieme
année, les éleves ont déja vu qu’ils peuvent associer une équation a toute
droite du plan. Ils ont vu l'intérét de cette association et peuvent com-
prendre qu’un outil algébrique performant peut étre utile pour faire de la
géométrie plus évoluée.

L’introduction au calcul vectoriel est concue de maniere tres intuitive a
la section 1. Cependant, apres ce démarrage en douceur, les problemes

résolus a la section 2 exploitent de maniere tres profonde le concept de
combinaison linéaire.

Le lecteur intéressé par I’émergence du concept de vecteur et les débuts
du calcul vectoriel trouvera au chapitre 14 une breve anthologie de sources
historiques commentées.

1 Vers un nouveau mode de calcul

Montrer des objets mathématiques sur lesquels agissent ’addition vecto-
rielle et la multiplication par un scalaire : les vecteurs déplacements dans
le plan et dans I’espace, les polynomes et les suites arithmétiques.

Faire apparaitre une structure commune et dégager la notion d’espace vec-
toriel. On trouvera, a la section 7 du chapitre 16, des commentaires qui
permettent de situer les vecteurs et les combinaisons linéaires dans le dé-
veloppement global de I'idée de linéarité de la maternelle jusqu’a dix-huit
ans. Sur 'usage essentiel fait ci-dessous du plan quadrillé, voir au méme
chapitre la section 7.6.

Matiéres couvertes

Vecteurs : composantes, somme, produit par un nombre, relation de Chasles,
propriétés du calcul vectoriel, combinaisons linéaires.
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De quoi a-t-on
besoin ¢

Compétences

Décomposer un vecteur suivant deux directions et lui associer un couple
de nombres.

Construire la somme de vecteurs et lui associer un couple de nombres.

Utiliser le théoréme de Thalés pour construire le produit d’un vecteur par
un nombre et lui associer un couple de nombres.

Un plan de Manhattan, ou de I’Ensanche a Barcelone, ou de tout autre
quartier dont les rues forment un quadrillage régulier.

Des feuilles A4 recouvertes d’un quadrillage de 1 cm de c¢6té, d’autres
recouvertes d’'un réseau de parallélogrammes, d’autres encore d’un réseau
de triangles. D’autres feuilles encore, ou certains points sont marqués sur
le quadrillage. Ce matériel peut étre obtenu par photocopie des documents
fournis en annexe aux pages 477 a 485 et reproduits en petit dans les figures
1a 14.

Fig. 1 : quadrillage Fig. 2 : réseau de parallélogrammes

Fig. 3 : réseau de triangles
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Comment s’y
prendre ¢

Chapitre 8. Introduction au calcul vectoriel

1.1 Opérations sur les nombres réels

Avant d’introduire ce nouveau mode de calcul portant sur des éléments
géométriques, le professeur peut commencer par faire un état des lieux des
connaissances des éleves concernant les regles du calcul sur les nombres.
Les éleves connaissent les regles de calcul et les propriétés de ’addition et
de la soustraction, de la multiplication et de la division des nombres réels,
mais ne sont pas forcément capables de leur donner un nom. Ils connaissent
le role du « zéro » pour ’addition et du « un » pour la multiplication, mais
n’ont peut-étre pas la notion de « neutre ». Il peut étre intéressant de
commencer ’activité par une mise en ordre des propriétés de 'addition
et de la multiplication des réels; la synthese qui interviendra a la fin de
I'activité prendra plus de sens et plus de force si elle s’appuie sur une
comparaison avec les propriétés du calcul sur les nombres.

Le relevé de ces propriétés prend la forme d’une premiere étape de forma-
lisation et d’une mise en place du vocabulaire adéquat.

Les propriétés de l’addition des nombres réels

1. La somme de deux nombres réels existe toujours et est un nombre
réel.

2. La somme des réels est associative, cela signifie que, si on souhaite
additionner trois réels, on peut les associer de manieres différentes
sans changer le résultat

(a+b)+c=a+ (b+c).

3. Le nombre 0 est neutre pour I'addition, cela signifie que si on I'ajoute
a n’importe quel nombre réel (ou si on lui ajoute n’importe quel
nombre), le résultat de la somme est ce nombre lui-méme

a+0=a=0+a.

4. Chaque réel a possede un opposé noté —a, c’est le nombre qu’il faut
lui ajouter pour obtenir le neutre 0

a+(—a)=0=(—a)+a.

5. La somme des réels est commutative, ce qui signifie que dans une
somme, on peut changer 'ordre des termes

at+b=b+a.

Ces cinq propriétés peuvent étre résumées en disant que I’ensemble des
nombres réels, noté R, est un groupe commutatif pour 'addition.

Parmi les propriétés évoquées ci-dessus, quelles sont celles que possede
la soustraction des nombres réels ?

La soustraction n’est ni associative ni commutative. L’existence d’un neutre
souleve un probleme plus subtil. Les éleves observent que

a—0=a mais que 0—a # a.
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Le nombre 0 est donc neutre pour la soustraction lorsqu’il est placé a droite
de a, mais pas lorsqu’il est placé a gauche. Ceci ne peut se produire que
pour une opération non commutative, ce qui est le cas de la soustraction.
Tandis que dans l'addition (ou toute autre opération commutative), le
neutre a droite est forcément aussi neutre a gauche.

Tout ceci montre bien que I'addition fonctionne, en un certain sens, mieux
que la soustraction et ¢’est pourquoi la soustraction d’un nombre peut étre
redéfinie comme 'addition de son opposé

a—b=a+(-b).

Les propriétés de la multiplication

1. Le produit de deux nombres réels existe toujours et est un nombre
réel.

2. Le produit des réels est associatif, cela signifie que, si on souhaite
multiplier trois réels, on peut les associer de manieres différentes
sans changer le résultat

(a-b)-c=a-(b-c).

3. Le nombre 1 est neutre pour la multiplication, cela signifie que si on
multiplie n’importe quel nombre réel par 1 (ou si on multiplie 1 par
ce nombre), le résultat du produit est ce nombre lui-méme

a-l=a=1-a.

1
4. Chaque réel a # 0 possede un inverse noté —, c’est le nombre par

a
lequel il faut le multiplier pour obtenir le neutre 1

a-—=1=--a.
a a

5. Le produit des réels est commutatif, ce qui signifie que dans un pro-
duit, on peut changer 'ordre des facteurs

a-b=>-a.

Ces cinq propriétés peuvent étre résumées en disant que ’ensemble des
nombres réels non nuls, noté Ry, est un groupe commutatif pour la multi-
plication.

Parmi les propriétés évoquées ci-dessus, quelles sont celles que possede
la division des nombres réels ?

Tout comme la soustraction des nombres réels, la division n’est ni associa-
tive, ni commutative. Le neutre 1 est neutre a droite mais pas a gauche.

! Le quotient de deux nombres réels n’est pas toujours un réel. Il faut enlever 0 pour
que la division soit une opération interne. Les propriétés de la multiplication décrites
ici restent vraies dans l’ensemble des réels non nuls, y compris la premiere, puisque le
produit de deux réels ne peut étre nul que si 'un des facteurs est nul.
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Chapitre 8. Introduction au calcul vectoriel

Comme pour la soustraction, on peut remplacer la division par un nombre
par la multiplication par son inverse

Le professeur qui le souhaite peut formaliser davantage 1’énoncé de ces
propriétés en introduisant les quantificateurs V et 3, qui peuvent étre percus
dans ce contexte comme des abréviations utiles. Il faudra cependant éviter
de rebuter les éleves par une formalisation exagérée, tout dépend de la
classe que 'on a devant soi. Il convient de garder a l’esprit que le but
premier de cette activité n’est pas d’arriver a une définition axiomatique
d’un espace vectoriel, mais bien d’en donner une approche intuitive et de
dégager les propriétés du calcul vectoriel pour les mettre en ceuvre par la
suite.

Cette mise au point concernant les opérations sur les nombres réels s’est
imposée d’elle-méme des qu’on a voulu comparer les propriétés du calcul
sur les déplacements (ou sur les couples de composantes) aux propriétés
du calcul dans R.

1.2 Déplacements dans un plan

Ces mises au point étant faites, plus ou moins rapidement suivant les
connaissances de la classe, le professeur annonce clairement la mise en
place d’'un nouveau mode de calcul, sur des objets géométriques, avec des
opérations d’addition et de multiplication qu’il faudra comparer, du point
de vue de leurs propriétés, avec les opérations bien connues sur les nombres.

Le début de cette activité reprend des idées assez simples, qui sont sans
doute familieres aux éleves depuis le premier degré. Une approche similaire
leur a probablement été proposée lors de I'introduction des reperes et des
coordonnées. Méme si la description du début de cette activité semble
longue, le travail initial sur le quadrillage ne devrait donc pas prendre
beaucoup de temps; il est néanmoins nécessaire pour préparer la suite.

On montre aux éleves un plan de Manhattan (ou de Barcelone) et on leur
pose les questions suivantes.

Comment indiquer le chemin qui meéne d’un point quelconque de cette
ville & un autre?

Ce chemin est-il unique ?

Y a-t-il plusieurs chemins de méme longueur ?

Y a-t-il des chemins plus courts que les autres ?

Apres une premiere discussion, on fournit a chaque éleve une feuille munie
d’un quadrillage sur lequel sont marqués quatre points A, B, C et D, les
mémes pour tous les éleves (figure 4).
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On leur demande de dessiner différents chemins qui menent
de A a B sur le quadrillage, sans contrainte de longueur, et
de trouver ensuite une maniere de décrire ces chemins a leurs
condisciples. Ils vont probablement imaginer un codage du type
droite, gauche, haut, bas ou encore nord, sud, est, ouest.

C La plupart d’entre eux décriront leur chemin de I'une de ces
fagons

e 7 a droite, 6 en haut,

e 2 a droite, 2 en haut, 3 a droite, 4 en haut, 2 a droite,

e 5 a droite, 2 en haut, 2 a droite, 4 en haut,

L que nous noterons

e 7d,6h,

e 2d,2h,3d,4h, 2d,
e 5d,2h,2d,4h.

Tous ces chemins sont de méme longueur, mais il apparait
Fig. 4 : 4 points sur un quadrillage  Dien vite que les messages longs et compliqués sont susceptibles
d’étre mal compris et entrainent des erreurs.

La contrainte supplémentaire de simplifier les indications au maximum
s’impose alors d’elle-méme. Ainsi, en regroupant les déplacements? vers la
droite et vers le haut, on obtient pour tous ces chemins : 7d, 6h ou 6h, 7d.
Dans ce codage, I'ordre dans lequel on note les déplacements horizontaux
et verticaux n’a pas d’importance.

Certains éleves auront dessiné un chemin plus long, comme par exemple
1h,1g,2h,6d, 1h,2d,2h, ce qui donne apres regroupement des déplace-
ments dans le méme sens 8d, 1g, 6h.

Le message peut encore étre réduit en observant que le déplacement de 1
vers la droite est compensé par le déplacement de 1 vers la gauche, ainsi
on obtient également 7d, 6h.

Tous les chemins de A & B peuvent donc s’écrire 7d, 6h apres regroupement
des déplacements dans une méme direction et en soustrayant ceux qui vont
en sens contraires. Notons AB le déplacement de A a B obtenu apres cette
réduction. De la méme maniere, le déplacement AC pourra s’écrire 4g, 3h
et AD, 1g,6b. D’autres déplacements comme BC' ou C'D peuvent étre
examinés si nécessaire. Inversement, les éléves constateront qu’il leur est
toujours possible de placer sans ambiguité le point P tel que AP s’écrit
2d, 8b.

Une activité similaire est alors proposée sur une feuille munie d’un réseau
de parallélogrammes (figure 5).

2 Dans ce contexte, le mot déplacement utilisé tout d’abord dans un sens naif, sera
précisé peu a peu au cours de 'activité.
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Fig. 5 : 4 points sur un réseau de parallélogrammes Fig. 6 : codage

Les symboles de codage d, g, h, b ne conviendront sans doute plus pour dé-
crire les chemins sur cette figure. Les éleves ne manqueront pas de suggérer
un codage adéquat. Pour la suite de cette discussion, nous adopterons le
codage illustré par la figure 6, par analogie avec les plans des villes.

Les déplacements AB, AC et AD s’écrivent alors

e AB :2E, 6N,
o AC : 6W, 2N,
e AD : 3E, 6S;

et le point E tel que BE s’écrit 5W, 4S peut étre placé sans ambiguité.

On peut alors s’interroger sur la nécessité de disposer de quatre symboles
de codage puisqu’il n’y a en fait que deux directions, et sur chacune d’entre
elles deux sens. Les éleves, qui ont déja manipulé des repéres auparavant,
proposeront par exemple de garder d et h pour le quadrillage (E et N pour le
réseau de parallélogrammes) et de compter négativement les déplacements
vers la gauche et vers le bas (vers 'ouest et le sud). Ceci revient a orienter
chacune des deux directions privilégiées sur ces grilles. Dans cette nouvelle
optique, on écrira —3d, 5h au lieu de 3¢g,5h et —5d, —8h au lieu de 5g, 8b.
C’est donc bien l'introduction des nombres négatifs qui nous permet de
réduire & deux le nombre des symboles de codage. Ainsi, tout déplacement
sur une de ces grilles pourra étre représenté par une expression du type
ad, Bh ou Bh,ad, ou «a et § sont des nombres entiers, positifs ou négatifs.

Est-il possible de simplifier encore le codage pour ne garder que les deux
nombres ?

Le professeur amenera les éleves a la conclusion qu’il faut convenir d’'un
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ordre pour énoncer ces nombres. Par exemple, si le premier nombre re-
présente le déplacement sur la direction gauche-droite, et le deuxieme, le
déplacement sur la direction bas-haut, il n’y aura plus d’ambiguité.

Ainsi, sur le quadrillage,

e 7d,4h est noté ( 471 > ;
, (=3
e 3g,5h est noté < 5 ) ;

e 5¢,8b est noté < :2 )

I1 convient d’insister sur I'importance de la convention a propos de la dis-
position des nombres. En effet, s’il est indifférent d’écrire 7d, 4h ou 4h,7d

pour désigner univoquement le déplacement AB, le couple < Z > repré-

sente le déplacement 7d,4h, c’est-a-dire AB, tandis que le couple < Z; >
représente le déplacement 4d, Th, différent de AB.

Nous avons choisi de disposer les couples sous forme de colonnes pour
préparer le vecteur colonne du calcul matriciel et pour éviter la confusion
avec les couples de coordonnées (le lien sera explicité plus tard). De plus,
les différentes opérations sur les couples, qui se font terme a terme, se
voient mieux dans cette disposition ou les termes correspondants sont sur
une méme ligne.

Dans les deux cas qui viennent d’étre examinés, il apparait que deux direc-
tions suffisent pour décrire un déplacement quelconque sur le réseau. Les
éleves regoivent alors une feuille munie d’un réseau triangulaire et on leur
demande de décrire les déplacements de A & B et de A a C (figure 7).

Peut-on encore décrire ces déplacements au moyen de deux symboles ?

i

Fig. 8 : orientation
Fig. 7 : 3 points sur un réseau triangulaire des 3 directions

Trois directions privilégiées, que nous noterons 1, j, k, se dégagent sur le
réseau de triangles. Munissons chacune d’une orientation : de gauche a
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droite pour la direction ¢, de bas en haut pour les directions j et k,
comme le montre la figure 8. Pour décrire le déplacement AB, les éleves
proposeront spontanément 2i,45 qui semble le plus naturel, tandis que
pour AC, ils pourraient proposer 1i,3k, ou 17,2k, ou encore —2i, 35, ou
méme —14, 27, 1k. Il apparait néanmoins que deux symboles suffisent encore
pour décrire les déplacements sur le réseau triangulaire ; une facon de s’en
convaincre est de remarquer que, si on supprime une des trois directions,
on ne modifie pas les nceuds du réseau. Cependant, il n’y a plus unicité
de I'écriture puisque les éleves proposent différentes solutions, suivant les
deux directions qu’ils ont choisies parmi les trois directions du réseau. Il
est cependant possible de passer d’une écriture a une autre si on remarque
que

e 17,1k peut remplacer 15 ;
e 15, —1k peut remplacer 17 ;
e —14,17 peut remplacer 1k.

On demande aux éleves de le vérifier sur les différentes formes proposées

pour AC.

Peut-on écrire AB en utilisant seulement i, k ou 7, k?

AB peut s’écrire 61,4k ou 65, —2k. Les déplacements sur le réseau trian-
gulaire peuvent donc également s’exprimer au moyen de deux directions,
mais il faudra faire un choix parmi 4, j, k. Ils pourront donc étre représentés
par des couples de différentes manieres.

e Pour le choix des directions ¢, 7, dans cet ordre,

2
— ADB sera représenté par le couple < 4 ) ;
. . -2
— AC sera représenté par le couple 5 )i

—4
— BC sera représenté par le couple ( 1 )
e Pour le choix des directions 7, k, dans cet ordre,

— AB sera représenté par le couple ( 2 ) ;
. . 1
— AC sera représenté par le couple 3 )i

— BC sera représenté par le couple ( :L;) )
e Pour le choix des directions j, k, dans cet ordre,

— AB sera représenté par le couple < _g ) ;
. . 1
— AC sera représenté par le couple 5 )

— BC sera représenté par le couple ( _Z )
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On peut a nouveau conclure que deux directions suffisent pour décrire
tous les déplacements, mais que les couples associés a chaque déplacement
dépendent du choix des deux directions. Cependant, des que deux direc-
tions orientées ont été choisies dans un ordre déterminé, le couple associé
a chaque déplacement est unique.

Le travail sur le quadrillage et le réseau de parallélogrammes se fait rapide-
ment. Les éleves sont plongés dans le contexte familier du repérage dans le
plan. Ils congoivent facilement que deux nombres suffisent pour décrire un
déplacement et qu’il est nécessaire d’adopter une convention pour 'ordre
de ces deux nombres.

Le travail sur le réseau triangulaire prend plus de temps (une période de
cours) mais permet de faire progresser considérablement toute une série
d’intuitions concernant 1’expression des vecteurs dans une base.

Meéme si on ne prononce pas des expressions comme dépendance linéaire,
indépendance linéaire, famille libre, famille génératrice, les éléves percoivent
intuitivement que, des qu’on se donne deux déplacements de directions dif-
férentes, ils engendrent tous les déplacements du plan. De plus, 'activité
montre clairement que les deux déplacements « de base » déterminent uni-
voquement les composantes des déplacements, mais que ces composantes
sont différentes chaque fois que I’on change de base. Les éléves comprennent
aussi qu’il est possible de calculer les composantes des déplacements dans
une nouvelle base dés qu’on connait les composantes des déplacements
dans 'ancienne et les composantes des déplacements de ’ancienne base
dans la nouvelle (c’est ce que 'on fait quand on remarque que 14, 1k peut
remplacer 15, par exemple).

1.3 Opérations sur les déplacements

Pour définir les opérations sur les déplacements, revenons dans le plan
muni d’'un quadrillage et de quatre points comme dans la figure 9.

Fig. 9 : Addition de déplacements.
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Addition de déplacements

Premier cas : l'origine du second déplacement coincide avec l'extrémité
du premier.

Si apres le déplacement AB noté < Z ), on effectue le déplacement BC

, ( —10 . . (18
noté 1 >, on s’est déplacé de A en C. On demande aux éleves de
décrire le déplacement AC. Deux modes de pensée peuvent guider leur

réflexion.

Certains d’entre eux penseront a regarder AC sur le dessin et diront que

AC' se note < B ) On leur pose alors la question suivante.

5

Une relation existe-t-elle entre les trois couples de nombres, et si oui,
laquelle 7

Les éleves constatent facilement que
—3=T7+(-10) et 5=4+1.

Cette observation nous incite a parler d’addition de déplacements. Cette
opération sera notée
AB+ BC = AC

et pour les couples correspondants

7 —10 -3
(0)-()-(3)
D’autres penseront a réinterpréter les couples en termes de déplacements
horizontaux et verticaux. En effectuant BC' apres AB, le déplacement ob-

tenu est 7 a droite suivi de 10 a gauche, et 4 vers le haut suivi de 1 vers
le haut. Ils concluront que le résultat est donc 3 a gauche et 5 en haut, ce

. -3 f . .
qui correspond au couple 5 ) L’opération qu’ils font spontanément
—10

1

naturel d’interpréter cette opération comme une somme et on écrira
7 n -10\ ([ -3
4 1) 5 )

-3 . . .
5 > est bien le couple qui repré-

est 'addition terme a terme des couples ( Z > et ( > Il est donc

Apres avoir vérifié sur le dessin que <

sente AC' on écrit aussi
AB + BC = AC.

Cette relation est connue sous le nom de « relation de Chasles ».

Si aprés AB, on effectue le déplacement en sens contraire BA, on constate
que
AB + BA = AA.
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. AN =7 o
Le dessin montre que le couple associé & BA est < 4 ), I’écriture en

termes de couples de la relation précédente est alors

7 n -7\ _ (0

4 -4 ) \0)°
On définit ainsi le déplacement nul, qui consiste a rester sur place, et BA
comme le déplacement opposé de AB, ce qui permet d’écrire

paap o (7)=—(1).

Ceci nous permet d’établir le lien entre 1'addition et la soustraction des
déplacements.

On exploite ces résultats pour répondre a la question ci-dessous.

Connaissant C'D noté

) )
13 > et C'A noté (
cement AD tel que CA+AD =CD?

_g >, quel est le dépla-

Des éleves cherchent le couple qui, additionné a < _g ), donne ( __13 >’

et trouvent < =5 ) pour AD. Ils écriront

-8

cavan-coa (2o 2)-( ).

D’autres penseront a utiliser la relation de Chasles et écriront

AD=AC+CD ou AD=-CA+CD,

et pour les couples correspondants

(=2)=(75) (=)
(=)=-(3) (=)

Deuzxieme cas : lorigine du second déplacement ne coincide pas avec
Iextrémité du premier.

Dans un premier temps, on demande aux éleves de dessiner un déplace-

ment quelconque, par exemple le déplacement , sur un quadrillage

5
—4
vierge. Ils le placeront évidemment en des endroits différents de la feuille.
Ce déplacement, noté AB, peut étre visualisé en tracant le segment qui

joint son origine A a son extrémité B. Le couple < 4 > détermine la

direction du déplacement, son sens et sa longueur, mais ne donne aucune
indication sur ’endroit ou il faut le dessiner sur la feuille.
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Fig. 10

Une discussion au sein de la classe amene a la conclusion que tous les
dessins sont corrects, qu’ils représentent tous le méme déplacement, ou
des déplacements égauzx. 11 apparait donc qu'un méme déplacement peut
étre dessiné en une infinité d’endroits dans le plan et qu’on pourra choisir
parmi toutes ces possibilités celle qui convient le mieux a chaque situation.
Les éleves évoqueront peut-étre ’analogie avec les translations.

Ceci va permettre de définir 'addition de déplacements méme si 'origine
du second déplacement ne coincide pas avec I'extrémité du premier sur le
dessin. Il suffira de dessiner une autre représentation du deuxieme dépla-
cement. Ainsi pour définir AB + CD, on effectue le déplacement AB, puis
le déplacement égal a C'D, dont l'origine est en B et 'extrémité en £. On
peut encore dire que BE est la représentation du déplacement C' D, dont
l'origine coincide avec 'extrémité de AB. Les éleves sont invités a placer
le point E sur le quadrillage (voir figure 12 a la page 232). On écrira

AB+CD = AB+ BE = AE.

On constate que AE s’écrit < _g5) ) et que

() ()=(5)

On pourrait aussi dessiner une autre représentation de AB, dont I'extré-
mité coincide avec C', mais, dans ce cas, le dessin sort du cadre de la feuille.
On peut encore imaginer de remplacer AB et C'D par des déplacements
A'B' et B'E’, tels que A’B’ = AB et B'E’ = CD. Les déplacements A’B’
et B'E’ sont ainsi placés dans les conditions d’application de la relation
de Chasles et leur somme est le déplacement A’E’. On invite les éléves a
réaliser cette construction en choisissant pour B’ un nceud du quadrillage
tel que le dessin soit entierement contenu dans le cadre. La comparaison
du déplacement AFE et des différentes représentations de A’E’ montre bien
que les sommes obtenues sont égales; le couple de nombres est toujours

< _g ) pour tous les déplacements A'E’.

Multiplication de déplacements par un nombre

Quel est le déplacement C'L qui, en partant de C', meéne deux fois plus loin
que C'A dans la méme direction et le méme sens® ?

3 Pour multiplier un vecteur par deux, différents modes de pensée coexistent dans les
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-
Y

10 A

Fig. 11 : Construction de CL

Apres avoir placé L et observé la configuration de Thales de la figure 11,

. 6
on constate que C'L correspond & < > Il est donc naturel d’adopter

—10

la convention d’écriture

6 3
crosona (82 1),

6 -3
ceaca (8)-2( 1),

1 3\ 1 6
CA=CL et <_5>—§<_10>,

-1 -3 -1 6
so-Fora ()2 (0.

Ces nombres, par lesquels on multiplie les déplacements (et les couples)
sont appelés scalaires® pour les distinguer des nombres qui composent les
couples représentant les déplacements.

ainsi que

ou encore

On peut se demander ou se trouve le point IV tel que

1 1
CN = §CA correspondant au couple 3 ( _g ) .

Le point N n’est plus un noeud du quadrillage. De par leur définition, les
déplacements CN et C'L, multiples de C'A, ont la méme direction que C'A,

esprits : ajouter le vecteur a lui-méme, aller deux fois plus loin dans la méme direction
et le méme sens ou doubler chaque composante.

4 Cest & W. R. HAMILTON que nous devons I’introduction des vocables vecteurs et
scalaires, dans ses Elements of Quaternions [1866]. Les scalaires sont des nombres qui
permettent la comparaison de wvecteurs qui sont sur un méme axe, axe qu’HAMILTON
appelait échelle (en anglais scale).
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ce qui implique ’alignement des points A, C'; N et L. Par contre, le point
FE, qui, dans un premier temps, semblait aligné avec A et C' ne peut I'étre
car AF n’est pas un multiple de C'A. En effet, il n’existe aucune valeur de

A telle que
5 3
(5)=2(3)

Ces observations sont illustrées par la figure 12.

Fig. 12 : Opérations sur les déplacements

La multiplication du déplacement C'A par le scalaire % nous a permis

d’atteindre le point N qui n’est plus un noeud du quadrillage.

Comment, a partir d’'un nceud du quadrillage, atteindre d’autres points
qui ne sont pas des nocuds ?

Les éleves associeront sans doute la multiplication par un scalaire non
entier au fait d’atteindre, a partir d’'un nceud du quadrillage, un point qui
ne l'est pas.

Les deux opérations de somme et de multiplication par un scalaire peuvent
étre combinées pour produire une somme de multiples de deux ou plu-
sieurs déplacements. Par exemple, on peut définir le déplacement AX de
la manieére suivante : AX = %AB + iAC. Les éleves sont invités a le
construire. On dit que le déplacement AX est une combinaison linéaire
des déplacements AB et AC, les scalaires % et i sont les coefficients de
cette combinaison linéaire.

La multiplication par un scalaire nous a amenés a considérer des dépla-
cements dont le point d’arrivée est un point quelconque du plan. Il faut
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donc étendre les opérations a des déplacements dont les extrémités ne sont
plus des nceuds du réseau. On percoit clairement que le point de départ et
le point d’arrivée suffisent pour déterminer un déplacement. Dorénavant,
nous représenterons toujours celui-ci par un segment de droite joignant le
point de départ au point d’arrivée (comme dans les figures 10 a 12). Ce
segment est orienté du point de départ vers le point d’arrivée, orientation
qui transparait d’ailleurs dans 1’écriture du déplacement, AB étant le dé-
placement qui va de A vers B et BA son opposé de B vers A. Nous pouvons
étendre de maniere naturelle les opérations définies sur les déplacements
liés au quadrillage a tous les déplacements du plan.

Cependant, pour exprimer chacun des déplacements au moyen d’un couple
de nombres comme nous avons pu le faire jusqu’a présent, il faudra choisir
deux directions, munies chacune d’un sens et d’une unité. Notons 7 et j
les déplacements unitaires, dans le sens positif, dans chacune de ces deux
directions. Si nous pouvons exprimer tout déplacement du plan comme
combinaison linéaire de ces deux déplacements « de base », alors, dans
Iexpression AB = \i + uj, les coefficients A et p déterminent le couple

( B > associé a ce déplacement. En effet, les couples associés aux dépla-

0

oL 1
cements élémentaires 7 et j sont ( 0 > et < 1

>, et I’écriture sous forme
. . . . 1 0 ,
de couples de la combinaison linéaire i+ pj est A 0 + 1 1) est-

a~dire < . Les éleves sont invités a montrer que cette décomposition
1

est toujours possible dans un cas général.

Fig. 13 : Cas général

Remarquons que le choix de deux déplacements « de base » induit dans
le plan un réseau de parallélogrammes, déterminé par les directions et les
longueurs de 7 et j. Le choix tres naturel et le plus souvent utilisé est celui
de deux directions perpendiculaires, I'une horizontale, orientée de gauche
a droite, I'autre verticale, orientée de bas en haut, et sur chacune d’elles,
la méme unité de longueur. Le réseau sous-jacent est alors un quadrillage,
mais il est bien entendu que les déplacements ne sont plus liés aux noeuds
du réseau. Cependant, comme le quadrillage permet une visualisation plus
claire des problemes, nous continuerons a le faire apparaitre dans la plupart
des dessins.
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Propriétés des opérations

Les exercices suivants et d’autres analogues sont proposés aux éleves. Leur
intérét est non seulement de faire manipuler les opérations qui viennent
d’étre définies, mais surtout de dégager petit a petit les propriétés du calcul
vectoriel.

Fig. 14 : Propriétés des opérations

1. Représenter et calculer les couples correspondant a
e (AB+BC)+CD et AB+ (BC+CD);
e AB+ BC et BC + AB;

2(AB + BC) et 2AB + 2BC';

2AB +3AB et (2+3)AB =5AB;

5(2AB) et (5-2)AB = ¥ 4B.

2. Imaginer une construction géométrique, a partir du quadrillage, pour

déterminer
e le point E tel que AE = %AB;
e le point I tel que CF = _T?’CB;
e le point R tel que AR = /2AD.
Indication : pour chacun des cas, choisir sur le quadrillage une unité

adaptée a la construction, suffisamment grande pour éviter les impré-
cisions.

Les propriétés qui sont dégagées des exercices proposés et reprises en syn-
these n’ont pas été démontrées. C’est un choix volontaire afin de ne pas
allonger ce travail. Il n’est pas malsain de ne pas tout prouver d’emblée,
surtout quand ce qu’on a a prouver parait si naturel.
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Synthése
Addition de déplacements

e La somme de deux déplacements tels que l'origine du second coincide avec 'extrémité du
premier est définie par la relation de Chasles AB + BC' = AC'. En particulier : AB+ BA =
AA.

BA est le déplacement opposé de AB.
AA est le déplacement nul.

e Si les couples associés & AB et a BC' sont respectivement < g ) et ( B >, AC est repré-

a-+ A
B+ p

0 , , o .
( 0 > Des déplacements égaux sont représentés par le méme couple.

senté par le couple ( >, BA par le couple ( :% ) , le déplacement nul par le couple

e La somme de deux déplacements tels que 1’origine du second ne coincide pas avec l'extrémité
du premier est définie par

AB+CD = AB+ BE = AF
ol BFE est le déplacement égal a C'D, d’origine B.

e Propriétés :

(AB+ BC)+CD = AB+ (BC +CD),
AB+BC = BC + AB.

Multiplication par un scalaire

e kAB est le déplacement qui va k fois plus loin que B dans la direction de AB, & partir de
A. Si k est positif, le sens est celui de AB, sinon, celui de BA.

e kAB est représenté par le couple < l]zg )
o Propriétés :

k(AB + BC) = kAB+kBC,
EAB +(AB = (k+()AB,
k((AB) = (k0)AB.

Echos des classes Le fait de travailler simultanément sur les déplacements du plan et sur
les couples de nombres qui y sont associés permet de confronter a chaque
étape différents modes de raisonnement. Pour certains éleves, c’est 'aspect
graphique qui est prépondérant, tandis que d’autres raisonnent d’emblée
sur les composantes. Le va-et-vient permanent entre le dessin et 1’écriture
des relations, soit en termes de déplacements, soit en termes de couples,
permet de faire progresser les différents aspects en méme temps et de lever
quelques difficultés. Ainsi, lorsque les éleéves ont proposé un peu rapidement
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4 ) L 7
le couple ( - ) pour le déplacement opposé & AB = < 4 ), le retour au
dessin leur a permis de corriger rapidement ’erreur.

Tout au long de ce travail d’élaboration des définitions des opérations
sur les déplacements, les différents raisonnements qui guident les éleves
éclairent ces opérations sous divers aspects, ce qui contribue a donner du
sens aux définitions.

Lors des exercices de construction de multiples de déplacements, les éleves
ont imaginé des stratégies tres variées pour utiliser le quadrillage de la
maniere la plus efficace. Par contre, lorsque le professeur a proposé des
exercices de construction (additions et multiplications par un scalaire) sur
des feuilles dépourvues de quadrillage, les éleves ont été tres perturbés.
Une discussion a été nécessaire pour convaincre chacun que, si la présence
du quadrillage sur la feuille permet d’effectuer rapidement ces opérations,
elle n’est nullement indispensable. La somme de deux déplacements par
la relation de Chasles, la construction d’un déplacement égal a un autre,
ou d’un multiple d’'un déplacement par une configuration de Thales ne dé-
pendent pas de la présence d’un quelconque réseau. Méme convaincus, cer-
tains éleves étaient cependant si déstabilisés qu’ils ont essayé de « tricher »
en glissant subrepticement une feuille quadrillée sous la feuille blanche pour
tenter d’apercevoir le quadrillage par transparence.

Quelques exercices formels de fixation des propriétés ont fait apparaitre
des erreurs comme

9BM + MC = 3BC ou AM — MB = —AB,

le recours au dessin a permis de les corriger.

Le foisonnement des idées a été si grand tout au long de cette phase de
I’activité que le besoin de faire le point et de rassembler les résultats ob-
tenus de maniere claire s’est fait sentir impérieusement. C’est pourquoi la
synthese concernant les opérations sur les déplacements, qui n’avait pas
été prévue au départ, s’est avérée indispensable.

1.4 Langage PostScript

Toutes ces manipulations un peu fastidieuses peuvent étre remplacées par
une activité utilisant le langage PostScript (langage de commande d’im-
primante). Les professeurs intéressés pourront se procurer sur internet a

I’adresse URL
http://www.profor.be/crem/index.htm

le document CalculVectoriel.eps qui contient déja certaines instructions
PostScript. Celles-ci dessinent le quadrillage et positionnent le point A. Il
est conseillé de faire une copie de ce document avant d’y faire travailler
les éleves. Toutes les opérations effectuées sur le quadrillage peuvent étre
illustrées au moyen de ce langage. Pour visualiser les effets des commandes
PostScript, il faut télécharger un interpréteur :

— sur Macintosh : MacGS que l'on trouve sur le site internet
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http://www.cs.wisc.edu/"ghost/macos/index.htm
— pour windows : GSView que 'on trouve sur le site internet
http://wwuw.cs.wisc.edu/ ghost/gsview/index.html

Voici comment se présente ce document :

%!PS-Adobe-2.0 EPSF-1.2
%/%BoundingBox: 110 139 513 769

%******************************************

% Commandes introduites par l’utilisateur *
%t ke ke ks sk sk sk sk sk sk sk sk sk sk sk ok sk sk ok o o o ok ks sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok

allerenA

7 4 rlineto
(B) point

-10 1 rlineto
(C) point
allerenA

-3 5 rlineto

%******************************************

stroke

grestore

% Dessin du quadrillage

[1 s div 1 s div] O setdash vert
[1 s div 1 s div] O setdash hor

showpage

Ce fichier peut étre ouvert avec n’importe quel éditeur de texte, de préfé-
rence le plus simple possible comme, par exemple, le Bloc-notes de Win-
dows, ou Alpha pour Macintosh. Si on utilise Word, ou tout autre traite-
ment de texte, il faut veiller & sauver le document en mode texte et non
en mode Word (ou autre).

Les éleves inséreront leurs commandes dans un espace réservé qui se situe
en dessous du commentaire « commandes de l'utilisateur » et au-dessus

: L . 7
d’une ligne d’astérisques. Le déplacement 4 est obtenu au moyen de

la commande

7 4 rmoveto

A cet endroit on positionne un point (B par exemple) au moyen de la
commande point ; on le nomme B par la commande
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(B) point

Si on souhaite visualiser le déplacement en ligne droite, on remplace la
commande

rmoveto

par la commande

rlineto.

La commande

allerenA

permet de retourner au point A. Pour faire disparaitre le quadrillage, on
place le caractere

A
devant chacune des deux lignes qui suivent
% dessin du quadrillage

Pour illustrer une addition, par exemple,

ameno—ic o (1)e(0)=(2)

les commandes seront

7 4 rlineto
(B) point

-10 1 rlineto
(C) point

Apres avoir visualisé le résultat, on ajoute les commandes

allerenA
-3 b rlineto

Ces deux dernieres commandes ont pour effet de tracer le déplacement
somme AC.

Pour illustrer une multiplication par un scalaire, par exemple, AM = 2AC,
les commandes seront

allerenA
-3 5 2 rlinetomul
(M) point

Si on souhaite effectuer une opération & partir d’'un point du quadrillage
autre que A, par exemple C', on pourra atteindre celui-ci a partir de A de
la maniere suivante

allerenA
-3 b rmoveto

Ceci permettra ensuite d’effectuer le déplacement C'L = 2C'A

3 -5 2 rlinetomul
(L) point
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On obtiendra CN = %CA comme suit® :

allerenA

-3 5 rmoveto

3 -5 1 2 div rmovetomul
(N) point

On peut encore placer AQ = %IAB :

allerenA
7 4 1 3 div neg rlinetomul

et AR =+/2AL

allerenA
3 -5 2 sqrt rlinetomul
(R) point

Les éleves vérifieront que les points obtenus par constructions géométriques
coincident avec ceux placés par le logiciel. La commande

a b k rlinetomul

est, en fait, équivalente a

k a mul k b mul rlineto

{(3) =)

1.5 Déplacements dans I’espace

ce qui traduit la propriété

Une démarche analogue a celle décrite aux sections 1.2 et 1.3 pour intro-
duire les déplacements dans le plan et les opérations sur ceux-ci permet
d’aborder les déplacements dans 1’espace.

Décrire le déplacement qui meéne du point A au point B (figure 15).

Les éleves imagineront probablement un codage du type droite-gauche (d-
g), avant-arriere (av-ar), haut-bas (h-b). Le déplacement AB sera alors
décrit comme 4 en avant, 1 a gauche et 2 vers le bas, que nous noterons,
de maniere plus condensée,

dav, 1g, 2b ou encore 1g, 4av, 2b.

Les éleves prennent conscience qu’il faut trois directions pour décrire les
déplacements de l’espace, et que, sur chacune d’elles, il y a deux sens. Cette
observation permet de réduire le nombre des symboles de codage a trois au
lieu de six. On conviendra de garder les symboles av, d, et h, de compter
positivement les déplacements vers ’avant, vers la droite et vers le haut et
négativement les déplacements vers 'arriere, vers la gauche et vers le bas.

5 PostScript utilise la notation polonaise inverse; ainsi 1 2 div effectue la division de
1 par 2.
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Fig. 15 : Déplacements et addition de déplacements dans [’espace

Le déplacement AB sera alors noté : 4av, —1d, —2h.

Si on veut encore simplifier le codage pour ne garder que les nombres,
il faut convenir en plus d’'un ordre pour les énoncer. Par exemple, si le
premier nombre représente le déplacement sur la direction arriere-avant,
le deuxieme le déplacement sur la direction gauche-droite, et le troisieme
le déplacement sur la direction bas-haut, il n’y aura pas d’ambiguité. Le

4
déplacement AB sera noté AB = | —1
-2
De la méme maniere, on a
-5 -1
BC = 6 et AC = 5
3 1

Addition de déplacements

Comme dans le plan, on a la relation de Chasles
AB + BC = AC,

et, pour les triples correspondants, 'addition s’écrit

4 —5 -1
1|+ 6 ]=| >
—2 3 1

Si lorigine du second déplacement ne coincide pas avec I'extrémité du pre-
mier, on remplace I'un des déplacements par un déplacement équivalent
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de maniére a retrouver une situation ou la relation de Chasles est d’appli-
cation.

—4
L’opposé du déplacement AB est le déplacement BA = 1 1.0na
2
AB + BA = AA (déplacement nul) et, pour les triples correspondants,
4 —4 0
-1 |+ 1 =10
-2 2 0

Les propriétés de I’addition des déplacements dans I’espace sont les mémes
que dans le plan.

Multiplication de déplacements par un scalaire

On définit kAB comme le déplacement qui va k fois plus loin que B dans
la direction de AB, a partir de A. Si k est positif, le sens est celui de AB,
sinon, celui de BA. La figure 16 illustre deux exemples de multiplication
scalaire.

Fig. 16 : Multiplication scalaire dans ’espace
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On a
-2 -1
DF =2DF et, pour les triples correspondants 2 | =2 1|,
6
2 -1
DL = —2DF et, pour les triples correspondants -2 | =-2 1
—6 3

Les propriétés de la multiplication scalaire des déplacements dans ’espace
sont les mémes que dans le plan.

1.6 Polynoémes

Apres une premiere approche des espaces vectoriels par des gestes tres
quotidiens, proches du bon sens, comme se déplacer dans un plan de ville,
le but de cette activité est de montrer que la structure ainsi dégagée peut
se retrouver dans un contexte tres différent. Il s’agit donc d’une démarche
purement intellectuelle, qui peut intéresser certains éleves, mais qu’il ne
conviendra sans doute pas d’aborder dans toutes les classes.

Des la troisieme, les éleves connaissent ’addition des polynomes et leur
multiplication par un scalaire. Nous allons éclairer ces opérations sous un
jour nouveau en les replacant dans un contexte semblable a celui dans
lequel nous venons de travailler.

Considérons tout d’abord ’ensemble des polyndmes de degré inférieur ou
égal & 2, dont la forme générale, ordonnée par puissances croissantes de ,
est a + bx + cx?.

Chaque polynoéme peut étre considéré comme une combinaison linéaire de
trois polyndmes « de base » 1, x et 22, avec les coefficients a, b, c. Ainsi,

at+br+c’P=a-14+b-z+c- 2%

a
Ceci permet d’associer a chaque polynéme un triple de nombres b

c

Les éleves sont invités a écrire les triples de nombres correspondant aux
a

polynémes « de base » 1, z et 2 et & retrouver le triple b comme
c

combinaison linéaire des trois triples « de base ». Ils pourront comparer
cette décomposition avec celle effectuée sur les couples de nombres associés
aux déplacements du plan.

On demande aux éleves de calculer
1. P(z) + Q(x)
2. —2P(z)+3Q(x)
3. Q) - R(x)
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ot P(z) = 3 —2x+ 522 Q(z) = -2+ Tz + 2% et R(x) = 2° + 1 et de
transcrire ces différentes opérations en termes de triples associés.

La comparaison avec les opérations sur les couples associés aux déplace-
ments du plan s’impose d’elle-méme.

Retrouve-t-on pour les opérations sur les polynoémes des propriétés sem-
blables a celles dégagées pour les déplacements dans un plan a la page
2347

Les éleves vérifient sur les exemples proposés que

(P(z) +Q(x)) + R(z) = P(z)+ (Qz)+ R(z)),
P(z)+Q(z) = Qz)+ P(x),
k(P(z) +Q(x)) = kP(x)+kQ(x),
kP(z)+(P(x) = (k+¢)P(x),
k(tP(z)) = (kO)P(z),

ou k et £ sont des scalaires quelconques. La connaissance que les éleves ont
des opérations sur les polynomes leur permettra sans doute de dire que ces
propriétés restent vraies pour n’importe quel polynéme. Si nécessaire, on
peut proposer d’autres exemples pour les polynomes P(x), Q(z) et R(x).

Est-il possible de procéder de la méme maniere pour
e les polynomes de degré inférieur ou égal a 3,
e les polynomes de degré inférieur ou égal a 4,

e tous les polynomes ?

Combien de polynoémes « de base » faudrait-il pour exprimer tout poly-
noéme comme combinaison linéaire de ceux-ci?

Les polynoémes de degré inférieur ou égal a 3, a 4, ... a n s’exprimeront
comme combinaisons linéaires de 4, 5, ... (n+1) « polynémes de base » et
seront représentés par des quadruples, quintuples, ... (n+1)-uples. Il fau-

drait une infinité de « polynomes de base » pour exprimer tout polynéme
comme combinaison linéaire de ceux-ci.

1.7 Suites arithmétiques

On montre aux éleves quelques débuts de listes de nombres qu’on leur
demande de prolonger. Le professeur signalera aux éléves qu’en prolongeant
indéfiniment ces listes de nombres, on obtient ce que les mathématiciens
nomment suites de nombres. Chacun des nombres est appelé terme de la
suite.
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S1 0 1 2 3 4 5
52 0 1 4 9 16 25
53 1 3 5 7 9 11
S4 1 11 111 1111 11111 111111
S5 1 1 1 1 1 1

2 3 4 5 6
S6 2 5 8 11 14 17
S7 1 1 2 3 5 8

1 1 1 1 1
S8 1 1 5 16 % 3
59 1 -3 7 11 —15 ~19

17 11 27 37
S10 3 i u 2z 8 1

Parmi ces dix suites de nombres, y en a-t-il qui ont un mode de construc-
tion semblable ? Si oui, lesquelles ?

Dans les suites S1, S3, 56, 59 et 510, la valeur de chaque terme a partir
du deuxieéme est obtenue en ajoutant une quantité constante a la valeur
du terme qui précede. Ce type de suite est appelé suite arithmétique et la
quantité constante ajoutée est la raison de la suite.

Les suites qui précedent ont été « définies » par leurs six premiers termes.

Si on sait qu’il s’agit de suites arithmétiques, faut-il fournir autant
de termes? Quel nombre minimum d’informations faut-il donner pour
qu’une telle suite soit entierement connue ?

Des réponses variées que proposeront les éleves, nous retiendrons que la
donnée des deux premiers termes tq,to ou celle du premier terme ¢ et de
la raison r suffisent pour que la suite soit déterminée.

Y a-t-il une maniere naturelle d’additionner deux suites, de les multiplier
par un scalaire ?

Les éleves proposeront sans doute de faire ces opérations terme a terme.
On leur demande alors de calculer, par exemple S3 + 56, 256 et 2510.

S3 A 7 9 11

S6 A 11 14 17
534 56 2 13 18 23 28
s6 2 A 5 8§ 11 14 17

256 S 10 16 22 28 34

% 17 11 27 37

2 17 27 37

2510 6 A~ 11 Z 16 ¥

On observe sur ces exemples que la somme de deux suites arithmétiques est
une suite arithmétique, ainsi que la multiplication d’une suite arithmétique
par un scalaire.
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Ces propriétés sont-elles vraies en toute généralité ?

Au cours de ces opérations, comment trouve-t-on les premiers termes et
les raisons des suites obtenues ?

Les éleves sont invités a écrire les opérations sous une forme générale, par
exemple,

S1 a a+r a4+ 2r

S2 b b+ b+2r
S1+ 52 a+b a+b+(r+r) a+b+2(r+1)

kS1 ka ka + kr ka + 2kr

La suite S1 est déterminée par les nombres a et r, nous 1’écrivons sous

forme de couple < i ) par analogie avec les déplacements et les poly-

. . . b )
nomes. De méme, la suite S2 correspond au couple ( r’ > La suite

o a+b
S1+ 52 s’écrit <r—|—r’>’

puisque son premier terme est a + b et sa raison r + /. De méme, la suite

o ka
kS1 sécrit ,
kr
puisque son premier terme est ka et sa raison kr. Les opérations sur les
suites se traduisent par les opérations correspondantes sur les couples :

(2)-(2)-(210)
(2)-(5)

On retrouve a nouveau des propriétés de la somme et de la multiplica-
tion par un scalaire, semblables a celles observées pour les déplacements
dans un plan a la page 234 et pour les polynomes a la page 243. Elles
peuvent étre vérifiées dans le cas général, puisque les opérations sur les
suites viennent d’étre dégagées en termes de couples sous forme littérale.
Les éleves vérifient que

(S1+52)+53 = S1+(52+53),
S1+ 52 = 52+ 51,
E(S1+ S2) = EkS1+kS2,
ES1+¢S1 = (k+4)S1,
k(¢S1) = (k£)S1.

Remarquons au passage 1’évolution du niveau d’abstraction dans 1’énoncé
et la vérification des propriétés : pour les déplacements du plan, elles ont
été mises en évidence sur des exemples; pour les polynomes, elles ont été

énoncées sous forme générale mais vérifiées sur des polynomes particuliers ;
tandis que pour les suites, elles sont démontrées en toute généralité.
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Cela signifie-il que toute suite arithmétique peut s’écrire sous forme de
combinaison linéaire de deux suites arithmétiques « de base » 7

Si < i ) =a ( (1) ) +7r ( (1) ), quelles sont les suites arithmétiques qui

correspondent aux couples < (1) > et ( [1) ) ?

On demande aux éleves d’écrire les suites S3, 56 et S10 comme combinai-
sons linéaires des deux suites « de base »

1 1 1 1 1 1...e 0 1 2 3 4 5...

Les éleves seront peut-étre étonnés de constater que les suites arithmé-
tiques, qui comportent une infinité de termes, peuvent s’exprimer comme
combinaisons linéaires de deux suites arithmétiques « de base », tandis
qu’une infinité de polynomes « de base » sont nécessaires pour exprimer
tous les polynomes, alors que chacun d’eux ne comporte qu’un nombre fini
de termes.

1.8 Synthese : vers la structure d’espace vectoriel

Les éleves viennent de rencontrer quelques ensembles dont les éléments
sont de natures tres différentes. Néanmoins, les opérations effectuées sur
ces objets, ainsi que les propriétés de ces opérations, présentent des res-
semblances frappantes. Une discussion au sein de la classe, conduite par
le professeur, devrait permettre de dresser la liste de ces points communs.
La réflexion peut étre suscitée par quelques questions.

Quelles sont les opérations qui ont été effectuées sur les éléments de ces
différents ensembles ?

Quelles sont les propriétés de ces opérations qu’on retrouve dans les
différents exemples ?

Retrouve-t-on les propriétés de I'addition et de la multiplication des
nombres réels ?

Expliquer comment, dans ces exemples, les éléments ont pu étre associés
a des n-uples et comment les opérations de somme et de multiplication
par un scalaire se transposent en termes d’opérations sur les n-uples.

Que ce soient les déplacements (dans le plan ou l’espace), les polynomes
ou les suites arithmétiques, nous avons pu

e les additionner,
e les multiplier par un scalaire,
e en faire des combinaisons linéaires,

e les exprimer comme combinaisons linéaires d’un certain nombre d’élé-
ments « de base ».

Examinons tout d’abord les propriétés de ’addition en les comparant a
celles de I'addition des nombres réels. Dans chacun des cas, on retrouve
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I’associativité et la commutativité de I'addition. On s’interroge alors sur
Iexistence d’un élément neutre et d'un opposé pour chaque élément.

Dans ’ensemble des polynémes de degré inférieur ou égal & deux,
— quel est ’élément nul ?

— quel est le polynéme opposé & P(x) = 3 — 2z + 5227

Dans I'ensemble des suites arithmétiques,
— quel est ’élément nul ?

— quelle est la suite opposée a la suite 1 4 7 10 ...

Dans chaque ensemble, il y a donc un élément nul qui correspond au couple
0 . (12
< 0 ) (au n-uple dont tous les coefficients sont nuls). Cet élément est

neutre pour l'addition, ce qui signifie que si on 'additionne a un élément
quelconque, la somme obtenue est cet élément lui-méme.

Chaque élément a un opposé, qui correspond au couple (au n-uple) dont
les termes ont le signe contraire de ceux du couple (n-uple) représentant
I’élément de départ. Quand on additionne un élément et son opposé, on
trouve I’élément nul. Cette derniere propriété est l'outil qui permet de
résoudre des équations.

La multiplication par un scalaire ne ressemble pas a la multiplication des
nombres réels, déja théorisée a la page 221. Les propriétés qui ont été
dégagées dans les différents exemples montrent qu’elle s’apparente plutot
a une « multiplication naturelle », dans laquelle les deux éléments du
produit sont de natures différentes, et qu’on utilise implicitement quand
on dit

— 3 fois (1 pomme + 1 poire) = 3 pommes + 3 poires,

— 2 pommes + 3 pommes = 5 pommes,

— 2 fois 3 pommes = 6 pommes.

Meéme s’ils ne peuvent pas désigner par leur nom les propriétés de la multi-
plication par un scalaire, les éleves pourront sans doute associer celles qui
ont le méme statut dans les listes reprises dans les exemples.

Les ensembles dont les éléments peuvent étre additionnés et multipliés par
un scalaire, avec les propriétés que nous avons rencontrées et qui sont re-
prises ci-dessous, sont appelés espaces vectoriels. Leurs éléments sont appe-
lés vecteurs et sont généralement représentés par une minuscule surmontée
d’une fleche : .

Voici les propriétés qui caractérisent un espace vectoriel V.

Les propriétés de la somme
Dans un espace vectoriel V,

1. la somme de deux vecteurs existe toujours et est un vecteur. En effet,

W + v appartient & V.
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2. La somme des vecteurs est associative, ce qui permet d’écrire la
somme de trois vecteurs sans parentheéses. Ainsi,

(W+V)+w=u+(V+W)=Uu+ 7T+ W.
3. Il y a un vecteur nul noté 0 tel que
0

T4+ 0=w=20+7u.

4. Chaque vecteur ' a un opposé noté —u tel que
TAH(—T)=0=(—T)+ 7.

5. La somme des vecteurs est commutative, ce qui signifie que dans une
somme, on peut changer 'ordre des vecteurs. On a

WU =T+ .

Ces cinq propriétés peuvent étre résumées en disant que V est un groupe
commutatif pour I'addition des vecteurs.
Les propriétés de la multiplication par un scalaire
Dans ce qui suit, k et £ représentent des scalaires.
1. Un vecteur peut toujours étre multiplié par un scalaire et le résultat

est un vecteur,
k7w appartient & V;

2.

k(T +7T) = kW + kT
3.

(k+0)T =k@ + 07 ;
4.

La propriété 2 établit un lien entre la multiplication par un scalaire et 1’ad-
dition des vecteurs ; les deux suivantes établissent le lien avec les opérations
sur les scalaires, I’addition (propriété 3) et la multiplication (propriété 4).
Les propriétés 2 et 3 sont des propriétés de distributivité, la propriété 4
est une propriété d’associativité. On l'appelle « associativité mixte » car
elle lie deux opérations de multiplication : la multiplication des scalaires
et la multiplication d’un vecteur par un scalaire.

Existe-t-il un neutre pour la multiplication par un scalaire 7

La question de 'existence d’un neutre pour la multiplication par un scalaire
met en évidence une situation qu’on ne rencontre pas dans les opérations
qui lient deux éléments de méme nature. Les éleves exhiberont sans doute
le scalaire neutre 1

17 =7,
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mais il est impossible de trouver un vecteur neutre 7 tel que

kmw =k,
puisque k7 est un vecteur et ne peut donc valoir k. La propriété 1 v = o
exprime que le neutre de la multiplication des réels est aussi neutre pour
la multiplication par un scalaire. Nous ajoutons cette propriété afin d’étre
complet, méme si notre but n’est pas de donner une définition axiomatique
rigoureuse.

Dimension® et opérations sur les n-uples

Si les éléments « de base » sont au nombre de deux (déplacements dans
le plan, polynémes de degré inférieur ou égal a un, suites arithmétiques),
chaque élément peut étre exprimé comme combinaison linéaire des deux
éléments « de base ». Les coefficients de cette combinaison linéaire forment
un couple qui représente cet élément. Les couples associés aux éléments

« de base » sont
1 ; 0
o) 1)

Si les éléments « de base » sont au nombre de trois (déplacements dans
I'espace, polynomes de degré inférieur ou égal & deux), chaque élément
peut étre exprimé comme combinaison linéaire des trois éléments « de
base ». Les coefficients de cette combinaison linéaire forment un triple qui
représente cet élément. Les triples associés aux éléments « de base » sont

1 0 0
0. 1] e [0
0 0 1

Si les éléments « de base » sont au nombre de n (polynémes de degré
inférieur ou égal & n — 1), chaque élément peut étre exprimé comme com-
binaison linéaire des n éléments « de base ». Les coefficients de cette com-
binaison linéaire forment un n-uple qui représente cet élément. Les n-uples
associés aux éléments « de base » sont

1 0 0
0 1 0
O 1.1 901, et :

: 0
0 0 1

Ce nombre n, qui représente le nombre d’éléments « de base » nécessaires
pour exprimer tout élément de I’ensemble comme combinaison linéaire de
ceux-ci, et qui correspond également au nombre de termes dans le n-uple
associé a chaque élément, est appelé la dimension de I'espace vectoriel.

% Nous n’avons pas défini la notion de famille libre. Cependant le travail effectué dans
cette activité donne une premiere approche des notions de « famille génératrice » et de
« base », qui permet de parler de dimension de maniére intuitive.
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Dans un espace vectoriel de dimension 2, les opérations de somme et de
multiplication par un scalaire se tranposent aux couples qui les représentent
de la maniere suivante,

() ()= (i)
+ = )
U2 U2 U2 + V2
up \ [ kup
f(on )= ()

Ces opérations s’étendent de maniere naturelle & un espace vectoriel de
dimension 7,

ul (% up + U1
(%) () U9 + U9
+ . = . )

Un, Un Up, + Un

(75} ku1

u9 k"u,z

k = .
Up, ku,,

Ces opérations jouissent des propriétés caractéristiques des espaces vecto-
riels, et c’est pourquoi on peut dire que I'ensemble des n-uples de réels
forme aussi un espace vectoriel.

Le niveau de la classe n’a pas permis d’aborder d’autres types de vecteurs
que les déplacements du plan. La synthese finale a néanmoins été réalisée
par les éleves eux-mémes, sur base des syntheses antérieures. L’écriture
condensée des vecteurs représentés par une seule lettre surmontée d’une
fleche (pour les distinguer des scalaires) leur a paru tres naturelle, puisqu’ils
avaient déja rencontré des vecteurs dans d’autres contextes. Seul le neutre
de la multiplication scalaire a posé probleme : la valeur 0 a été proposée
en premier.

2 Géométrie analytique et calcul vectoriel

Résoudre des problemes de géométrie analytique du plan et de I’espace en
utilisant le calcul vectoriel.

Développer les compétences liées au calcul vectoriel en analysant diverses
situations-problemes. Sur les liens entre vecteurs et géométrie analytique,
voir aussi la section 8.1 du chapitre 16. Sur les centres de gravité, voir aussi
le chapitre 12.

Compétences

Le calcul vectoriel dans le plan et dans l’espace, faisant intervenir les com-
posantes des vecteurs.
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Les formes synthétique et analytique des notions, des relations et équations
de base de la géométrie : incidence, alignement, concourance, parallélisme,
miliew d’un segment, centre de gravité, ...

Les formes synthétique et analytique des translations, symétries centrales
et homothéties du plan et de l’espace.

Des feuilles A4 recouvertes d’un quadrillage de 1 cm de ¢oté ou d’un réseau
de parallélogrammes, certaines munies d’une origine O, d’autres encore ou
sont marqués une origine O et quelques autres points. Ce matériel peut
étre obtenu par photocopie des documents fournis en annexe aux pages
486 a 488.

2.1 Lien entre les composantes d’un vecteur et les
coordonnées de ses extrémités

Le probleme de situer un point sur un quadrillage est latent depuis le
moment oli, dans 'activité précédente, on a demandé aux éleves de dessi-
ner un déplacement donné par ses composantes. Les éleves ont bien pris
conscience qu’ils peuvent représenter un déplacement donné, mais ils ne
savent que faire pour décrire un représentant de ce déplacement en un
endroit précisément choisi. Le travail suivant a pour but de lever cette
difficulté.

On distribue a tous les éleves une feuille A4 recouverte d'un quadrillage
et on demande a I'un d’entre eux de placer un point A sur un noeud de
ce quadrillage. Sans montrer sa feuille, il doit alors communiquer des ren-
seignements a ses condisciples pour que chacun puisse dessiner le point A
exactement au méme endroit. Il est probable que I’éleve qui a choisi la po-
sition du point A situe celui-ci comme 'extrémité d’'un déplacement dont
lorigine serait le coin inférieur gauche du quadrillage (ou un autre coin).
Les éleves se rendent compte que, pour traiter ce probleme, une origine doit
étre choisie en un point qu’on peut décrire sans ambiguité, par exemple
en un coin du quadrillage. Sinon il est tout aussi difficile d’expliquer ou se
trouve l'origine du déplacement que son extrémité. On recommence 1’ac-
tivité apres avoir distribué une autre feuille quadrillée munie d’un point
marqué O. On demande aux éléves de choisir ce point O comme origine
pour marquer le point A comme extrémité d’un déplacement O A décrit en
fonction du quadrillage. On montre alors aux éleves une feuille, sans qua-
drillage, ou 'on a placé un point O et un point A, et on leur demande de
reproduire le déplacement OA a partir d’'un point O placé arbitrairement
sur une feuille de leur cahier.

Cette courte activité préalable est destinée a faire prendre conscience aux
éleves que pour déterminer la position d’un point, il faut

— soit une origine et deux directions privilégiées, orientées et munies d’une
unité (par exemple induites par un quadrillage ou un réseau de parallé-
logrammes) ;

— soit une origine et deux vecteurs « de base ».
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La donnée d’une origine, qui n’était pas nécessaire pour décrire des dé-
placements, devient indispensable des qu’on veut préciser la position des
points. On définit alors la « position du point A » comme le déplacement
qui permet de passer de O a A. On peut donc lui associer un couple de
nombres. On a

position de A = OA = ( g ) .

Fig. 17 :

Quadrillage Fig. 18 : Réseau de parallélogrammes

Les éleves reconnaissent les coordonnées du point A dans le repere O1J,
ou O est le point origine choisi, I et J étant les extrémités des vecteurs
« de base » i et j placés avec leur origine en O. D’une maniere générale,
les coordonnées des points sont des couples de nombres réels ; elles ne sont
entieres que pour les noceuds du quadrillage associé au repere O1.J.

Les éleves ont ’habitude d’écrire ces coordonnées en ligne et non en co-
lonne. On pourrait revenir a cette facon de faire pour les couples de coor-
données de points, mais aussi pour les couples de composantes de vecteurs,
tout en signalant aux éleves que plus tard (en calcul matriciel), il faudra
utiliser une notation de tous ces couples en colonnes. Dans ce document,
nous avons choisi de continuer a écrire tous les n-uples en colonnes.

Pour établir le lien entre les composantes des vecteurs et les coordonnées
des points, on distribue la feuille suivante, munie d’un quadrillage et des
points O, A, B, C et D (figure 19).

Y a-t-il un lien entre les coordonnées des points A, B, C, D et les
composantes des vecteurs AB , B?, CD et AD?

Dans un premier temps, les éleves notent les couples de coordonnées des
points et les couples de composantes des vecteurs.

a=(3)oe=( ) e=(2) 2=(3)
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En comparant les couples associés a A, B et A_B), cer-

tains éleves constateront que

(+)=(2)-(%)

et vérifieront ensuite si une relation similaire est encore

vraie pour les autres vecteurs. D’autres penseront peut-

étre a la relation de Chasles et au fait qu’on peut aller

de O a B en passant par A

04+ AT — OF,

ou qu’on peut aller de A & B en passant par O

5 A0 + OB = AB.

IIs en déduiront que

AB = OB-04

= (position de B) — (position de A).

Fig. 19 : Coordonnées et composantes

Echos des classes

Cette constatation peut etre étayée par un raisonnement intuitif en repre-
nant un cas tres simple ou les points A et B se trouvent a droite et plus
haut que O, par exemple A= < i > et B= < 2
pour aller de A en B, il faut avancer de 6 vers la droite, pour passer de
I’abscisse 3 a l’abscisse 9, et de 3 vers le haut, pour passer de I’ordonnée
4 a lordonnée 7. Le dessin montre bien que, quelle que soit la position de
O, la différence des abscisses et la différence des ordonnées déterminent les
composantes du vecteur AB.

> . On voit bien alors que,

Composantes d’un vecteur. — Les composantes d’un vecteur sont ob-
tenues par la différence entre les coordonnées de son extrémité et celles de
son origine.

Tout ceci se généralise aux vecteurs de 'espace.

A ce stade du travail, le professeur explique aux éleves que le fait de pou-
voir situer des points dans le plan ou ’espace munis d’un repere, et d’avoir
établi le lien entre les coordonnées des points et les composantes des vec-
teurs, va leur permettre d’aller plus loin. Dans les activités qui suivent,
nous allons utiliser des équations vectorielles extrémement simples pour
résoudre toutes sortes de problemes de géométrie, tant dans le plan que
dans l’espace.

La nécessité de marquer une origine pour situer des points dans le plan
n’a posé aucune difficulté. Ici encore, les éleves ont fait appel a différents
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modes de raisonnement pour établir le lien entre les composantes d'un
vecteur et les coordonnées de ses extrémités. Le fait de définir la position
du point A comme le déplacement O A situe d’emblée le probleme dans le
contexte des déplacements du plan et amene 'idée d’utiliser la relation de
Chasles.

2.2 Problemes d’alignement et de parallélisme

Résoudre des problemes d’alignement et de parallélisme dans le plan et
dans 'espace a partir d’équations vectorielles.

A quelle condition des points du plan et de ’espace sont-ils alignés ?

Le probleme est ainsi posé sous une forme tres générale. Les éleves propose-
ront sans doute d’examiner d’abord la situation dans le plan. Ils arriveront
peut-étre a dégager une idée intuitive a partir d’'un cas tres simple qu’ils
auront choisi eux-mémes. L’exemple suivant leur est fourni, soit pour les
inciter a formuler clairement leur raisonnement, soit pour guider leur ré-
flexion.

1. Les points A, B et C' du plan sont-ils alignés ?

= (3) 5-(3)- o= (B)

2. Les points P, @@ et R de 'espace sont-ils alignés ?

2 5 302
p=o], = 3|, R=| 300
5 —2 —690

Confrontés a la premiere question, les éleves seront sans doute tentés de
représenter les points dans un repere approprié. Les coordonnées du point
C les obligent a choisir une unité tres petite dans chacune des directions.
Le manque de précision du dessin ne leur permettra pas de se convaincre
avec certitude.

D’autres penseront peut-étre a écrire I’équation de la droite AB et & ob-
server que les coordonnées du point C' vérifient cette équation. Aucune de
ces deux stratégies ne leur permettra de répondre a la deuxieme question.
Par contre les éleves qui se souviennent que dans la section 1, I'alignement
des points A, C', N, L a été mis en relation avec le fait que les vecteurs
CL et CN sont multiples de CA (figure 12 & la page 232), auront a leur
disposition 'outil qui leur permettra de répondre aux deux questions par
le méme raisonnement et de la maniere la plus économique.

Les éleves constatent que AC est multiple de AB en observant leurs com-

posantes
3 99
o (3) am-(2)
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Par contre,
300 3
PR = 300 n’est pas multiple de Pﬁ = 31,
—695 =7

ce qui indique que les points P, ) et R ne sont pas alignés.

Le fait que le vecteur AC est multiple du vecteur AB signifie que ces deux
vecteurs d’origine A ont la méme direction. Cette remarque nous amene
tout naturellement a poser la question du parallélisme.

A quelle condition des droites du plan ou de ’espace sont-elles paral-
leles ?

Apres une premiere discussion dans la classe, nous proposons a nouveau
un exemple pour soutenir la réflexion.

1. Dans le plan muni d’un repere, les droites AB et C'D sont-elles
paralleles ?

a=(5) m=(5) = (1) p=(5)

2. Dans 'espace muni d’un repere, les droites PQ) et RS sont-elles
paralleles ?

1 5 —2 0
P= 0|, Q= -2 | R=| -1 |, s=| -2
~1 1 5 6

Le dessin de la premiere situation ne permet pas de conclure avec certitude.
Les droites AB et C'D semblent plus ou moins paralleles. Cependant, le

2 -8
calcul des composantes des vecteurs AB = < 5 ) et CD = < 19 >
montre qu'un de ces deux vecteurs n’est pas multiple de I'autre et qu’ils
n’ont donc pas la méme direction. Par conséquent, les droites AB et C'D
ne sont pas paralleles. Dans ’espace, par contre,

4 2
@ — 92RS puisque -2 | =2] -1
2 1

Dans ce cas, on peut conclure que les droites PQ et RS sont paralleles.

Parallélisme et alignement. — Si CD est multiple de E, alors les
vecteurs AB et CD ont la méme direction et les droites AB et CD sont
paralleles”. Si de plus, les droites AB et CD ont un point commun, les
quatre points A, B, C' et D sont alignés. En particulier, si AC est multiple
de A—B), les points A, B et C' sont alignés.

" On admet explicitement qu’une droite est parallele & elle-méme et que le parallé-
lisme est une relation d’équivalence.
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Tout ceci permet de résoudre des probléemes plus complexes, ou inter-
viennent a la fois des questions d’alignement et de parallélisme.

Dans le plan muni d’un repére OI.J, on donne les points

= (3) 5 (2): e-()

Représenter graphiquement les points D, E, F' et K et calculer leurs
coordonnées, sachant que

1. D est le point de la droite BC, dont I'abscisse vaut 2 dans le repere
OlJ;

2. E est le point de la droite AC' dont ’abscisse est le double de
I’ordonnée dans le repere OIJ ;

3. F est le point de la parallele & la droite AB passant par C, dont
I’ordonnée vaut —2 dans le repere OIJ ;

4. K est le point de la parallele a la droite AC passant par B, dont
I’abscisse vaut 259 dans le repere O1J.

Voici comment ces questions peuvent étre traitées.

1. Recherche du point D : les données permettent de placer le point D
sur le dessin.

Fig. 20 : Alignement et parallélisme

Pour exprimer que le point D est aligné avec B et C, on écrit que
BD est multiple de BC cest-a-dire

BD = ABC ou 53:O—B>+/\B—Cz’,

ol A est un scalaire. En remplacant chaque vecteur par le couple de
ses composantes, on obtient

()=(2)=(5)
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Le systeme
2 = 1—5A
{ Yyp = -2+ 3
permet de déterminer la valeur de A qui correspond au point D :
A= —%, valeur qui peut étre interprétée en observant le dessin.
Celui-ci montre que BD = —%?d, le point D étant situé du coté
opposé a C' par rapport a B et a une distance cinq fois plus petite de
B que celle de B a C'. Ces constatations permettent de comprendre
clairement le réle que joue le parametre dans ’équation vectorielle
de départ. En remplagant la valeur de A dans la deuxieme équation,

. 2
on trouve yp = —%. Les coordonnées de D sont donc ( 13 )
5
2. Recherche du point E : il n’est plus possible de placer le point E avec

précision sans faire le calcul préalable. Par un raisonnement similaire
au précédent, on écrit 1’égalité vectorielle

A—E):ME ou ()‘E:@HWW,

ou u est un scalaire. En remplacant chaque vecteur par le couple de
ses composantes, on obtient

()= (5) ()

{ 2y = 2—-06p

Le systeme

ye = 3-2p
permet de déterminer la valeur de p qui correspond au point FE :
) 14 . X
u = —2 et les coordonnées du point F= . Il est possible a

7
présent de placer le point E sur le dessin et de vérifier qu’il répond
bien a la question.

3. Recherche du point F' : cette fois le point F' peut étre construit avec
précision, la difficulté supplémentaire provient du fait qu’il ne s’agit
plus d’un simple probleme d’alignement. Il faudra peut-étre renvoyer
les éleves a la synthese de la page 255 pour les amener a écrire une
équation vectorielle de départ.

CF =vAB ou OF = OC + vAB,

ou v est un scalaire. En remplacant chaque vecteur par le couple de
ses composantes, on obtient

(%)=(1)(5)
(%%

permet de déterminer la valeur de v qui correspond au point F' :

_23
V= % et les coordonnées du point F' :< _52 >

Le systeme
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4. Recherche du point K : I'abscisse 259 du point K est trop grande
pour qu’on puisse visualiser celui-ci, mais un calcul analogue aux
précédents donne, a partir de I’équation vectorielle BK = pA—é, la

valeur de p = —43 et les coordonnées du point K :< 222 )

Il est possible de traiter des problemes du méme type dans ’espace. Nous
en donnons un exemple.

Dans 'espace muni d’un repere OIJK, on donne les points A, B et C
par leurs coordonnées

1 ~1 0
A=| 2], B= 2 |, c=| -1
0 5 1

Calculer les coordonnées des points D, E, F et K, sachant que
1. D est le point de la droite BC', d’abscisse —3 dans le repere OI J K ;

2. E est le point de la droite AC, dont la somme des coordonnées
vaut 5 dans le repére OIJK ;

3. F est le point de la parallele a la droite AB passant par C, de
hauteur 11 dans le repere OIJK ;

4. K est le point de la parallele a la droite AB passant par C', d’abs-
cisse 258 dans le repere OIJK.

Il n’est plus question ici de s’appuyer sur un dessin, mais le travail effectué
dans le plan a préparé les éleves a écrire les équations vectorielles de départ
sans avoir recours a un support visuel. Les résultats obtenus sont

-3 2 —4 258
D=| 8|, E= 4|, F=| -1 |, K= -1
13 -2 11 —644

Ces différentes questions montrent bien que le calcul vectoriel permet de
traiter certains problemes d’alignement et de parallélisme tant dans le plan
que dans I’espace.

Seuls les problemes dans le plan ont été traités dans une classe de qua-
trieme. La difficulté majeure a été d’établir une équation vectorielle de
départ. A partir de celle-ci, le passage aux couples de composantes s’effec-
tue naturellement. Les éleves ont pris I’habitude de « lire » les composantes
sur le quadrillage ; les fréquents retours au dessin qui en résultent ont per-
mis de donner du sens aux étapes de calcul, et notamment d’interpréter la
valeur du parametre.

Pour chacune des questions, différentes équations vectorielles ont été pro-
posées. Le fait que toutes ces équations conduisent, par des calculs diffé-
rents, a la méme réponse, a été une source d’étonnement pour certains.
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De quoi s’agit-il ¢

Comment s’y
prendre ¢

2.3 Centres de gravité

Déterminer les coordonnées du centre de gravité de 2, 3, 4, ... points, dans
le plan et dans ’espace.

La premiere question concerne la recherche des coordonnées du milieu d’un
segment, tant dans le plan que dans ’espace.

Déterminer les coordonnées du milieu du segment [AB] ou

1. A= ( -1 > et B = ( _;1 > dans le plan muni d’un repére ;

3
-1 4
2. A= 3 | et B=| —2 | dans l’espace muni d’un repere.
5 -3

En déduire I'expression générale des coordonnées du milieu d’un seg-
ment, dans le plan et dans ’espace.

A

Fig. 21 : Milieu d’un segment

Le point M, milieu de [AB], est évidemment un point de la droite AB.
La recherche du milieu s’apparente donc a un probleme d’alignement, ou
la position du point cherché par rapport aux points A et B est connue. A
partir de 'une des équations vectorielles

m:;@ ou AM — B,

on obtient, en remplacant chacun des vecteurs par son expression en somme
de vecteurs passant par 'origine,

m_m:;m_m) ou OM — OA — OB — O,

ce qui donne -
OA + OB
ON = 222,
Cette derniere relation permet de calculer les coordonnées du milieu, aussi
bien dans le plan que dans ’espace.

3
Pour le probleme posé, on obtient donc M = ( % ) dans le plan et M =
2
3
2
% dans 'espace, mais le raisonnement effectué ci-dessus fournit une
1

formule générale pour déterminer le milieu d’un segment.
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De plus, on peut remarquer que, puisque tout point P du plan ou de

0A+0B

I’espace peut jouer le role de l'origine, la relation OM = === peut
encore s’écrire

PA+ PB
i P17
pour tout point P du plan ou de I'espace.

Milieu d’un segment. — Voici quatre égalités qui définissent le point
M, milieu du segment [AB].
Al = JAB,
AM = MB,
OA+ OB
OM = %j
PA+ PB
PM - LArTED

5 pour tout point P du plan ou de [’espace.

; ﬁ? § Lo —
La relation AM = M B peut encore s’écrire MA+MB="0 ; cette der-
niere expression donnera lieu a une généralisation ultérieure.

Dans le plan muni d’un repeére, les coordonnées du milieu M du segment

[AB], oqlA-(xA> etB-(J:B)sont
YA YB
1 T Tp [ tadrs
=g () ()= ()

Dans l’espace muni d’un repére, les coordonnées du milieu M du segment

T A B
[AB], ot A= | ya et B=| yp | sont
ZA ZB
rAt+TB
1 TA B
= - yatyn
M = Yya + YB - P}
ZA ZB %

Le point M milieu du segment [AB] est le point qui vérifie la condition
MA+MB="0.Par analogie, on peut poser la question suivante.

Existe-il, pour tout triangle ABC du plan ou de ’espace, un point G
qui vérifie la condition GA+GB+GC = 07 Sice point G existe,
quelle est sa position par rapport aux sommets du triangle ABC' 7

Cette question, tres générale, peut étre abordée par un probleme particu-
lier.
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1. Dans le plan muni d’un repeére, on donne les trois points A, B et
C par leurs coordonnées

(), 5= () me= ()

2. Dans 'espace muni d’un repere, on donne les trois points A, B et
C par leurs coordonnées

-1 4 1
A=| 3|, B=| -2 | et C=[ -6
5 -3 2

Dans ces deux cas, on demande de vérifier 'existence d’un point G qui
i tion GA +GB +GC = 0, et, sl existe, de détermi

vérifie la condition GA + GB + GC' = 0, et, §’il existe, de déterminer

ses coordonnées.

Démontrer ensuite que ce point G se trouve sur les médianes du triangle,

aux deux tiers a partir du sommet.

On montre tout d’abord que la relation
GA+GB+GC =7

est équivalente a

5¢ _ 04+ 0B +0C
_ 5 .

Cette deuxieme relation est obtenue facilement en remplacant GA par
OA — (ﬁ, et en procédant de méme pour GB et GC. Cette expression
établit I'existence du point G en toute généralité, et cette forme est ana-
logue a l'expression de M comme milieu du segment [AB]. Tout comme
les coordonnées du point M sont les moyennes arithmétiques des coordon-
nées correspondantes des extrémités du segment [AB], les coordonnées du
point GG sont les moyennes arithmétiques des coordonnées correspondantes

des sommets du triangle ABC. On obtient alors G = ( ) pour le

WUt L[~

probleme dans le plan et G = — celui dans 'espace.

Ol LUt ol

Remarquons que la démonstration suggérée ci-dessus permet d’établir que

la relation
GA+GB+GC =70
est équivalente a

PG

pour tout point P du plan ou de I’espace.

_PA+PB+PC
a 3

Les éleves peuvent vérifier, a titre d’exercice, que le point G trouvé, appelé
centre de gravité de ABC', est bien situé sur chacune des médianes du
triangle (et donc a leur intersection), aux deux tiers a partir du sommet.
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La propriété peut étre établie dans le cas général par un calcul vectoriel
relativement simple. Notons A’, B’ et C’ les milieux respectifs des cotés
[BC], [AC] et [AB].

Les propositions A’ est milieu de [BC]

PB + PC

) .=
si et seulement si PA" = 5

G est centre de gravité de ABC

PA+ PB+ PC
3

sont vraies quelle que soit la position du point P. Si
on place celui-ci en A, on obtient

AB + AC AB + AC
=Ty et AG =T

si et seulement si PG =

B Al c -
AA

Fig. 22 : Centre de gravité d’un triangle N
ce qui montre bien que AG = %AA’.

Centre de gravité d’un triangle®. — Le point G est le centre de gravité
du triangle ABC' si et seulement si GA+GB +GC = 0. Voici deur

autres égalités qui définissent le point G.

OA+ OB + OC
3
PA+ PB+ PC

PG = 3 pour tout point P du plan ou de l’espace.

0G =

Le centre de gravité d’un triangle se trouve sur les médianes auxr deux tiers
a partir du sommet.

Dans le plan muni d’un repére, les coordonnées du centre de gravité G du

triangle ABC', ou A = ( A ), B = ( B ) et C = ( re ) sont
YA YB Yo
TA+TB+TC
s=5 [0 ) (0 )+ ()] = (e ).
YA YB yc e e

Dans 'espace muni d’un repeére, les coordonnées du centre de gravité G du

TA rp rc
triangle ABC, ou A= | ya |, B=1| yB et C=| yo | sont

ZA ZB zC

TAt+TRtZC
1 TA rp xrc N 3 N

= — YaTYBTyYc

G= ya |+ vB | +| v 3
ZA ZB zZo %

8 Chaque fois qu’il sera question du centre de gravité d’une figure, il s’agira du centre
de gravité des sommets de cette figure (sous-entendu : affectés d’'une méme masse).
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Prolongements Centre de gravité d’un quadrilatére quelconque
possibles

Déterminer la position du centre de gravité d’'un quadrilatere quel-
conque.

Le centre de gravité de quatre points A, B, C', D est le point G tel que
GA+GB+GC+GD=10.

Ce point GG est aussi défini par la relation équivalente

O—GZO_AJFO?JFRH@T))
7 :

dans laquelle il semble naturel d’effectuer des groupements, par exemple

04,08 , OC-0D

0G =

Nous voyons ainsi apparaitre de maniere naturelle les
milieux K et M des segments [AB] et [C'D], définis
par les relations

On obtient ainsi OG = w qui situe le point

G au milieu de la médiane [KM]. L’autre fagon de
grouper

OA.0D , 0B+OC ON + 0T
OC = 2 -T2

Fig. 23

montre que le point GG se trouve aussi au milieu de la
médiane [NL].

On a ainsi démontré que le centre de gravité d’un quadrilatere quelconque
est le point d’intersection des médianes, et que celles-ci se coupent en leur
milieu.

REMARQUE. — On peut aussi voir que les médianes d'un quadrilatere
ABCD quelconque se coupent en leur milieu en prouvant au préalable que
le quadrilatere K LM N qui joint les milieux de ses cotés est un parallélo-
gramme. Cette démonstration peut également se faire vectoriellement.

Centre de gravité d’un tétraédre

Déterminer la position du centre de gravité d’un tétraedre quelconque
ABCD.
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Il s’agit donc de situer le point G tel que

Cﬂ—i—@—i—@—i—@zﬁ, ouencoreO?:Oj+O—B)ZO?+@.

Au cours de la résolution du probleme précédent, nous n’avons jamais
utilisé le fait que les points A, B, C et D étaient coplanaires. Nous pouvons
donc reprendre ces mémes calculs pour établir que le point G se trouve au
milieu des segments [KM] et [LN], ou K, L, M et N sont les milieux des
arétes [AB|, [BC], [CD] et [DA]. Un troisieme groupement des sommets
deux par deux

5%68+5§5ﬁ3 00 + 0%
0G = T2

montre que le point G se trouve aussi au milieu du segment [QR], ou @ et
R désignent les milieux des arétes [AC] et [BD]. Ceci démontre donc que,
dans un tétraedre quelconque, les segments joignant les milieux des paires
d’arétes gauches se coupent en leur milieu, et que ce point d’intersection
est le centre de gravité du tétraedre.

Dans un tétraedre, il est tout aussi naturel de grouper trois sommets, de
maniere a faire apparaitre les centres de gravité des faces triangulaires.
On écrit, par exemple, que

3(0A<0B+0C\ . 5D 30D + 0D
0G = — = 1 .

Cette relation fait intervenir D', centre de gravité de la face ABC. Elle
est encore vraie si on remplace le point O par n’importe quel point P du
plan. En particulier, en placant O au point D, on obtient

33—
EG:ZDDQ
qui indique que le point G se trouve sur le segment [DD’], aux trois quarts

a partir de D.

Une autre voie est de partir directement de 1’expression

GA+GB+GC+GD=70.
En y remplagant GA+GB +GC par 3@ , on obtient
3@ +GD =10 cest-adire DG = 3@7

qui exprime également que le point G se trouve sur le segment [DD'], aux
trois quarts a partir de D.

Si on appelle hypermédiane d’un tétraédre le segment qui joint un sommet
au centre de gravité de la face opposée, on peut donc démontrer que le
centre de gravité du tétraedre est situé sur chacune des hypermédianes,
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oy

D
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aux trois quarts a partir du sommet. Les quatre hypermédianes sont donc
concourantes en ce point.

Centre de gravité d’une pyramide

Fig. 25

On considere une pyramide SABCD de sommet
S et dont la base ABC' D est un quadrilatere quel-
conque. Déterminer la position du centre de gra-
vité de la pyramide SABCD.

La résolution des deux derniers problemes devrait
permettre aux éleves d’imaginer, puis de démontrer,
que le centre de gravité G de cette pyramide se trouve
sur le segment [SS’], ot 7 est le point d’intersection
des médianes de la base ABCD et qu’il se trouve,
sur ce segment, aux quatre cinquiemes a partir du
sommet S.

Centre de gravité d’un ensemble de points du plan ou de l’espace

Fig. 26

Pour fixer les idées, considérons cing points A, B, C,
D et E dans 'espace. Le centre de gravité de ces cingq
points est le point G tel que

GA+GB+GC+GD+GE= 0.

Ce point GG existe et est déterminé par la relation

0_65_071+()—B>+(ﬁ+@+0—E’
_ - .

Soit T le centre de gravité du triangle ABFE et S celui
du segment [C'D]. On a donc

GA+GB+GE =3GT et GC +GD = 2GS.

En remplagant, dans la relation

GA+GB+GC+GD+GE=10,
Cﬂ—i—@—i—G—E) par 3GT et @—I—@ par 2@,

on obtient

3@+2Cﬁzﬁoueneore@:§ﬁ,
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qui exprime que le centre de gravité de I’ensemble des cinq points se trouve
sur le segment qui joint les centres de gravité des groupements de trois et
de deux points.

Dans 'expression 3GT + 2GS = U), les coefficients 2 et 3 représentent le
nombre de points des groupements dont 1" et .S sont les centres de gravité.
Généralisation

Considérons un ensemble de n points du plan ou de l'espace Ai, As,

As, ..., A, et notons G le centre de gravité de ces n points. Répartis-
sons ces n points en deux groupements de p et n — p points (p < n),
A1, Ay, A, ..., Ap, de centre de gravité Gy, et Api1,Apio, ..., A, de

centre de gravité G.

Un raisonnement analogue a celui qui précede permet d’établir que
pGG1 + (n—p)GGs = 0.
On peut encore voir les choses de la maniere suivante.

0—6520—1411>+0A2>+...+OA,; _

n

(OA; + 043 + ...+ O4y) + (OAps1 + OAyyz + ...+ O4n) _

n
(OA1+OAs+..+0OA)) (OA,11+0A, 0+..+0A))

p ; E+(n—p—2= " _

n
pOG1 + (n — p)OGy

" )

C’est une autre facon de situer le point G sur le segment [G1Gs).

Voir ceux de la section 2.2, a la page 258.

2.4 Problemes d’incidence

Quelques problemes plus complexes faisant appel au méme type de rai-
sonnement qui a servi précédemment peuvent étre soumis aux éleves, si le
professeur souhaite approfondir cette matiere. En voici un exemple rela-
tif a l'intersection de deux droites du plan, traité en termes d’équations
vectorielles et paramétriques.

Dans le plan muni d’un repere, on donne les points A, B, C, P et @ et
leurs coordonnées

A= (%) m=(4) e=(2) 7= (1) e (),

Déterminer les coordonnées des points d’intersection de la droite PQ
avec les cotés du parallélogramme ABCD.




2. Géométrie analytique et calcul vectoriel 267

Précisons que les points demandés doivent appartenir aux segments [AB],
[BC], [CD] ou [DA] et non a leurs prolongements.

Le premier probleme qui se pose aux éleves est de réaliser un dessin qui
illustre la situation. Dans un repere orthonormé, ’abscisse 95 du point A
impose une unité telle que le dessin est peu utile. Certains éleves penseront
peut-étre a prendre une unité plus petite sur ’axe des abscisses que sur
I’axe des ordonnées. Ils obtiennent ainsi une figure qui, méme si elle est
imprécise, soutient le raisonnement.

¢ ™
0
R
B oA

P

Fig. 27

Trouver les coordonnées du point D ne devrait pas leur poser de probleme.
Le plus simple est de partir de I'une des équations vectorielles CD = BA

oum:@. On trouve D = < 104 )

20

La figure montre que la droite PQ coupe certainement le coté [BA] en un
point que nous notons R. Il faut donc chercher les coordonnées du point
d’ordonnée 2 sur la droite PQ. A partir de ’équation vectorielle

PR =\PQ ou OR=OP + \PQ,

et en remplacant chaque vecteur par le couple de ses composantes, on

T )

zp = 1449\
2 = 149\

Le systeme

permet de déterminer la valeur A = % qui correspond au point R et ensuite

2

Par contre, I'imprécision du dessin ne permet pas de voir si la droite PQ
passe par D, ou si elle coupe le c6té [C'D] ou le coté [AD]. Le plus simple
est de vérifier si la droite PQ passe par D. Ce n’est pas le cas car

58
les coordonnées du point R = ( 9 >

19 9

PD = < 103 ) n’est pas multiple de m = < 49 ) .
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Calculons ensuite les coordonnées du point S d’intersection des droites PQ

et CD. C’est le point d’ordonnée 20 sur la droite P@Q. On trouve ( 133’ 4 )

pour le point S. Il faut alors remarquer que ce point est a droite de D et
qu’il n’appartient donc pas au segment [C'D]. On en déduit que la droite
PQ coupe le coté [AD] en un point que nous noterons 7. La détermination
de ce point T pose un probleme nouveau. En effet, nous ne connaissons
pour T ni I'abscisse, ni 'ordonnée, ni une relation entre les deux. Nous
savons seulement que le point T est a la fois un point de la droite PQ
et un point de la droite AD. Exprimons que T est sur la droite PQ) par
I’équation vectorielle

P_T:/\m ou 07):0—P)+)\m.
Le point T appartient aussi a la droite AD, ce qui s’exprime par

ﬁ:mﬁ ou O—T:O—/i—i—u@.

L’erreur habituelle des éleves consiste a désigner par la méme lettre les
parametres dans les deux expressions de OT'. Dans ce cas, ils obtiennent
une équation vectorielle

OP + \PQ = OA + \AD

qui se révele impossible des qu’on remplace les vecteurs par les couples
de composantes. Le retour au schéma permet de comprendre qu’il n’y a
aucune raison pour que les vecteurs PT et @ soient dans le méme rapport
que les vecteurs AT et AD. 1l existe donc une valeur de A et une valeur de
1, en général différentes, telles que

OP + \PQ = OA + puAD.

En passant aux couples des composantes, nous obtenons
1 Y 49\ [ 95 n 9
1 9 )=\ 2)7" 18 )

{ 14+49\ = 95+ 9u

Le systeme

149N = 2+18y

permet de déterminer les valeurs de A et u qui correspondent au point
T. Remarquons qu’il suffit de connaitre I'une de ces deux valeurs pour
déterminer les coordonnées du point 7. Dans le systeme mis sous la forme

A9\ — 9y = 94
ON— 18y = 1,

il est facile d’éliminer p en multipliant la premiere équation par 2. Nous

obtenons ainsi A = % et les coordonnées du point T
T = b 182;49 dont les valeurs approchées sont 103,95
i 18g9><9 ’ PP 19,91 /°
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Ce point est bien sur la droite AD, entre les points A et D.

La résolution de ce probleme a permis de montrer toute la puissance des
équations vectorielles et paramétriques pour traiter des problemes d’inci-
dence. Les méthodes décrites ci-dessus peuvent s’appliquer telles quelles a
des problemes d’incidence dans ’espace. Nous en proposons a titre d’exem-
ples. Voici tout d’abord un probleme de section plane dans un cube®.

Construire la section du cube de la figure 28 (en annexe a la page 489)
par le plan PQR, ou P est situé sur 'aréte [AB] au tiers a partir de A,
@ est situé au milieu de l'aréte [BC], et R est situé au milieu de laréte
[CC’]. On demande ensuite de déterminer les coordonnées de tous les
sommets de cette section, apres avoir choisi un repere approprié.

DO co
I
AQ 1 BO
I
| R
‘ [ ]
I
I
I
I
I
R I c
7 0
AL~ P B
Fig. 28

Dans tous les exercices précédents, le repere était imposé par 1’énoncé,
puisque les points étaient donnés par des coordonnées. Par contre, pour
traiter ce dernier probleme, les éleves devront placer eux-mémes un repere.
Le plus facile est de placer 'origine sur un sommet du cube et les trois
vecteurs « de base » sur des arétes. Nous proposons, par exemple, de
placer l'origine en A, et les vecteurs « de base » de telle sorte que % =AB ,

?:zﬁet?:ﬂ. Dans ce cas,

0 1 0 0
A=l 0|, B=|1 0|, D=[1], A=1]0
0 0 0 1

On trouve ensuite

pP—=

o O wi=
O
I
O NI
NI = =

L’un des points intermédiaires V = , intersection des droites P(Q

) ’ R -
5
3
1
0

1
et DC,ou W = % , intersection des droites QR et B’C’, permet de
1

9 Des problémes de ce type sont traités sous forme synthétique dans CREM [2001b).
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calculer ensuite les points S =

= ol

sur Varéte C'D', T =

—_ s O

sur

laréte A'D’ et U = sur Varéte AA’.

Bl= O O

Cette méthode de calcul reproduit les étapes de la construction de la sec-
tion, mais le calcul vectoriel permet aussi de travailler d’emblée dans le plan
de section PQR. En effet, les vecteurs @ , W et CW peuvent s’exprimer
comme combinaisons linéaires des vecteurs Q? et QR.

Pour la détermination du point S, par exemple, on a

Ts 1 % 0
@zkéﬁ—kuéﬁ ou ys | =1 5 | =X 3 |+n]| 3
zs 0 0 %

Sachant que yg = 1 et que zg = 1, on détermine successivement p = 2
et A = 1, puis zg = % Cette méthode peut sembler plus compliquée
puisqu’elle met en jeu un systeéme a deux parametres, mais d’autre part le
méme systeme permet également de calculer les coordonnées des points T
et U.

Les valeurs des coordonnées des sommets de la section permettent de situer
avec précision ces points sur les arétes. Par exemple S se trouve au tiers de
[D'C’] a partir de D'. Si tous les éléves n’ont pas choisi le méme repere, ce
peut étre l'occasion de leur faire remarquer que, méme si les coordonnées
des points de la section sont différentes, 'interprétation de leur position
sur les arétes du cube reste identique.

Passons maintenant a un autre type de questions. La mise en ceuvre des
équations vectorielles et paramétriques permet aussi de déterminer les po-
sitions relatives des droites de I’espace.

Dans I’espace muni d’un repere OIJ K, on donne
1 2 4
A= 0 y B = 1 ; C= 3 )
1 0 -2
-2 -3 -2
D=| -3 ]|, E= 2 |1, F= 11,
4 1 3
-1 -2 -1
G = 4 |, P= 1], Q= 0
-1 -2 0
Quelles sont les positions relatives des droites CD, EF, EG et PQ par
rapport & la droite AB 7

Rappelons que des droites de l’espace peuvent étre paralleles, sécantes
ou gauches. Les éleves doivent imaginer une méthode pour déterminer la
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position de chacune des droites par rapport a AB. Le plus simple est
de calculer les coordonnées d’un vecteur sur chacune des droites, car ce
premier travail permet de voir facilement quelles sont les droites qui ont
la méme direction que AB. On obtient

1 —6 1
AB = 1|, cbp=| -6 |, EF=[ -1 |,
~1 6 2

2 1
EG = 2 |, PO=| -1

-2 2

Comme CD = —6AD et que EG = 2AB , on peut conclure que les droites
AB, CD et EG ont la méme direction. Il s’agit alors de préciser si elles
sont paralleles disjointes ou confondues. Une stratégie consiste a vérifier si
I'un des points C', D, E ou G est aligné avec A et B (voir la synthese de

3
la page 255). Le calcul des composantes des vecteurs AC = 3 et
-3
—4
AE = 2 | montre que AC =348 , tandis que AE n'est pas multiple
0

de AB. En conclusion, les points A, B, C' et D sont alignés, alors que les
droites AB et EG sont paralleles disjointes.

Plutot que d’utiliser une condition d’alignement, les éleves auront peut-
étre 1'idée de vérifier si les droites AB et CD, puis AB et EG, ont un
point commun. Si 7" est un point commun aux droites AB et CD, il vérifie
les équations vectorielles

AT = MAB ou 072074—)\/1_3),
Cﬁ:,uC‘D) ou O?‘:O?+M@.

En égalant les expressions de OT et en remplacant les vecteurs par leurs
composantes, on obtient

1 1 4 —6
+ A 1| = 3 | +ul —6
1 -1 -2 6

Le systeme qui en découle, a savoir

A+6p = 3
A+6p = 3
—A—6p = -3

est vérifié par une infinité de valeurs des parametres A et p, du moment que
A = —6pu + 3. Cela montre bien qu’il y a une infinité de points communs
aux droites AB et C'D et que les points A, B, C, D sont alignés. A chaque
valeur de A qui situe un point T" par rapport & A et B correspond une seule
valeur de p qui situe ce méme point 7" par rapport a C et D.
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En recherchant de la méme maniere un point d’intersection S aux droites
AB et EG, on obtient 1’équation vectorielle

OA + \AB = OE + uEG,

et en termes de composantes

1 1 -3 2
0| +A 1] = 2 | +p 2
1 -1 1 -2
Le systeme
A—=2pu = —4
A=2p = 2
“A+2p = 0

est cette fois impossible, ce qui montre bien que les droites de méme di-
rection AB et EG sont paralleles disjointes.

Nous avons déja vu que les droites EF et PQ) n’ont pas la méme direction
que la droite AB. C’est donc l'existence d’un éventuel point d’intersection
qui nous permettra de savoir si elles sont gauches ou sécantes avec AB.

S’il existe un point L commun aux droites AB et EF, il vérifie I’équation

OL = OA + \AB = OE + uEF,

et en termes de composantes

vectorielle

1 1 -3 1
0 ] +A 1] = 2 | +pl| -1
1 -1 1 2

Pour résoudre le systeme

A—p = —4
Ap = 2
“A—=2p = 0
qui en découle, on détermine les valeurs A\ = —1 et p = 3 qui vérifient

les deux premieres équations. Ces valeurs devraient également vérifier la
troisieme équation pour étre solutions du systéme, mais ce n’est pas le cas.
On dit que le systeme est incompatible. Aucune valeur de A\ et de p ne
convient, les droites AB et EF sont donc gauches.

On reprend le méme raisonnement pour un éventuel point £ commun aux
droites AB et PQ. 11 vérifie I’équation vectorielle

OR = OA + MAB = OP + 1uPQ,

et en termes de composantes
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Dans le systeme qui s’ensuit,

A—p = =3
Adp = 1
—A—=2u = =3,
les valeurs A = —1 et p = 2 qui vérifient les deux premieres équations du

systeme vérifient également la troisieme équation. Cette fois le systeme est
compatible. Le point d’intersection R est obtenu en remplagant, soit A par

—1 dans OR = OjJr)u@, soit p par 2 dans OFR = OT%LMP@. On obtient

R=| -1
2

Ce travail a permis de rencontrer de maniére naturelle des systemes de 3
équations a 2 inconnues, en donnant du sens aux différents cas qui peuvent
se présenter, tout en évoquant I’aspect vectoriel des positions relatives des
droites de I'espace.

Un autre type de problemes d’incidence dans 'espace'” est celui de la
recherche du point de percée d’une droite dans un plan. Nous proposons
de I'aborder par un exercice comme celui-ci.

On considere le tétracdre ABCD, R le point situé sur aréte [AD] au
tiers a partir de D et E le point du plan ABC tel que BACE forme un
parallélogramme. On demande de déterminer le point de percée P de
la droite RE dans la face BCD, de situer ce point avec précision sur la
droite RE et dans la face BC' D, en utilisant un repere approprié.

Le dessin de la figure 29 est reproduit en annexe a la page 490.

D

Fig. 29

La nature du probleme nous conduit a renoncer a I’emploi d’'un repere
orthonormé. Il vaut mieux, si on veut éviter de trop longs calculs, se donner
un repere dont 'origine est un sommet du tétraedre et dont les vecteurs
« de base » sont sur les arétes de celui-ci. On peut, par exemple choisir

10 Des problemes de ce type sont traités sous forme synthétique dans CREM [2001b)].



274

Chapitre 8. Introduction au calcul vectoriel

de travailler dans le rep;ere ABCD. Les vecteurs « de base » sont alors
7= A—B), 7 — AC et k = AD. Dans ce repere, les points A, B, C, D,
FE et R ont pour coordonnées

0 1 0
A=|o0 |, B=|o0 |, c=|1],

0 0 0

0 1 0
D=|0|, E=|1], R=|0

1 0 2

)

[—

Comume le point P appartient a la droite RE, il vérifie ’équation vectorielle

RP = A\RE ou AP = AR+ \RE.

De plus nous avons vu que tout vecteur d’un plan pouvait étre exprimé
comme combinaison linéaire de deux vecteurs « de base » de ce plan. Dans
le plan BC'D, on peut donc exprimer le vecteur BP comme combinaison
lindaire des vecteurs BC et BD. L’équation vectorielle

WZMB?+VEﬁ ou @:E—I—MB?—FVBﬁ

exprime donc bien que le point P appartient au plan BC'D. On exprime
que P appartient a la fois a la droite RE et au plan BC'D en égalant les
deux expressions de 1@, ce qui donne, en passant aux composantes des
vecteurs,

0 1 1 —1 -1
0|+l L |=(0]+u|l 1 ]+v| o0
2 -2 0 0 1

Le systeme qui en découle,

Atp+v = 1
A— U = 0
2 2
-3\ —v = —3

a pour solution \ = i,u = i,y = % Les coordonnées du point P sont

dans le repere choisi. Elles sont obtenues en remplagant, par exem-

(NN

ple, A\ par i dans 'expression de AP. Les valeurs des parametres peuvent
cependant étre interprétées indépendamment du repere. Le fait que

ﬁ:iﬁ

signifie que le point P se trouve sur le segment [RE] au quart a partir de
R. Dans la face BC'D, on peut situer le point P a partir de la relation

ﬁ:%B—cw%Bﬁ.
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Comment s’y
prendre ¢

2.5 Quelques transformations du plan et de ’espace

Dans le plan muni d’un repére, on donne les points A, B et C' par leurs

coordonnées
2 1 —4
a=(3) m=() e=(1)

Représenter graphiquement les points suivants et calculer leurs coor-
données, sachant que

1. D est le point tel que CABD forme un parallélogramme,
2. A’ est 'image de A par la translation 7 =BC ,

3. B’ est le symétrique de B par rapport & A,
4

. C" est 'image de C par une homothétie de centre A et de rapport
3

1
Dans I’espace muni d’un repere, on donne les points A, B et C par leurs
coordonnées

2 1 4
A=|3 )|, B=| -2 |, c= 1
1 -5 -2

Calculer les coordonnées des points D, A’, B’ et C' définis de la méme
maniere que dans le plan.

En déduire, apres généralisation, ’expression analytique des transla-
tions, symétries centrales et homothéties dans le plan et dans ’espace.

Voici les résultats pour le plan.

Fig. 30 : Transformations du plan
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1. L’équation CD = AB nous donne < 4

) pour les coordonnées du

point D.
ey -3
2. L’équation AA" = BC nous donne ¢ | pour les coordonnées du
point A’.
3. L’équation AB' = BA ou BB = 2B4 nous donne ( 2 > pour les
coordonnées du point B’.

—
4. L’équation AC" = —%m nous donne (

vl s

) pour les coordonnées

du point C".

Voici les résultats pour 'espace.

-5
1. L’équation CD = AB nous donne | —4 pour les coordonnées du
-8
point D.
-3
, . T P
2. L’équation AA" = BC nous donne 6 | pour les coordonnées du
4
point A’.
. Y] 2y Y ;
3. L’équation AB" = BA ou BB' = 2BA nous donne | 8 pour les
7
coordonnées du point B’.
13
, . A 3 % ,
4. L’équation AC" = —ZE nous donne 5 pour les coordonnées
13
4
du point C".
Généralisation

/
Considérons les points P et P’ de coordonnées < z > et ( Zj, )

. . t
1. P’ est I'image de P par la translation ¢ de composantes ( tx >
y

—
si et seulement si PP = ¢

/
si et seulement si (x,>:<x>_|_<t$ )
Y Y ty

2. P’ est I'image de P par la symétrie de centre C' de coordonnées

(3)

-
si et seulement si CP' = ﬁ

/
si et seulement si ($/>:2<xc>_<x>‘
Yy Yyc Yy
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3. P’ est 'image de P par I’homothétie de centre C' de coordonnées

( re ) et de rapport k
Yo

si et seulement si C'—P7 = k‘@

!
si et seulement si <x,>=k‘(x)+(1—k')<xc>-
Yy Y Yo

Les expressions correspondantes dans ’espace sont obtenues sans peine en
ajoutant la troisieme composante.

Ce dernier travail montre que le calcul vectoriel permet également d’ex-
primer de maniere extrémement concise des propriétés de translation, de
symétrie centrale et d’homothétie. Il permet d’en dégager facilement les
expressions analytiques, aussi bien dans ’espace que dans le plan. Nous
proposons, pour terminer, deux applications qui mettent en ceuvre ces
transformations.

Dans un plan, on considere trois points non alignés A, B et M. Au point
M, on associe le point R milieu de [BM], le point S, symétrique de R
par rapport a A, ainsi que le point P, point d’intersection des droites
MS et AB. Qu’advient-il du point P lorsque le point M se déplace dans
le plan?

Fig. 31

Il semble naturel de travailler dans un repere dont l'origine est A et ou
—

. . 0
i = AD. Dans ce cas, les points A et B ont pour coordonnées < 0 ) et

1
< 0 ) Le point mobile M sera noté < 2 ) On obtient successivement

A+l _ A+l
R:< 2&) et S:< _2ﬁ >
2 2

En exprimant que le point P est aligné avec M et S, on obtient ’équation

vectorielle
MP =kMS ou OP = OM + kMS,
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ce qui donne pour les coordonnées du point P

()l ()= (),

Comme le point P appartient & la droite AB, son ordonnée est nulle, ce

qui permet de déterminer la valeur de k qui vaut % En remplacant k par
_1
% dans les coordonnées de P, on trouve < ?(’) > Le point P est donc un

point fixe, situé sur la droite AB, et tel que AP = —%A—B>

Dans un triangle ABC, on note H, J, K les milieux des cotés [BC], [C 4]
et [AB], G le centre de gravité. Le point M étant un point quelconque
du plan, on note P, @, R les symétriques de M par rapport a H, J, K.
Montrer que

1. les segments [AP], [BQ] et [CR] ont méme milieu O ;
2. les trois points M, GG, O sont alignés.

M

Fig. 52

Placons le repere en BH K, pour éviter d’introduire immédiatement des
coordonnées fractionnaires. On a donc

= (3) = () (1) o= (3). - (2)

. . A .
Le point quelconque M est noté M = < i > On obtient alors

(1) = (P0) e=(20) = (L))
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FEchos des classes

En calculant les coordonnées des milieux de [BQ)], de [AP] et de [CR], on
A

trouve chaque fois ( ), ces trois segments ont donc bien le méme

2
l=3

_ A
milieu O = (i E) Il reste & calculer
2
2 2y 1A
G:(g>,M—c$:<g ),cm: 17
3 3 H 372

Comme MG = 2@, on peut en déduire que les points M, G et O sont
alignés, et que G se trouve sur [M O], aux deux tiers a partir de M.

Ce dernier résultat, qui peut sembler inattendu quand on travaille vec-
toriellement, apparait de maniere naturelle au cours d’une démonstration
synthétique des propriétés annoncées. Voici quelques indications qui per-
mettent de rédiger une telle démonstration.

Dans le triangle ABC, le segment [JH] est parallele au segment [AB] et
|JH| = A8

Dans le triangle M P(Q), le segment [JH]| est parallele au segment [QP)] et
|TH| = €71,

On en déduit que les segments [AB] et [QP] sont paralleles et de méme
longueur. Le quadrilatere ABP(Q est donc un parallélogramme dont les
diagonales [AP] et [BQ)] se coupent en leur milieu.

On démontre de méme que BCQR est un parallélogramme dont les dia-
gonales [CR] et [BQ)] se coupent en leur milieu.

Par conséquent, les trois segments [AP], [BQ] et [C'R] ont méme milieu O.

Le point GG, centre de gravité du triangle ABC, se trouve sur la médiane
[BJ] aux deux tiers a partir de B. Comme [BJ] est aussi médiane du
triangle BM @, G est aussi le centre de gravité de ce triangle et se trouve
donc également sur la médiane [M O], aux deux tiers a partir de M. Les
trois points M, G, O sont donc alignés.

Voir ceux de la section 2.2, a la page 258.
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LE PRODUIT SCALAIRE

1 Des polygones réguliers au produit scalaire

Faire apparaitre des relations algébriques entre les coordonnées des som-
mets des polygones réguliers. Pour chaque paire de vecteurs, trouver une
expression algébrique qui ne dépend que de leurs longueurs et de I'angle
formé par leurs directions.

La somme des vecteurs et le produit d'un vecteur par un scalaire sont les
deux opérations qui permettent de construire la géométrie affine par calcul.
Le produit scalaire que nous introduisons ici permet de méme d’établir par
calcul les propriétés euclidiennes (voir a ce sujet le chapitre 15).

Nous cherchons ici a faire émerger les différentes formes du produit scalaire
a partir de figures géométriques simples et a donner du sens a ’expression
du produit scalaire de deux vecteurs dans une base orthonormée.

Matiéres couvertes. — La regle des cosinus, encore appelée théoréme
de Pythagore généralisé et la formule du cosinus de la différence de deux
angles.

Le produit scalaire de deux vecteurs dans le plan et dans l’espace, exprimé
sous des formes faisant intervenir

— les composantes des vecteurs dans un repeére orthonormé,

— la fonction cosinus,

— la projection d’un vecteur sur [’autre.

Les propriétés du produit scalaire et leur justification dans un contexte

géométrique.

Compétences. — Savoir, connaitre, définir : le calcul vectoriel dans le
plan et dans espace faisant intervenir les composantes des vecteurs et le
produit scalaire de deux vecteurs.

Prérequis. — Les coordonnées d’un point et les composantes d’un vecteur
dans une base orthonormée.

La trigonométrie dans le triangle rectangle.

280
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Comment s’y

prendre ¢

Les nombres trigonométriques d’un angle orienté rapporté au cercle trigo-
nométrique et leurs valeurs remarquables.

Matériel. — Une calculatrice scientifique.

1.1 Emergence d’une formule

Tout au long de ce chapitre, nous travaillerons dans le plan métrique, c’est-
a-dire dans le plan muni d’une unité de longueur.

Le début de cette activité peut sembler tres directif. Il a pour but de
confronter les éleves avec une série de figures géométriques simples : des
polygones réguliers centrés a ’origine d’un repere orthonormé. La recherche
des coordonnées des sommets de ces polygones fournit I’'occasion d’utiliser
les sinus et cosinus de quelques angles orientés rapportés au cercle trigo-
nométrique dans un contexte de géométrie analytique. L’observation des
figures et des tableaux de nombres obtenus a partir des coordonnées de
leurs sommets devrait permettre de dégager une formulation du produit
scalaire dans une base orthonormée, ainsi que son interprétation.

Représenter un carré ABCD inscrit dans un cercle de rayon 1 centré a
Porigine O d’un repére orthonormé. Indiquer les coordonnées des som-
mets du carré dans ce repere.

Certains éleves auront placé les sommets du carré sur les axes car, dans
cette position, les coordonnées des sommets semblent évidentes. Ils ob-
tiennent alors la figure 1.

D’autres auront eu l'idée de placer les médianes du carré sur les axes et
obtiendront la figure 2.

Il est possible que d’autres positions du carré soient proposées spontané-
ment. Sinon, le professeur demande de dessiner aussi le carré dont une
diagonale forme un angle de 30° avec I’axe des = (figure 3).

v : v ' /30
A

Fig. 1

Fig. 2 Fig. 8



282

Chapitre 9. Le produit scalaire

Pour chacun des carrés obtenus, placer les coordonnées des sommets
dans un tableau comme celui présenté ci-dessous pour le carré de la fi-
gure 1 et observer les régularités que présentent ces tableaux de nombres.
Quelles sont les régularités qui persistent lorsque le carré est placé dans
une position plus générale ?

A|/B| C | D
x| 1] 0] -1 0
y| 0 1 0| -1

Les connaissances des éleves en trigonométrie devraient leur permettre de
construire les tableaux suivants pour les carrés des figures 2 et 3.

C
V3
2
1

wlv—*w‘% =~

Sl - | @

oloels[®
”‘%m - S

ol
S
olgels|

Les deux premiers tableaux présentent des régularités qui proviennent de
la position particuliere du carré par rapport aux axes. Dans le premier,
les seules valeurs qui apparaissent sont 1, 0 et —1; dans le second, il n’y
a que deux valeurs opposées. Le tableau de nombres associé a la figure 3,
moins particuliere que les deux précédentes, donne une meilleure idée des
régularités qu’on pourrait observer dans le cas général. On n’y voit que
deux valeurs différentes en valeur absolue : % et \/Tg . Ces deux nombres
reviennent dans chaque colonne, en changeant de place a chaque passage
d’une colonne a la suivante et avec les signes « moins » aux mémes endroits
que dans le tableau précédent. Pour aborder le cas général, on suggere aux
éleves de dessiner un carré dont une diagonale forme un angle quelconque

« avec I'axe des x. Ils obtiennent la figure 4 et le tableau qui s’y rapporte.

Fig. 4

o A A B C D
T | cosa | —sina | —cos« sin «v
Yy | sina cosa | —sina | —cos«
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Il sera sans doute utile de faire observer aux éleves que les coordonnées
de chacun des sommets du carré vérifient la relation 22 + y? = 1, puisque
cos’?a +sin?a = 1, et que cette relation est liée au fait que le carré est
inscrit dans un cercle de rayon 1.

Et si le cercle circonscrit au carré n’est plus de rayon 17
Dessiner un carré inscrit dans un cercle centré a 1’origine et dont le som-

. ‘ a
met A dans le premier quadrant a pour coordonnées <

b > ; compléter

ensuite le tableau qui s’y rapporte.

Il faudra sans doute susciter une discussion dans la classe pour amener les
éleves a observer que ce dernier carré fournit un cas plus général que les
précédents, le rayon du cercle circonscrit au carré valant v a? + b2, quantité
qui n’est pas nécessairement égale a 1.

Les moyens qui sont a la disposition des éleves pour déterminer les coordon-
nées des sommets ne manquent pas. Ils peuvent, par exemple, considérer
les triangles rectangles dont les hypoténuses sont les segments OA, OB,
OC et OD, et dont les cotés sont paralleles aux axes. La rotation de 90°
autour de O qui amene chacun de ces triangles sur le suivant permet de
justifier I’égalité des longueurs des cotés de ces triangles. Il reste alors a dé-
terminer les signes pour en déduire les coordonnées des sommets du carré.
La figure 5 montre comment passer des coordonnées du point A a celles
du point B.

Fig. 5

Voici le tableau obtenu.

Al B | C | D
z| al|—=b| —a b
yl| b al| —=b| —a

Une phase de discussion sera sans doute encore nécessaire pour que toute
la classe soit convaincue que ce tableau généralise tous les précédents.

On demande alors aux éleves d’analyser ce tableau, en particulier les sous-
tableaux formés de deux colonnes consécutives. Leur faire expliquer com-
ment on passe d’une colonne a la suivante éclaire assez bien la question.
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Remarquons au passage que le tableau est cyclique et qu’on peut passer
de la derniere colonne a la premiere par le méme procédé. Le but est de
trouver une relation toujours vérifiée par les coordonnées de deux sommets
consécutifs du carré. Les éleves devraient finalement parvenir a la conclu-
sion que le produit des abscisses est toujours égal a 'opposé du produit
des ordonnées. Pour formuler mathématiquement cette observation sous

> sont les
Y2

coordonnées de deux sommets consécutifs du carré, on écrira d’abord

la forme d’une relation liant x1,y1, 2, Y2, ou ( yl ) et ( 2
1

T1x2 = —Yy1Yy2 et ensuite x1x9 + y1y2 = 0.

La méme expression calculée sur les coordonnées de deux sommets diamé-
tralement opposés donne

—1 pour tous les carrés inscrits dans un cercle de rayon 1;

—(a® 4 b?) = —r? dans le cas général.

Que se passe-t-il si le nombre de cotés est plus grand que quatre?
Les tableaux de nombres obtenus a partir des coordonnées des som-
mets d’autres polygones réguliers présentent-ils de telles régularités?
Qu’advient-il de la relation zix2 + y1y2 = 07 Que vaut l'expression
T1T9 + Y12 lorsqu’on la calcule pour différentes paires de sommets ?

Examinons, par exemple, un hexagone inscrit dans un cercle de rayon 1 et
centré en O. C’est un polygone dont la construction est bien connue des
éleves. La figure 6 montre un hexagone dont un diametre coincide avec
I’axe des x et la figure 7 montre un hexagone dont un diametre forme un
angle de 12° avec 'axe des =z.

Fig. 6 Fig. 7

Ce sont les valeurs particulieres des sinus et cosinus des multiples de 60°
qui fournissent les coordonnées des sommets de ’hexagone de la figure 6, et
pour ’hexagone de la figure 7, les coordonnées des sommets sont exprimées
sous la forme (cos 12°,sin 12°), (cos 72°,sin 72°), ...

On note les coordonnées des sommets dans un tableau de la forme
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T

Y

122 + Y192 ‘

Y1 Y2
de I’hexagone.

N T ) ’ , .
ou < > et < > sont les coordonnées de deux sommets consécutifs

Des régularités dans le tableau des coordonnées n’apparaissent plus de ma-
niere aussi évidente que pour le carré ; par contre, on voit que ’expression
r1T9 + y1y2 calculée pour les coordonnées de deux sommets consécutifs
d’un hexagone vaut toujours 0,5.

La méme expression x1x2 + y1y2 est également calculée pour les coordon-
nées de différentes paires de sommets non consécutifs de I’hexagone.

Les résultats obtenus peuvent étre regroupés de la maniere suivante : 1’ex-
pression x1x2 + y1y2 vaut

0, 5 lorsque ( :?jl ) et ( 22 ) sont les coordonnées de deux sommets
1 2

consécutifs de 'hexagone ;

—0, 5 lorsque < zl > et ( 22 > sont les coordonnées de deux som-
1 2

mets de ’hexagone situés a 120° 'un de autre;

—1 lorsque < ?/1 > et ( zQ ) sont les coordonnées de deux sommets
1 2

diamétralement opposés de ’hexagone.
On commence alors & penser que 'expression x1x2 + y1y2 est liée a 'angle
formé par les vecteurs d’origine O et dont les extrémités sont les sommets
d’un polygone inscrit dans un cercle de rayon 1. Il serait intéressant de
connaitre la valeur de I’expression x1x9 + y1y2 si 'angle formé par les vec-
teurs considérés vaut 0°, c’est-a-dire lorsque x1 = x2 et y; = y2. On obtient

alors % +y? = 1 dans tous les cas ot le point de coordonnées < yl > est &
1

distance 1 de O. En tenant compte de cette derniere observation, on dresse
le tableau suivant.

angle | x122 + Y192
0° 1
90° 0
180° —1
60° 0,5
120° ~0,5

Ce tableau devrait permettre de conjecturer que
Tr1x2 + Y1Yy2 = COsq,
ou « est I'angle formé par les vecteurs OP; et OP,, Py et P, étant des

points situés a distance 1 de 'origine et de coordonnées respectives ( Y >
1
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et < 22 ) On désignera par « longueur d’un vecteur » la longueur du
2

segment qui joint son origine a son extrémité. Ceci nous permet d’énoncer
la conjecture sous la forme suivante,

T1T2 + Y1Y2 = COs &,
ou « est I'angle formé par les vecteurs de longueur 1 et de composantes
Y1 Y2
L’exemple du carré inscrit dans un cercle de rayon différent de 1 montre

bien que la longueur des vecteurs joue également un role dans la valeur de
I’expression x1x2 + y1¥y2-

Quelle signification peut-on donner a I’expression zixe + y1y2 lorsque
les vecteurs sont de longueurs différentes (et différentes de 1) ?

B 3 Pour soutenir le réflexion des éleves, on leur pré-
7l sente la figure 8, qui montre deux carrés,
Ny | e |'un inscrit dans un cercle de rayon 3 et dont
c/ oV ENCA une diagonale coincide avec 'axe des z,
G, o 1/ e 'autre inscrit dans un cercle de rayon 2 et
dont une diagonale forme un angle « avec
' I'axe des =x.
H
7 Les coordonnées des sommets des deux carrés sont
rassemblées dans le tableau suivant.
Fig. 8
A E B F C G D H
T 3 2cos a 0 —2sina -3 —2cosa 0 2sin a
Y 0 2sin 3 2cosa 0 —2sina -3 —2cosa
1% + Y1Y2 6 cos o 6 sin a 6cosa 6sin « 6 cos « 6 sin o 6 cos «

L’expression #? + y2 qui valait 1 pour les vecteurs de longueur 1, vaut
a présent 9 pour les sommets du carré ABCD et 4 pour ceux du carré
EFGH. D’une maniere générale, le théoreme de Pythagore nous indique

T . ,
P > , expression x%,—l—yl% est égale

que, pour un point P de coordonnée (
au carré de sa distance a 'origine |OP|, ou encore au carré de la longueur

du vecteur OP. La longueur d’un vecteur de composantes ( f}l ) vaut
1

donc /a9 + yi.
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Le tableau permet également de vérifier que
T1T2 +y1y2 = 3 -2 - cosa

pour les paires de sommets A et E, Bet F, C et G et enfin D et H; et
que
s
122 +Yy1y2 = 3-2-sinaw =3 -2 - cos (5—04)
pour les paires de sommets E/et\ B, F et C, Get D et, pour terminer, H
et A, ot (§ — a) est 'angle FOB.
Ceci devrait inciter les éleves a conjecturer que 'expression x1xo+1y1y2 vaut
le produit des longueurs des vecteurs dont les composantes sont :21
1
et ( ?332 >, multiplié par le cosinus de l'angle formé par les directions de
2
ces deux vecteurs.

Cette expression xi1x9 + y1y2 est appelée le produit scalaire des vecteurs

€1 x2 ,
7 et U3 de composantes et dans une base orthonormée
U1 Y2
et est notée! < 7|3 >.
La conjecture peut donc s’écrire
— — —
< U7|T3 >= z22 4+ y1yo = |07 - || T3] - cos @

ou |77 || et || o3| sont les longueurs des vecteurs o7 et U3 et 6 'angle formé
par les directions de ces deux vecteurs. Nous avons montré que ||o7|| et
| T3 || valent respectivement \/x? + y? et \/x3 + y3.

1.2 Les trois formes du produit scalaire

Généralisons la situation observée pour les vecteurs OA et OF de la figure
8 dans le but d’obtenir une premiere forme du produit scalaire faisant
intervenir les directions des vecteurs.

Considérons deux vecteurs @ et b formant avec I'axe des x des angles
orientés « et 3. Dessinons ces vecteurs de telle sorte que leur origine coin-
cide avec 'origine O du repere orthonormé : @ = OA et b = OB. Nous
savons que dans ce cas, les composantes des vecteurs sont égales aux co-
ordonnées de leurs extrémités A et B. Les relations trigonométriques dans
les triangles rectangles OAA’ et OBB’ nous donnent les coordonnées des

! Le choix de la notation < 7|73 > pour le produit scalaire de deux vecteurs n’a
rien d’impératif. Nous I’avons adoptée pour bien distinguer cette opération de la multi-
plication dans les réels et de la multiplication d’un vecteur par un scalaire. En effet, il
s’agit d’une opération tout a fait nouvelle qui, a deux vecteurs, associe un nombre. Ce
nombre dépend de la longueur des deux vecteurs et de ’angle formé par leurs directions.
Ceci s’écarte notablement d’une multiplication au sens usuel. De plus, cette notation se
rapproche de celles habituellement utilisées pour les formes bilinéaires dans les ouvrages
d’algebre linéaire.
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points A et B, et donc les composantes des vecteurs @ et 7, qui sont
respectivement

(I @leosa 5 _ ([ ]lcosp
U |I@|sinc N ||7Hsinﬂ ’
ou || @] et H?H sont les longueurs des vecteurs @ et b .

Fig. 10 Fig. 11

Le produit scalaire de ces deux vecteurs vaut donc

—

< @b >=||@|||| D ||(cos acos B + sin asin B).

Or, nous avions conjecturé que
<@ >=||@||| T cosb

ou 0 est angle formé par les vecteurs @ et 7, qui vaut o — 8 dans le cas
de la figure 10 et 8 — a dans la figure 11. Remarquons que cos(a — () =
cos(f — «). La conjecture est donc établie si les éléves connaissent la for-
mule qui exprime cos(a — 3) en fonction des nombres trigonométriques de
a et (. Si ce n’est pas le cas, nous proposons ci-dessous une démonstration
de la conjecture a partir de la régle des cosinus, encore appelée théoréme
de Pythagore généralisé. Nous présentons dans la section 1.5 a la page 295
une démonstration de ce dernier théoreme telle qu’elle apparait dans Les
Eléments d’EUCLIDE. Remarquons que la comparaison des deux expres-
sions de < E’]? > ci-dessus nous permettra de déduire la formule du
cosinus de la différence de deux angles, des que la conjecture sera établie.

Démonstration de la conjecture

Nous proposons ici une facon d’établir le lien entre les deux premieres
formes du produit scalaire,

< @Y >=xmo+yye et < @0 >=|@| b | cosb.

Considérons un triangle quelconque ABC' tel que les composantes des vec-

teurs AD et AC soient ( Zl ) et ( :22 > Celles-ci sont indépendantes
1 2
de la position de l'origine du repere. Nous pouvons donc placer 1'origine

du repere en A sans nuire a la généralité. Dans ce cas, les coordonnées des
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c(32)

0
A8

Fig. 12

points B et C' sont également ( 1 > et < 2 ) et les composantes de

n Y2
BC valent ( 222 i Zi > . En calculant le carré de la longueur du coté BC,
on trouve
|BOP* = (22 —a1)" + (32 — 1)
B(;l) = 25+ — 232 + Y5 + U5 — 2y192
1

= x% + y% + a:% + y% — 2(z122 + Y1Y2)
= |AB‘2 + ‘AC’Q — 2(.%1.%’2 + ylyg).

En comparant cette derniere égalité avec le calcul de |BC|? par la regle
des cosinus,

|BC|> = |ABJ? + |AC|?> — 2|AB| - |AC| - cos A,
on établit 1’égalité

122 + y1y2 = |AB| - |AC| - cos A.

Si on change de repére orthonormé, les composantes des vecteurs AB et
AC changent de valeurs, mais l'expression x1x2 + y1yo reste invariante et
vaut toujours |[AB| - |AC| - cos A.

Forme du produit scalaire faisant intervenir la projection ortho-
gonale d’un vecteur sur l’autre

Il reste a faire le lien avec la forme du produit scalaire qui fait intervenir
la projection d’un vecteur sur l'autre.

Les figures montrent que, dans I’expression
< @b >= @] 7l cost,

||7|| cos 6 représente la longueur |OB’| de la projection du vecteur b sur
la direction du vecteur @, munie du signe + si I'angle 0 est aigu et du
signe — si I'angle 8 est obtus. On peut encore interpréter cela en disant que
le signe est + si le vecteur @ et la projection de D sur @ sont de méme
sens, et que le signe est — g’ils sont de sens contraires. De la méme maniere,
|| /@’ || cos O représente lagngueur |OA’| de la projection du vecteur @ sur
la direction du vecteur b, munie du signe adéquat (figures 13 et 14).
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Synthése

Si @ et b sont deux vecteurs de composantes respectives < zl > et ( f/Q ) en base ortho-
1 2

7 . . —_ -5 97 . .
normée, le produit scalaire des vecteurs @ et b peut s’écrire sous les formes suivantes :

<@V > = mzatuyiye
—
= (@Il o[ cos®
= (signe)|OA|-|OB'| = (signe)|OB| - |0A’|
Dans cette derniere forme, |OA|, |OB|, |OA’| et |OB’| représentent les longueurs des vecteurs

a, ?, et des projections orthogonales de chacun d’eux sur la direction de l'autre (voir figures
13 et 14). Le signe est

+ si angle 0 est aigu, ou encore, si 'un des vecteurs et la projection de 'autre sur
celui-ci sont de méme sens,

— si 'angle 0 est obtus, ou encore, si I'un des vecteurs et la projection de 'autre sur
celui-ci sont de sens contraires.

N - . .
Les valeurs || @’|| = /2] + yf et || b'|| = /23 + y3 qui représentent les longueurs des vecteurs
— , — .
a’ et b sont encore appelées norme de @’ et norme de b . D’autre part, si les composantes

des vecteurs @ et ? sont écrites sous la forme
(I @eosa ) 5 _ [ I]lcosp
—\ | @ sina D sing )

7 . 7 ’ H .
a et B étant les angles orientés formés par les vecteurs @ et b avec l'axe des z (voir les

figures 10 et 11), le produit scalaire de ces deux vecteurs vaut alors
<@ >= || @|||| D ||(cos acos B + sin asin ).
Comme 0 est égal a a« — 3 ou a 8 — «, la comparaison de cette derniere égalité avec
< @Y >= @ cosb
permet d’établir la formule donnant le cosinus de la différence de deux angles, a savoir

cos(a — f3) = cos(f — a) = cos acos 3 + sin asin 3.

Extenston du produit scalaire a l’espace

Deux vecteurs de I'espace, amenés dans une position ou leurs origines coin-
cident en un point quelconque de l'espace, déterminent un plan. Dans ce
plan, leur produit scalaire vaut donc

—
b

.
<@ b >= @[] cos,
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ou 0 désigne I'angle formé par leurs directions. Montrons que si les com-
1 T2

@ et b sont respectivement U1 et y2 |,

posantes des vecteurs
Z1 Z9
leur produit scalaire peut s’écrire

N
<@ b >=zza+ y1y2 + 2120

Il suffit pour cela d’adapter la démonstration de la conjecture dans le plan
au cas ou ABC est un triangle de ’espace.

Considérons un triangle ABC quelconque dans I'espace tel que les compo-

1 x2
santes des vecteurs AD et AC' soient y1 | et y2 | . Celles-ci sont
21 29

indépendantes de la position de 'origine du repere, que nous pouvons donc
placer en A. Dans ce cas, les coordonnées des points B et C' sont égales
aux composantes de AB et A—C?’ .

N
\\
SO B
|
|
|
|
|
|
|
A | Vi y
| -
P
X L N -
Bl
X
Fig. 15

La figure 15 montre bien que |AB|?> = |AB'|? + |B'B|?, le triangle AB'B
étant rectangle en B’. Comme |AB'|?> = 22 + y?, on a

[AB|* = o +yf + 4,
et de maniere analogue
|AC|? = 23 + y3 + 23

Cette expression du carré d’une longueur comme somme de trois carrés
peut étre considérée comme une extension du théoreme de Pythagore dans
I'espace. D’une maniere générale, la longueur d’un vecteur de I'espace (et
du plan) est égale a la racine carrée de la somme des carrés de ses compo-
santes.
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En calculant le carré de la longueur du coté BC, égale a la longueur du

Tro9 — T
vecteur BC' de composantes Y2 — Y1 |, on trouve
z9 — 21
IBCP = (w2 —a1)” + (y2—91)° + (22— 21)°

= x% +$% — 2wq20 +y§ -I-y% —2y1y2+z§ —I—zf — 22129
= a7+ yi + 2+ 25+ s+ 25— 2(T1m2 + Yiy2 + 2122)
= |AB]> +|AC? — 2(z122 + y1y2 + 2122).

En comparant cette derniére égalité avec l'expression de |BC|? calculée
par la regle des cosinus, a savoir

|BC|? = |ABJ? + |AC|* — 2|AB| - |AC| - cos A,
on établit 1’égalité

2129 + Y192 + 2122 = |AB| - |AC| - cos A.

1.3 Calculer des longueurs et des angles

Que peut-on calculer au moyen du produit scalaire ?

Toute l'activité qui précede visait a faire émerger 1'idée que le produit
scalaire de deux vecteurs est une expression qui dépend de la longueur
de chacun des vecteurs et de 'amplitude de I'angle que forment leurs di-
rections. On peut donc espérer qu’arrivés a ce stade, les éleves proposent
spontanément d’utiliser le produit scalaire pour calculer des longueurs et
des angles. Reste a établir les formules.

Pour arriver a une formule qui donne la longueur d’un vecteur, il faut en-
core observer que expression 27 + yf = || @||? dans le plan (qui devient
2?2 +y? + 22 = || @’ ||* dans I'espace) peut encore étre vue comme le pro-
duit scalaire du vecteur @ par lui-méme (encore appelé carré scalaire du
vecteur @ ). En effet,

< @@ >=mz+yy =2 +yi = | @

Par conséquent, la longueur du vecteur @ peut étre calculée par la formule
| =v<ala >,

ce qui peut s’énoncer

1. La norme d’un vecteur est la racine carrée de son carré scalaire.

La deuxieme forme du produit scalaire
< @b >=||@||| T cosb

fournit la formule qui permet de calculer I’angle (non orienté) formé par
les directions de deux vecteurs. On obtient
<@|b >

= .
1|l b

En particulier, on peut énoncer
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2. Le produit scalaire de deux vecteurs orthogonauzx est nul.

Ces deux formules peuvent étre exploitées pour calculer la longueur d’un
segment [AB] et 'angle de deux droites AB et C'D. On obtient

AB| = | AB|| = AB|AB > e cos(AB,CD :@.
|AB| = [|AB| = /< AB|AB > et cos( ) vl

Le chapitre suivant proposera quelques situations-problemes ol ces aspects
du produit scalaire seront mis en ceuvre.

1.4 Propriétés du produit scalaire

A partir du moment ou les éleves disposent des trois formes de ’expression
du produit scalaire, les démonstrations de ses propriétés ne devraient pas
poser de problemes. Ils peuvent a tout moment se référer a la forme de
leur choix pour donner une justification adéquate.

<@V > = <7 >
<@V +e> = <@V >+<7a@|e>
<@kD > = k<7\?>

Il nous semble intéressant de montrer ces propriétés a partir de la premiere

. . s 17 —_ -
forme du produit scalaire dans le plan. Considérons des vecteurs @', b et
© quelconques, k et £ des scalaires quelconques. Nous notons

—

. . -5
les composantes de ces vecteurs. Ainsi, les composantes des vecteurs b + ¢

etk?sont
Teo— (i) T ().
Y2 + Y3 ky2

On a

< 7|3> > = 172 + Y1y2,

<@ > = xiw3+y1y3,

<D|@> = zam1+y2m
= T1Z2 + Y12
= <@|b >,

<@b +7 > = z(za+a3)+yi(y2 +u3)
= T1T2 + Y1y2 + 1173 + Y1Y3
= <E’|7>+<E’|?>,
<@lkb > = xikro+ yikyo

k(x122 + y1y2)
= k<a|b >,
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ce qui établit les propriétés dans le plan. Celles-ci peuvent étre démontrées
dans ’espace de maniere analogue.

Les deux dernieres propriétés peuvent étre condensées en une seule qui
s’écrit
— —
<Tlkb +0T>=k<a@|b >+ <aT|C >;
et en tenant compte de la commutativité, on a aussi
<kD HLC|@>=k< b|T >+ < |7 >.

Cet ensemble de propriétés exprime la bilinéarité du produit scalaire.

Application de la bilinéarité du produit scalaire

Adoptons, pour la perpendicularité des droites et des plans ces deux défi-
nitions, couramment admises.

Une droite est perpendiculaire a un plan si elle est perpendiculaire a toutes
les droites du plan passant par son pied.

Un plan est perpendiculaire a une droite si et seulement si cette droite est
perpendiculaire au plan.

La premiere définition est tres exigeante : pour s’assurer de la perpen-
dicularité d’'une droite et d’un plan, il faudrait vérifier que la droite est
perpendiculaire a une infinité de droites du plan. Une condition aussi forte
est-elle vraiment nécessaire ?

A combien de droites d’un plan faut-il vérifier qu’une droite est perpen-
diculaire pour pouvoir conclure qu’elle est perpendiculaire au plan ?

La vue d’un livre ouvert posé debout sur une table nous donne l'intuition
que si la droite est perpendiculaire a deux droites du plan passant par
son pied, elle sera perpendiculaire a toutes les autres, et donc qu’elle sera
perpendiculaire au plan. La linéarité du produit scalaire fournit la réponse
a la question en méme temps que sa justification.

En effet, considérons une droite p, P un point de cette

P droite, un plan 7 passant par P et contenant deux
droites a et b sécantes en P et perpendiculaires a p.
o Montrons que la droite p est perpendiculaire a toutes

les droites du plan passant par P. Pour cela, considé-

l

P rons un vecteur directeur sur chacune des droites : p’
. - . .
sur p, ‘@ sur a, et b sur b. Sila droite p est perpen-

a | ?
a : b diculaire aux droites a et b, on a

Fig. 16

<TPl@>=0ce <P|b >=0.
Par conséquent,

<TPhT LY >=k<P|la@>+L<TP|D >=0.

Comme toutes les droites du plan 7 passant par P ont un vecteur directeur
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de la forme k@ + £b , la relation < Tlka + ¢ >= 0 montre que la
droite p est perpendiculaire a toute droite du plan 7 passant par P.

Ceci nous permet d’énoncer une premiere forme de la condition suffisante
de perpendicularité d’une droite et d’un plan.

Une droite est perpendiculaire a un plan si elle est perpendiculaire ¢ deux
droites du plan passant par son pied.

De plus, comme lg)utes les droites du plan T ont un vecteur directeur de
la forme k@ 4+ ¢ b, la relation < p’'lk@ + £ b >= 0 montre que la droite
p est orthogonale a toute droite du plan 7.

La linéarité du produit scalaire sous-tend donc également les démonstra-
tions de propriétés de la perpendicularité d’une droite et d’un plan, comme
par exemple

toute droite perpendiculaire a un plan est orthogonale a toutes les droites
de ce plan,

et la deuxieme forme de la condition suffisante de perpendicularité d’une
droite et d’un plan

une droite est perpendiculaire a un plan si elle est orthogonale a deux
droites sécantes de ce plan.

1.5 La regle des cosinus

Cette activité complémentaire présente une démonstration de la regle des
cosinus, encore appelée théoréeme de Pythagore généralisé. Nous en pro-
posons ici une approche géométrique et directement appuyée sur les pro-
positions 12 et 13 des Eléments ’EUCLIDE (en annexe aux pages 491 a
493).

Cette activité de démonstration peut prendre place a tout autre endroit du
cours qui conviendra au professeur, mais nous I’évoquons ici puisque nous
en utilisons les résultats pour établir I’équivalence des différentes formes
du produit scalaire.

FEuclide, Les Eléments, Livre II, proposition 12.

Les Eléments d’EUCLIDE représentent le premier ouvrage connu ou les
mathématiques sont présentées sous une forme déductive bien structurée,
avec des démonstrations et un souci de rigueur. La plupart des éleves en
ont entendu parler, mais il est probable qu’aucun d’entre eux n’a jamais
eu 'occasion de consulter un texte mathématique ancien. Proposer aux
éleves cette activité de lecture et d’interprétation nous a paru intéressant
et de nature a susciter de 'intérét pour I’histoire des mathématiques. La
proposition 12 du livre IT est un bon exemple d’un théoréeme dont la version
originale peut étre proposée aux éleves pour qu’ils la décortiquent et la
traduisent dans un langage mathématique actuel. Voici la traduction en
francais de B. VITRAC?.

2 Dans cette section, nous adopterons la notation de VITRAC, plus légere et nous
noterons AB indifféremment pour le segment [AB] et pour sa longueur |AB|. Il n’en
résulte aucune ambiguité.
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12

Dans les triangles obtusangles, le carré sur le coté sous-tendant ’angle obtus est plus grand que
les carrés sur les cotés contenant 'angle obtus de deux fois le rectangle contenu par celui des
cotés de ’angle obtus sur lequel tombe la perpendiculaire et par la droite découpée a l’extérieur
par la perpendiculaire au-dela de l’angle obtus.

Fig. 17

Soit le triangle obtusangle ABC' ayant I’angle sous BAC obtus, et, qu’a partir du point B soit
menée BD, perpendiculaire sur C A, prolongée. Je dis que le carré sur BC est plus grand que
les carrés sur BA, AC de deux fois le rectangle contenu par CA, AD.

En effet, puisque la droite C'D a été coupée au hasard au point A, le carré sur DC' est donc
égal aux carrés sur C'A, AD et deux fois le rectangle contenu par C'A, AD (II. 4). Que celui sur
DB soit ajouté de part et d’autre. Les carrés sur CD, DB sont donc égaux aux carrés sur C'A,
AD, DB, et & deux fois le rectangle contenu par C A, AD. Mais d’une part celui sur C'B est
égal a ceux sur CD, DB en effet 'angle en D est droit (I. 47). Et d’autre part celui sur AB
est égal a ceux sur AD, DB. Donc le carré sur C'B est égal aux carrés sur CA, AB et deux fois
le rectangle contenu par C'A, AD. De sorte que le carré sur C'B est plus grand que les carrés
sur C'A, AB de deux fois le rectangle contenu par C'A, AD.

Donc dans les triangles obtusangles, le carré sur le coté sous-tendant ’angle obtus est plus grand
que les carrés sur les cotés contenant I’angle obtus de deux fois le rectangle contenu par celui des

cotés de I’angle obtus sur lequel tombe la perpendiculaire et par la droite découpée a I'extérieur
par la perpendiculaire au-dela de I'angle obtus. Ce qu’il fallait démontrer.

La traduction de la these en langage mathématique actuel serait
BC? = BA? + AC* +2-CA- AD,

ou D est le pied de la perpendiculaire abaissée du point B sur AC.

EUCLIDE nous invite a écrire que
DC? =CA?>+ AD? +2.CA- AD,

oil nous reconnaissons le développement de DC? = (CA + AD)? par le
produit remarquable (a + b)?. La proposition (II. 4) & laquelle il est fait



1. Des polygones réguliers au produit scalaire 297

référence présente une démonstration de cette formule dans un contexte
géométrique.

En ajoutant DB? aux deux membres, on obtient
DC? + DB* = CA* + AD? + DB*+2-CA- AD.
D’autre part,
CB? = DC? + DB? et AB? = AD? + DB?,

car I’angle en D est droit. Les éleves devraient reconnaitre dans la pro-
position (I. 47) évoquée ici le théoreme que nous appelons communément
« théoreme de Pythagore ».

En remplacant DC? 4+ DB? et AD? 4+ DB? dans I’équation précédente, on
obtient finalement

BC? = BA?> + AC*+2-CA- AD,
qui est bien la these annoncée.

Fuclide - Les Eléments, Livre II, proposition 13.

On présente ensuite aux éleves I’énoncé de la proposition (II. 13). L’activité
qui leur est proposée ici est de traduire la these en langage actuel et de
démontrer la propriété a la maniere d’EUCLIDE, c’est-a-dire en adaptant
la démonstration de la propriété (II. 12) au cas du triangle acutangle.

13

Dans les triangles acutangles, le carré sur le coté sous-tendant l’angle aigu est plus petit que les
carrés sur les cotés contenant l’angle aigu de deuzx fois le rectangle contenu par celui des cotés
de l’angle aigu sur lequel tombe la perpendiculaire et par la droite découpée a lintérieur par la
perpendiculaire en-dega de l'angle aigu.

Fig. 18

La theése est cette fois

BC? = BA%>+ AC?> —2.CA - AD.

La régle des cosinus

Pour obtenir la forme actuelle de ce théoreme, il faut remarquer que les
relations trigonométriques dans le triangle ABD nous donnent
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AD = AB - cos E, dans la figure 18, ou cos A est positif,

AD = —AB - cos ﬁ, dans la figure 17 a la page 296, ou cos A est
négatif.

On obtient ainsi la regle des cosinus

BC? = AB?2 + AC%2 - 2. AB - AC - cos A.

On peut encore adopter une notation plus légére en posant a = BC', b =
AC et ¢ = AB; on écrit alors

a2:b2+c2—2bc'cosg

et, comme le triangle est quelconque, les sommets A, B et C ont le méme
statut, ce qui permet d’écrire aussi

b2:a2+02—2ac-cos§ et 62:a2+b2—2ab-cosa

Commentaires

La méthode utilisée au début de ce chapitre (voir la section 1.1 & la page 281) pour
faire émerger la forme x1x2 + y1y2 peut également faire apparaitre la forme zi1ys —
x2y1, cette derniere forme étant associée au produit vectoriel. Nous avons montré que
le produit scalaire est une forme bilinéaire invariante pour les changements de reperes
orthonormés de méme unité. Le produit vectoriel est une forme bilinéaire invariante pour
les changements de reperes orthonormés qui conservent l'unité et I'orientation.

2 Géométrie analytique et produit scalaire

Résoudre, en utilisant le calcul vectoriel et le produit scalaire, des pro-
blemes de représentation en vraie grandeur de figures planes de l'espace,
ainsi que d’autres problemes ou interviennent des calculs d’angles et de
longueurs. Ces problémes sont abordés sous différents aspects, dans le but
de réinvestir des propriétés de géométrie synthétique, des constructions de
sections planes, des développements et d’autres types de représentations.

Développer les compétences liées au produit scalaire en analysant diverses
situations-problemes. Donner du sens aux calculs effectués au moyen du
produit scalaire en les utilisant pour construire des figures.

Compétences. — A partir des notions introduites dans la section 1,
déterminer une longueur, un angle, une relation entre points-droites-plans,
une équation, une propri¢té de figure, par une méthode routiniere.

Prérequis. — Le chapitre 8 a la page 218 et la section 1 de ce chapitre.

Les notions de droites orthogonales, de droite perpendiculaire a un plan,
de plans perpendiculaires, et les propriétés de la perpendicularité.

Matériel. — Une calculatrice scientifique.
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Du matériel pour dessiner et un rapporteur.

Les développements d’'un cube et d’un tétraedre régulier sur papier fort,
qui peuvent étre obtenus par photocopie des documents fournis en annexe
aux pages 494 et 495.

2.1 Vraie grandeur d’une section dans un cube.

Reprenons le probleme de section plane dans un cube traité dans la
section 2 du chapitre 8. La figure 19 montre la section du cube par le
plan PQR, ou P est situé sur l'aréte [AB] au tiers a partir de A, @ est
situé au milieu de l'aréte [BC], et R est situé au milieu de laréte [C'C'].
Représenter cette section en vraie grandeur.

D' S C'
r ~
| N
\ v N
A / | B' >
I N
/ | N R
/ | \.
/
/ |
/ |
/ I
/ |
/ |
U D)_ ______ ./ C
o7 o)
- L=
Al -7 P __—-——"TB
Fig. 19

Reprenons le repere que nous avions choisi pour la détermination des som-
mets de la section. Placons l'origine en A, et les vecteurs « de base » de
telle sorte que T = E, 7 =ADet k = ﬁ Si nous prenons 'aréte du
cube comme unité de longueur, ce repere est bien un repere orthonormé.
Dans ce cas,

0 1 0 0
A=(o ]|, B=(o |, D= 1], A= 0
0 0 0 1

Les sommets de la section ont pour coordonnées

3 1 1
p=|0]|,QQ=|3%], R=| 1|,

0 0 :

: 0 0
S=| 1], T=|2],U=/|o0

1 1 1

Chacun de ces sommets peut étre situé avec précision sur les arétes du
cube :
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S se trouve sur [D'C’'] au tiers & partir de D,
T se trouve sur [A’D’] aux trois quarts & partir de A’,
U se trouve sur [AA’] au quart & partir de A.

Certains éleves peuvent imaginer de tracer chacun des segments de la sec-
tion dans un carré figurant une face du cube, en respectant les positions
des points sur les arétes. Le mieux est alors de le faire globalement sur un
développement du cube en papier fort. On peut fournir celui-ci aux éleves
de maniere a limiter les imprécisions au départ. Ils pourront ainsi mesu-
rer les longueurs des cotés de la section, avec une précision qui dépend
évidemment du soin qu’ils auront apporté a leur dessin. Ce procédé peut
néanmoins leur paraitre fastidieux et peu précis, et les inciter a trouver
une autre solution. Or précisément, la découverte du produit scalaire leur
a donné un outil facile a manipuler pour calculer des longueurs. Ainsi,
pour calculer la longueur du segment [PQ)], on commence par déterminer
les composantes du vecteur m, obtenues en soustrayant les coordonnées
de P de celles de @,

4 1 25 5
, et on calcule ensuite ||]@|| = \/5 + 1 ,/% =5

Ce résultat pourrait également étre obtenu par le théoreme de Pythagore
dans le triangle rectangle PBQ. En effet, les cotés de I'angle droit me-
surent |PB| = % et |BQ| = 3, ce qui permet de calculer la longueur de

PO —

O NI—= Wi

I’hypoténuse qui vaut |PQ| = \/% + % = %. La comparaison des calculs

montre bien que la formule H@H =4/< m’m > n’est rien d’autre que

I’application du théoreme de Pythagore dans un triangle rectangle dont
I’hypoténuse coincide avec le vecteur m et dont les cotés de ’angle droit
sont paralleles aux axes.

De la méme maniere, on obtient ensuite

0
1 L1 V2
QR={ 3 | et |QRI=1/7+7="5:
1
2
2
| o t ||RS| = 1pIoB
I e Vo1 %
2
_1
3
1 1 5
= 1 — — = -
ST —1| et 15T RETIRATE
0
0
9 9 32
TU = | =% | et ITU|l= 1)+ ="
3 16 16 4
4
1
3 1 1 5
UP=| 0 t |UP| =1/ +— = —
0 ) et WPI=y5+ %= 12
4
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N’oublions pas que ces valeurs représentent les mesures des cotés de la
section lorsque 1'unité de longueur est la longueur de 'aréte du cube. Ces
valeurs calculées peuvent éventuellement étre comparées aux longueurs
mesurées sur le développement du cube, pour corroborer ou infirmer les
résultats des calculs.

Une fois en possession de ces différentes mesures, il n’est pas certain que
les éleves réalisent immédiatement que ces données sont insuffisantes pour
dessiner la vraie grandeur de la section. Quelques tatonnements seront sans
doute nécessaires pour qu’ils se persuadent qu’ils doivent aussi connaitre
les mesures des angles, ou bien les longueurs des diagonales. Dans le méme
ordre d’idées, de nombreux éleves ignorent en effet que, pour démontrer
qu'une figure est un polygone régulier (le triangle faisant exception), il
ne suffit pas de démontrer I’égalité des cotés, mais qu’il faut aussi établir
celle des angles. On peut, par exemple, leur faire observer que, avec quatre
segments de 5 cm, on peut bien str construire un carré, mais aussi toute
une série de losanges qui different par leurs angles.

Si les éleves proposent de calculer les longueurs des diagonales pour cons-
truire la vraie grandeur de la section par triangulation, le professeur les
laisse poursuivre dans cette voie mais leur annonce clairement que la me-
sure précise des angles de la figure leur sera demandée. Ils disposeront alors
d’un moyen de comparer les valeurs d’angles mesurées sur le dessin aux
valeurs calculées. Si, par contre, les éleves proposent spontanément de cal-
culer les mesures des angles pour représenter la section en grandeur réelle,
le probleme qui se pose est celui de la détermination de ces mesures. Ici
encore, c’est le produit scalaire qui fournit un outil efficace. En effet, la

formule
— —
<@a@lb >=|a|| b cosb

peut étre exploitée pour calculer un angle compris entre deux vecteurs.
Ainsi, par exemple, I'angle () de I'hexagone de section est compris entre
les vecteurs Cﬁ% et Cﬁ, dont le produit scalaire peut étre calculé a partir
de leurs composantes (celles de Cﬁ’ sont opposées a celles de m) On a

2
—= 0
3
Cﬁ’: _% et Cﬁ{: %
0 1
2
On obtient
2 1 1 1 1
? —_ — . —_ . — - —_ = ——
< QP|QR > 3 0 5 2+0 5 T

et, en remplacant < Cﬁﬂm > par —% dans
< QP|QR >=||QP||QR| cos Q,

on obtient la valeur du cosinus de ’angle Cj

cos@:<cﬁ;’cﬁ>: 1 :—3\/5'
IQP|IQR| 3.2 10

6 2
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La mesure en degrés de l'amplitude de I’angle @ est déterminée par la
calculatrice, qui donne @ = 115°,10409025.

Si les éleves négligent d’utiliser les vecteurs orientés de telle sorte que leur
origine coincide avec le sommet de ’angle, ils obtiendront ’angle supplé-
mentaire de celui qu’ils croient calculer. Ils devraient s’apercevoir de leur
erreur en confrontant leurs résultats avec la vision approximative que leur
fournit le dessin en perspective. Un angle aigu d’environ 65° semble peu
réaliste dans la section hexagonale que nous étudions ici.

Arrivés a ce stade du travail, certains éleves auront peut-étre remarqué
que la symétrie de la figure peut leur éviter de calculer tous les angles. Le
professeur leur demande alors de justifier les propriétés utilisées. Mais il est
également possible que, rassurés par le caractere routinier de I'application
de la formule, ils entreprennent de calculer tous les angles.

Ce travail est un peu fastidieux, mais néanmoins bien préparé, puisque
nous disposons déja des composantes de tous les vecteurs correspondants
aux cotés de la section, ainsi que de leurs longueurs. Le professeur peut
suggérer aux éleves une répartition des taches, pour éviter que trop de
temps ne soit consacré a des calculs répétitifs. Les résultats obtenus sont

Q=R=T=0U =115°10409025 et S = P = 129°,7918195.

Le professeur pose la question de la vérification.

A-t-on, comme dans le triangle, une propriété qui donne la somme des
angles d’'un hexagone ?

Un découpage d’un hexagone quelconque en triangles permet de voir que
la somme de ses angles vaut 720°, ce qui est bien le cas ici.

Les éleves qui ont effectué tous les calculs sans se poser trop de ques-
tions seront peut-étre étonnés de constater qu’il n'y a que deux ampli-
tudes d’angles différentes. Une intéressante discussion peut s’installer dans
la classe pour expliquer cette propriété. Pouvait-on prévoir I’égalité de cer-
tains angles ? C’est 'occasion de se souvenir de cette propriété des plans
paralleles :

St un plan coupe deux plans paralléles, il les coupe suivant des droites
paralléles.
Le plan de section coupe donc les faces paralleles suivant des segments
paralleles. On a donc

PQ est parallele a T'S,

QR est parallele a TU,

RS est parallele a UP.

Par conséquent, P=3 , CAQ =7 , R = ﬁ, car ce sont des angles a cotés
paralleles. Les positions particulieres des points ) et R, au milieu des
arétes [BC| et [CC'], et des points S et P au tiers des arétes [AB] et
[D'C'] permettront de justifier 'égalité des angles @ et }AZ, et donc T et U.

Les éleves constatent ainsi qu’une analyse préalable des propriétés géomé-
triques de la figure permet d’éviter quelques calculs. Cependant, ils peuvent
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—on ’a vu — arriver a la solution en utilisant le produit scalaire, qui fournit
une méthode efficace de résolution de ce type de probleme. Dans ce cas,
les propriétés de symétrie que le calcul a mises en évidence peuvent étre
réexaminées dans un contexte de géométrie synthétique. Cette démarche
permettra peut-étre aux moins intuitifs d’améliorer leur vision dans ’es-
pace.

Les éleves sont a présent en mesure de dessiner la section en vraie grandeur.

R Q

Fig. 20

Pour cloturer activité de maniere tres concrete, le professeur leur suggere
de repérer les points de la section sur le développement de cube et d’as-
sembler les cubes tronqués obtenus apres découpage, de maniere a faire
apparaitre la section. Celle-ci est alors comparée au dessin réalisé a par-
tir des calculs, par application directe du modele en carton sur la figure.
Comme I’hexagone de section possede un axe de symétrie passant par les
milieux des cotés [RQ)] et [T'U], le probleme de I'orientation ne se pose pas
ici. Quelle que soit la partie du cube qu’on dépose sur la figure, la section
sera superposable au dessin de la vraie grandeur.

2.2 Distance d’un sommet du cube a une diagonale

Dans la représentation en perspective cavaliere du cube de la figure 21,
construire la perpendiculaire issue de D’ & la diagonale A’C'. Calculer
la distance du sommet D’ & la diagonale A'C'.

A' B'

Fig. 21
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Certains éleves seront peut-étre tentés d’appliquer leur équerre sur la figure
pour tracer directement la perpendiculaire demandée. Néanmoins, apres
un temps de réflexion et de discussion, ils devraient s’apercevoir que la
plupart des angles droits n’apparaissent pas en vraie grandeur dans une
représentation en perspective cavaliere. C’est par exemple le cas des angles
droits de la base. Seuls les angles des faces frontales ABB’A’ et CC'D'D
apparaissent comme des angles droits dans la figure 21. Le sommet D’ et la
diagonale A’C appartiennent au plan non frontal A’D’'C), et dans ce plan,
la représentation du rectangle A’D’'C'B est un parallélogramme. Il n’y a
donc aucune raison d’espérer que la perpendiculaire issue de D’ forme avec
A’C un angle droit dans la représentation.

Cette premiere analyse permet cependant de remarquer que la construction
demandée est une droite du plan A’D'C et que le probléme pourrait donc
étre examiné dans ce plan.

Premiére approche : utilisation du produit scalaire

Il faut donc déterminer un point P de la diagonale A'C' tel que D'P est
perpendiculaire & A'C, et calculer ensuite la longueur de [D’'P]. Comme il
s’agit d’'un probleme d’angle et de longueur, les éleves penseront probable-
ment a utiliser le produit scalaire. Plagons le repere sur les arétes du cube
comme dans le probleme précédent, ce qui donne

0 1 0 0
A= 0], B=| 0|, D= 1], A=10
0 0 0 1

Le point P cherché appartient a la diagonale A’C', il vérifie donc la relation
— —
d’alignement A’P = kA'C, qui peut s’écrire

0 1
OP = 5—/7 + /@7178’, cest-a-dire P=| 0 | +k 1
1 -1

Les coordonnées du point P sont donc de la forme

A ot DD
Les composantes des vecteurs orthogonaux A'C et D'P sont alors

1 k
! /
AC = 1 et DP=| k-1
-1 —k

Exprimons, au moyen du produit scalaire, que ces vecteurs sont orthogo-
naux,

—_— —
< A'C|D'P >=0 clest-a-dire 1-k+1-(k—1)+(=1)-(—k)=0.
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Cette derniere équation, équivalente a 3k — 1 = 0, nous donne k = %, ce

qui détermine les coordonnées du point cherché, P =

WIN) Wl— ol

— —
Le fait que k& = % nous indique que A’'P = %A' C, c’est-a-dire que le point
P se trouve sur la diagonale [A’C] au tiers & partir de A’. Ceci permet de
placer le point P sur le dessin, puisque la perspective cavaliere respecte les
rapports des longueurs des segments dans une direction donnée.

—
On peut encore trouver les composantes du vecteur D'P et calculer sa
longueur. On obtient

— 1 4 1 6
N I

s
D'P= 2,
979 3

Wl Wb W=

qui est la distance du sommet D’ & la diagonale A'C.

On peut aussi chercher le point de percée de la droite D'P dans la face
ABB’A’. Ce point, noté @, est sur la droite D'P, ce qui se traduit par la
relation d’alignement

D'Q=AD'P ou OG =O0D +\D'P.

Nous obtenons ainsi, pour les coordonnées du point Q

1

0 3

2

Q=1 ]+X]| —3
1 _1

3

Comme ce point est dans la face ABB'A’, yg =1 — %)\ =0, ce qui donne
la valeur de A = % et ensuite les coordonnées du point de percée cherché,

. Ce dernier résultat indique que le point @ se trouve au

Q =

NI= O NI

centre de la face ABB’A’, c’est-a-dire & I'intersection des diagonales A’B
et AB’, et permet de placer correctement le point P sur le dessin sans
devoir partager le segment [A’C] en trois.
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La figure 22 montre la solution du probleme.

Deuxiéme approche : résolution du probléme dans le plan diago-
nal A'D'CB.

Nous avons déja observé que le probleme pouvait étre examiné dans le plan
diagonal A’D’C, déterminé par la diagonale A’C' et le point D’. En effet, la
perpendiculaire issue de D’ sur A’C' est évidemment une droite de ce plan.
Si nous prenons l'aréte du cube comme unité de longueur, la longueur de
la diagonale A’B peut étre calculée par le théoréeme de Pythagore. Elle
vaut v/2 et le rectangle A’BCD’ est représenté a la figure 23. Une feuille
de format A4, qui a les mémes proportions que ce rectangle, permet de
visualiser la situation.

D' C

Fig. 23

On a |A'D'| = 1 et |A'B| = /2; le théoreme de Pythagore appliqué au
triangle A’ BC, rectangle en B, nous donne alors la longueur de la diagonale
|A'C| = V1+2=+3.
Ne perdons pas de vue que le probleme de la représentation de la perpen-
diculaire issue de D’ sur A’C' sera résolu si nous pouvons déterminer la
position de son pied P sur la diagonale A’C. Nous voyons apparaitre dans
cette figure deux autres triangles rectangles en P : les triangles A’PD’ et
CPD'. En appliquant le théoreme de Pythagore dans ces deux triangles,
nous allons calculer les longueurs de leurs cotés et déterminer ainsi |A'P].
Ainsi,

dans le triangle A’PD’, on a |A’P|?> 4+ |D'P|?> = 1 et donc |D'P|? =

1—|A'P)?,

dans le triangle CPD’, on a |CP|? + |D'P|? = 2.
En remplagant |D'P|? par 1 — |A’'P|?, et |CP| par |A'C| — |A'P| = /3 —
|A’P| dans cette derniére égalité, on obtient

1—|A'P?+ (V3 —|AP))? =2

Cette équation dont I'inconnue est | A’ P| se réduit au premier degré et nous

donne |[A'P| = ?, ce qui nous indique que le point P se trouve au tiers de
la diagonale [A'C] a partir de A’, et nous permet des lors de le représenter.
La distance |D'P| est calculée également. On a

1 2
‘D/P‘Zzl—\A/PP:l—g et donc |D’P[—\/;—§_
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Pour établir completement le lien avec la solution précédente, il reste
a situer le point @ d’intersection de la droite D'P avec A’B. Comme
|A’P| = L|A'C|, on a aussi |[PC| = 2|A'C| et |A'P| = J|PC|. Les tri-
angles semblables D' PC et QP A’ nous permettent alors de conclure que
|A'Q| = 3|D'C| = %|A'B|. Le point @ se trouve donc au milieu de la
diagonale de face [A'B].

Remarques

1. 11 est également loisible d’utiliser le produit scalaire dans la figure
plane A’BCD’.

2. Une troisieme approche du méme probleme sera évoquée dans la
section 2.3.

2.3 Sections du cube par des plans perpendiculaires a une
diagonale

Etudier les sections d’un cube par ’ensemble des plans perpendiculaires
a une diagonale (AC’ dans les figures ci-dessous).

Quelles sont les propriétés géométriques des polygones obtenus ?

Que peut-on dire de leurs cotés, de leurs angles ?

Pour quelles positions du plan de section sont-ils réguliers ?

O se situent leurs centres de gravité3 ?

Une analyse succincte du probleme montre qu’il y aura au moins deux types
de sections. Un plan passant par un point de la diagonale proche d’un des
sommets A ou C’ ne coupe que les trois arétes issues de ce sommet et la
section est alors un triangle. Mais si le plan de section coupe la diagonale
en un point proche de son milieu, la section semble étre un hexagone. Il est
tres possible que les éleves ne percoivent pas d’emblée qu’il y a des sections
hexagonales. Nous montrerons plus loin comment les leur faire découvrir.

C' D' C'

A

B A 0 B

Fig. 2/

Fig. 25

3 11 s’agit du centre de gravité des sommets du polygone, au sens ou il a été défini
dans le chapitre 8.
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Placons le repére sur les arétes du cube comme précédemment, ce qui donne

0 1 0 0
A=l 0|, B=lo0o |, D=(1], A=[0
0 0 0 1

Le plan de section est entierement déterminé par la position du point M
de la diagonale AC" par lequel il passe. Puisque M appartient & AC’, la
relation d’alignement AM = m - AC nous donne les coordonnées de ce
point. On a

1 m

!
AC" = 1 et donc M = m
1 m

Si m = 0, le point M coincide avec le point A et la section est réduite
a ce point; une situation similaire se produit pour m = 1, valeur pour
laquelle M coincide avec C’. Les points de la diagonale AC” intérieurs au
cube correspondent ainsi aux valeurs de m comprises entre 0 et 1.

Le plan 7 passant par M et perpendiculaire & la diagonale AC” est 1’en-
semble de tous les points IV tels que le vecteur M N est perpendiculaire au

vecteur AC", c’est-a-dire tels que < AC'|MN >= 0.
Pour poursuivre notre étude, examinons plus précisément les questions

suivantes.

Les sections triangulaires

A quelles valeurs de m correspondent les sections triangulaires ?
Déterminer les coordonnées de leurs sommets et de leurs centres de
gravité, calculer les cotés et les angles.

La figure 24 montre que, lorsque le plan 7 coupe la diagonale AC’ en un
point proche de A ou de C’, c’est-a-dire pour des valeurs de m proches de
0 ou de 1, la section est un triangle.

A partir de A

LES SOMMETS. — Déterminons par exemple les coordonnées du point X,
point de percée de la droite AB dans le plan 7. Comme X est sur la droite

AB,

1 r—m
Hza&A—B) nous donne X =z | 0 et MX = -m
0 —-m

Exprimons, au moyen du produit scalaire, que les vecteurs AC" et M
sont orthogonaux,

<1W\MX >=0 ou x—m—m—m=0.

Cette derniere équation nous donne x = 3m, et les coordonnées du point
3m

X sont 0 . Pour que ce point X soit un sommet de la section du
0
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cube par le plan 7, il doit étre situé sur 'aréte [AB]; ses coordonnées sont
alors comprises entre 0 et 1 : on a par conséquent 0 < 3m < 1. La valeur
de m doit donc étre comprise entre 0 et %

0
De la méme maniere, nous déterminons ensuite Y = | 3m |, sur l'aréte
0
0
[AD] et Z = 0 |, sur laréte [AA’].
3m

LE CENTRE DE GRAVITE. — Les coordonnées du centre de gravité de cha-
cun de ces triangles sont obtenues en effectuant la moyenne arithmétique
des coordonnées de ses sommets (voir la section 2.3 du chapitre 8). On a

1 3m 0 0 m
0 0 3m m

Le centre de gravité de chacun de ces triangles est donc le point de percée
de la diagonale AC’ dans le plan 7.

LES COTES ET LES ANGLES. — Pour calculer les longueurs des cotés de
la section, déterminons les composantes des vecteurs XY, YZ, et ZX et
calculons leur norme. On obtient

—-3m
XY =| 3m et [|XY|| = /20Bm)2 = 3mv2,
0
0
YZ=| -3m | et |VZ]=+20Bm)?=3m2,
3m
3m
ZX=| o0 et ||ZX][ = +/2(3m)% = 3mV/2.
—3m

La section XY Z est un triangle équilatéral (les angles valent donc 60°)
dont les cotés mesurent 3v/2m.

LES VALEURS LIMITES
pour m = 0, le triangle est réduit au point A,

pour m = %, les points X, Y, Z coincident avec les points B, D,
A’ (voir figure 26). La section est donc le triangle équilatéral A’BD,

dont le centre de gravité est bien le point

Wl Wl Wl

A partir de ¢’

Symétriquement, nous obtenons des sections triangulaires XY’ Z’, o X'est
sur laréte [D'C'], Y’ sur [B'C'] et Z' sur [C'C']. Par la méme méthode, nous
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3m —2 1 1
déterminons X' = 1 Y =1 3m—2 |etZ = 1
1 1 3m — 2
Ces triangles correspondent aux valeurs de m comprises entre % et 1.
La section X'Y'Z’ est un triangle équilatéral dont les cotés mesurent
m
3v2(1 — m), et dont le centre de gravité est le point [ m
m

Pour m = 1, le triangle est réduit au point C’,

pour m = %, les points X', Y/, Z’ coincident avec les points D', B’,
C' (voir figure 27). La section est donc le triangle équilatéral D'B'C,

2
3
dont le centre de gravité est bien le point %
2
3
C' D' C'
B' A B'
M
C D C
B A B
Fig. 26 : m = 3 Fig. 27 :m =2

Les sections hexagonales

Envisageons maintenant les autres sections. Si les éleves n’ont pas remarqué
qu’il y a des sections hexagonales parmi les sections étudiées, on peut les
leur faire découvrir en repartant du triangle A’BD correspondant a la
valeur limite m = % En prenant pour m une valeur légerement supérieure,
3m
on constate que le plan 7 coupe la droite AB en un point X = 0
0
situé un peu a droite de B. De méme, il coupe la droite AD en un point Y
situé au-dela de D, et la droite AA’ en un point Z situé au-dessus de A’.
Dans ce cas, le triangle XY Z n’est plus la section du cube par le plan ,
mais les droites XY, YZ et ZX restent les droites d’intersection du plan
7 avec les faces ABCD, ADD'A’ et ABB'A’. Les éléves disposent donc
de tous les éléments nécessaires a la construction de la section. On leur
demande de la dessiner en justifiant les étapes.
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N QO B'

Fig. 28

Dans le plan ABCD, la droite XY coupe les arétes [BC] et [CD] aux
points S et T qui sont donc les extrémités du segment de la section dans
la face inférieure du cube. De méme, dans le plan ADD’A’, la droite Y Z
coupe les arétes [DD'] et [A’D’] aux points U et P; et dans plan ABB'A’,
la droite ZX coupe les arétes [A'B’| et [BB'] aux points @ et R. La section
du cube par le plan 7 est donc ’hexagone PQRSTU.

A quelles valeurs de m correspondent les sections hexagonales 7
Déterminer les coordonnées de leurs sommets et de leurs centres de
gravité, calculer les cotés et les angles et énoncer quelques propriétés
géométriques les concernant.

Y a-t-il des hexagones réguliers 7

Représenter la section en vraie grandeur pour une valeur de m choisie.

LES SOMMETS. — Déterminons par exemple les coordonnées du point de
percée P de la droite A’ D’ dans le plan 7. Comme P est sur la droite A'D’,

. . 0 0
AP=p-AD nousdonne P=| 0 | +p| 1 |,
1 0
et donc
0 -m
P=1|p et MP= p—m
1 1-m

Exprimons, au moyen du produit scalaire, que les vecteurs AC" et M
sont orthogonaux :

<W\W>:o ou —m+p—m+1—m=0.
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Cette derniere équation nous donne p = 3m—1, et les coordonnées du point
0

P sont 3m —1 |. Pour que ce point P soit un sommet de la section
1

du cube par le plan 7, il doit étre situé sur l'aréte [A'D']; sa deuxiéme

coordonnée est alors comprise entre 0 et 1 : on a donc 0 <3m —1< 1. La

valeur de m doit étre comprise entre % et %

Déterminons ensuite le point de percée @) de la droite A’B’ dans le plan
7. Nous obtenons

. . 0 1
AQ=q-AB etdonc Q=| 0 | +q| 0 |,
1 0
et enfin
q q—m
Q=10 et m: —m
1 1—m

En exprimant, au moyen du produit scalaire, que les vecteurs AC" et M @
sont orthogonaux, on a

<;1—C’_7|M@>:0 ou g—m-—m+1—m=0.

3m —1
Cette derniere équation nous donne ¢ = 3m—1, et donc Q = 0
1

Ici encore, ce sont les valeurs de m comprises entre % et % qui correspondent
aux positions de @ sur l'aréte [A'B’].

En procédant de maniere analogue, nous déterminons successivement

1
R= 0 sur l'aréte [BB'],
3m—1
1
S=1| 3m—1 | sur laréte [BC],
0
3m—1
T= 1 sur l'aréte [DC],
0
0
U= 1 sur Varéte [DD'].
3m —1

Nous déduisons de ceci que, pour les valeurs de m comprises entre % et %,
la section du cube par le plan 7 est I’hexagone PQRSTU.

LE CENTRE DE GRAVITE. — Il est possible de déterminer les coordonnées
du centre de gravité de ces hexagones en effectuant la moyenne arithmé-
tique des coordonnées de leurs sommets. On a



2. Géométrie analytique et produit scalaire 313

1 0 3m—1 1
G=- 3m—1 | + 0 + 0 +
6 1 1 3m — 1
1 3m—1 0 m
3m—1 | + 1 + 1 = m | =M.
0 0 3m —1 m

Ainsi, toute section hexagonale a son centre de gravité au point de percée
de la diagonale AC’ dans le plan 7.

LES COTES. — Pour calculer les longueurs des cotés de la section, déter-
minons les composantes des vecteurs 1@, Q4R>, ... et calculons leur norme.
On obtient
3m—1
PG=| 1-3m | et |PQ|=+20Bm—1)2=3m-1)2,
0
2—-3m
QR = 0 et [|QR| = /22— 3m)% = (2—3m)v2,
3m — 2
0
RS=| 3m—1| et |RS| =+20Bm—1)2=3m-1)2,
1—-3m
3m —2
ST=| 2-3m | et [IST|=+20Bm—-2)2=(2-3m)V2,
0
1—-3m
TU = 0 et |TU|| = 2Bm —1)% = (3m — 1)V/2,
3m—1
0
UP=| 3m—-2 | et |UP|=20Bm-2)2=(2-3m)V2.
2—3m

Ces calculs permettent de découvrir plusieurs propriétés géométriques de
ces hexagones.

Nous voyons tout d’abord qu’ils ont deux fois trois cotés de méme longueur.

Nous savons que les cotés d’une section hexagonale dans un cube sont pa-
ralleles deux a deux, puisque le plan de section coupe deux faces paralleles
suivant des segments paralleles. Nous avons donc que

PQ est parallele a ST,
TU est parallele a QR,
RS est parallele a UP.

Nous constatons que les cotés paralleles sont de longueurs différentes, tou-

. 2—3m
jours dans le rapport .
3m—1
- -1
Nous voyons aussi que P@ et ST sont des multiples de BD = 1
0

Les cotés [PQ] et [ST] sont donc paralleles aux diagonales [BD] et [B'D’]
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des faces du cube. De méme, les cotés [QR] et [TU] sont paralleles aux
diagonales [BA’] et [C'D'] des faces du cube; et les cotés [RS] et [UP] sont
paralleles aux diagonales [DA'] et [C'B’] des faces du cube.

LES ANGLES. — Lorsque la valeur de m varie entre % et %, les cotés
de I’hexagone restent toujours paralleles aux trois directions BD, BA' et
DA’ des faces du cube. Les amplitudes des angles devraient donc rester
constantes. Nous pouvons nous en assurer en calculant par exemple l'angle

QPU, au moyen du produit scalaire, ce qui donne

cos GPT = < PQIPU > (1-3m)2-3m) _ 1
IPQ||IPU|  (3m—1)v2(2-3m)v2 2

La valeur obtenue pour le cosinus de 'angle est bien indépendante de m et
I’amplitude de cet angle est 120°. Un calcul analogue permet de constater
que tous les angles de toutes les sections hexagonales mesurent 120°.

LA VRAIE GRANDEUR. — Nous sommes & présent en mesure de dessiner

I'une de ces sections en vraie grandeur. La figure 29 représente la vraie

grandeur de la section de la figure 25 a la page 307 pour la valeur m = %.

Fig. 29

L’HEXAGONE REGULIER. — Pour que tous les cotés de 1’hexagone soient
égaux, il faut que 2—3m = 3m—1, ce qui correspond a la valeur m = % Le

plan de section passe alors par le point M = , milieu de la diagonale

NI—= NI— N|—

[AC"]. De plus, comme 3m — 1 = 3, chacun des sommets de I'hexagone est

au milieu de 'aréte a laquelle il appartient, et les c6tés mesurent @ Nous
avons déja vérifié que tous les angles valaient 120°. Nous pouvons donc
en conclure que la section du cube par le plan médiateur de la diagonale
[AC'] est un hexagone régulier.
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D' C'

Fig. 30

Synthése

C’est le moment de demander aux éleves de faire la synthese des proprié-
tés des sections d’un cube par un plan perpendiculaire a une diagonale.
Certaines de ces propriétés peuvent étre justifiées, ou méme découvertes
par des raisonnements de géométrie synthétique, mais 'utilisation systé-
matique du produit scalaire comme outil d’investigation a sans nul doute
aidé de nombreux éleves a faire le tour de la question. La synthese pourrait
ressembler a ceci :

Pour 0 < m < % ou % < m < 1, la section est un triangle équilatéral.
Pour % <m < %, la section est un hexagone dont les angles mesurent
120°, dont les c6tés sont paralleles deux a deux (il s’agit des cotés situés
dans des faces paralleles). De plus, il y a deux fois trois cotés égaux (voir
figure 29).

Pour m = %, I’hexagone est régulier.

Dans tous les cas, le centre de gravité de la section est situé au point de

percée de la diagonale AC” dans le plan .

On peut terminer l'activité en montrant aux éleves que la diagonale du
cube est un axe de rotation d’ordre 3. Cette découverte donne un nouvel
éclairage a toutes ces propriétés qui se révelent alors presque évidentes.

Remarque. — Ce travail permet d’aborder d’une troisieme maniere le
probleme de la section 2.2 & la page 303. En effet, le triangle AD’B’ est le
triangle équilatéral obtenu comme section du cube par le plan perpendicu-
laire & la diagonale A’C' au point P situé au tiers de A’C. La perpendicu-
laire a la diagonale A’C issue de D’ est donc une droite du plan AD'B’, et
son pied est le point de percée P de A’C dans ce plan. Ce point P est aussi
le centre de gravité du triangle AD'B’. 1l se trouve donc sur la médiane
D’'Q de ce triangle.
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2.4 Vraie grandeur d’une section dans un tétraedre
régulier

Construire la section du tétraedre régulier ABC'D par le plan PQR ou
P est le point situé au milieu de l'aréte [C D],
Q est le point de l'aréte [BD], situé au tiers a partir de B,
R est le point de I'aréte [AB], situé au quart a partir de A.

Construire la vraie grandeur de cette section.

Pour traiter des problemes de sections planes dans les tétraedres, nous
avons précédemment utilisé des reperes dont l'origine et les points uni-
tés coincidaient avec les sommets du tétraedre. Ce choix ne semble pas
approprié pour résoudre ce dernier probléme, car un tel repere n’est pas
orthonormé. Des qu’il est question de calculer des distances et des angles,
c’est-a-dire d’étudier les propriétés métriques d’une figure, I'utilisation du
produit scalaire nécessite ’emploi d’un repere orthonormé.

Placons donc lorigine du repeére orthonormé au point A, 'axe des = sur

l'aréte AB et le point unité sur cet axe en B. L’axe des y sera placé dans le
plan ABC, et 'axe des z perpendiculairement a ce plan. Nous avons donc

0 1
A=10 et B= 0
0 0

Fig. 31
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Les coordonnées du point C', sommet du triangle équilatéral ABC, ne
posent pas trop de probleme. Elles peuvent étre déterminées par la trigo-
nométrie, ou par le calcul de la hauteur du triangle; on trouve

1

si le point C est placé du méme coté de AB que 'axe des y.

La détermination du sommet D du tétraedre nécessite un raisonnement
géométrique préalable. Le point D est équidistant des sommets A, B et C'
du triangle de la base. Il appartient donc aux plans médiateurs des seg-
ments [AB], [BC] et [AC]. Ces trois plans perpendiculaires a la base ABC,
contiennent la droite perpendiculaire au plan ABC' et passant par le point
d’intersection des médiatrices du triangle ABC. Cette droite est a 'inter-
section des trois plans médiateurs et contient donc le sommet D. Comme
le triangle ABC' est équilatéral, le point d’intersection des médiatrices est
aussi le centre de gravité du triangle, dont les coordonnées peuvent étre
calculées par moyenne arithmétique de celles des sommets du triangle (voir
la section 2.3 du chapitre 8). On a

0

Les coordonnées du point D peuvent alors étre déterminées en calculant la
hauteur |DG| du triangle ADG, sachant que son hypoténuse [AD] mesure
1. Ou encore, ce qui revient au méme, en exprimant que le point D, dont
les coordonnées sont de la forme

est a distance 1 de A. Nous obtenons ainsi

1
2
_ V3
D= %
V6
3
Passons a la détermination des sommets connus de la section :
1
4
AR = iﬁ nous donne immédiatement R = 0 |;
0
m = %EB nous donne @ = OB + %Eﬁ ou encore
_1 5
1 1 2 6
_ V3 _ V3
Q=10]+ 31 & | T B |
0 V6 V6
3 9
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OP = %(@ + (_)T))) nous donne

1 1 1

1 b} 2 2

_ V3 _ V3
P=g |l 2 |+ % ||=| %
0 V6 V6

3 6

Le plan PQR coupe donc les faces BCD et ABD du tétraedre suivant
les segments [PQ)] et [QR]. Déterminons a présent la section dans la face
ABC'. Cherchons a cet effet le point de percée de la droite PQ dans le
plan ABC'. Nous connaitrons ainsi un deuxieme point du plan de section
dans le plan de cette face. Ce point, noté T', vérifie la relation d’alignement
PT = )\I@. Nous avons par conséquent

1 1

3 3
OT=0P+APQ ot T=| % [+x]| -2
V6 _ V6

6 18

Ce point T, dont la troisieme coordonnée vaut 0 puisqu’il est dans le plan
ABC, correspond donc & la valeur A = 3, ce qui donne

3

2

T=| _v3
2

0

Cherchons ensuite le point S, intersection de la droite T'R et de I'aréte AC'.
La relation d’alignement TS = uﬁ ou OS = OT + uﬁ nous indique
que les coordonnées de S sont de la forme

3 _5
2 1
S = _§ +p §
0 0

Comme S est aussi sur la droite AC, ses coordonnées sont également de
la forme N
2

S=v]| ¥ |,
0

ce qui indique que sa deuxieéme coordonnée est égale a la premiere mul-
tipliée par v/3. Cette constatation, appliquée & I'expression précédente de
S, permet de déterminer la valeur de . On trouve p = % et

ce qui termine la construction de la section.

Comme dans 'exercice précédent, c’est au moyen du produit scalaire que
nous calculons les longueurs de cotés et les amplitudes des angles. Voici les
résultats :
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|IPQ|| = 0, 600925212576, P = 73°,0091767079,
IIRQ|| = 0, 650854139659, 5 = 82°, 763077974,
|IRS|| = 0,217241518939, R = 130°, 7321067,
|SP|| = 0, 745736179208, Q = 73°,4956386183.
P
S
R 0
Fig. 32

Nous vérifions que la somme des angles du quadrilatere vaut bien 360°.
Nous sommes a présent en mesure de dessiner la vraie grandeur de la sec-
tion. Comme pour la section du cube de la page 299, nous demandons aux
éleves de reporter les points de section sur le développement d’un tétraedre
régulier (fourni en annexe), puis de découper et d’assembler celui-ci pour
faire apparaitre la section, qui sera comparée a la figure construite & partir
des mesures obtenues par calcul. Si les deux figures ne sont pas superpo-
sables mais semblent symétriques, les éleves sont invités a s’interroger sur
la concordance entre l'orientation de la représentation en vraie grandeur
et celle de la section construite a partir du développement.

Commentaires

Nous ’avons vu dans les exercices de ce chapitre ou plusieurs approches sont présentées :
la plupart des problémes que nous proposons aux éleves de I’enseignement secondaire
pour utiliser le produit scalaire peuvent étre traités par d’autres moyens. Le recours aux
théoremes de Thales et de Pythagore, ou ’exploitation des propriétés géométriques des
figures concernées, permettent souvent d’arriver a la solution. Comparé a ces méthodes
dont la variété peut dérouter, le produit scalaire fournit a la fois une méthode de résolu-
tion routiniere et ’outil qui leur permet de mener a bien les calculs. Une telle méthode,
basée sur des calculs systématiques, peut paraitre fastidieuse. Cependant, si elle permet
a certains de découvrir a posteriori des propriétés géométriques intéressantes, elle atteint
un but important : celui de faire progresser chacun dans sa perception de I’espace.
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NOMBRES COMPLEXES ET GEOMETRIE

1 Introduction historique

la représentation des nombres complexes.

L’objectif est de faire voir aux éleves comment la naissance d’un nouveau
concept mathématique est liée aux préoccupations des scientifiques d’'une
époque. En 'occurrence, les nombres complexes représentés géométrique-
ment apparaissent comme les éléments appropriés a la conception d’un

calcul en géométrie euclidienne.

Compétences. — Intégrer le savoir dans une culture scientifique et hu-

manaiste.

et 562 sous une forme photocopiable pour les éléves.

Prérequis. — Si le premier texte peut servir d’introduction aux nombres
complezes, le second ne prend tout son sens que lorsque les éleves ont
connaissance des opérations sur les nombres complexes, y compris sous

forme trigonométrique.

1.1 Sur les nombres imaginaires

Alors que les quantités irrationnelles étaient connues depuis l'antiquité,
les nombres négatifs n’ont été acceptés que tres tardivement. Lorsqu’une
valeur négative apparaissait, elle était rejetée. Ainsi, Leonardo FIBONACCI
(1170-1240 environ), dans son Liber abaci (1202, révision 1228), trouve
une solution égale a —9 pour 'avoir de I'un des hommes dans le probleme

320

Cette activité, de nature tres différente des précédentes, propose la lec-
ture de deux textes qui replacent I’émergence des nombres complexes dans
un cadre historique. Le premier, de J. WALLIS [1685], fait état des dif-
ficultés qu’il y avait a admettre, non seulement l’existence des nombres
imaginaires, mais aussi celle des nombres négatifs. Le second, de LAISANT
[1887] (& partir de I’article de BELLAVITIS [1854]), montre & quel point les
premiers travaux sur ce que nous appelons le calcul vectoriel étaient liés a

Les deux textes proposés ci-dessous et repris en annexe aux pages 557, 558
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Fobannis Hallis S. T. D.
Geometrix Profefloris SAVILIANI,

in Celeberrima Academia OxoNIENsT,

ALGEBR A
Tractatus;

Hrstoricus & Pracricus.

iy 1685 iglice editus;, Nune Aulus Latine,

Cum variis

APPENDICIBUS;
Partim prius editis Anglice, Partim nunc primum editis.

Opertan Mathematicorum ¥ olomen alserun.

0XONIAE,
E Tuzarno SnzLpontaxo MDOXCIIL

intitulé « De quinque hominibus et una bursa' ». Il dit : « Ce probleme
n’a pas de solution, sauf si nous posons que cet homme a une dette de
9...», interprétation qui permet d’écarter le signe « — ». Il donne ensuite
la solution complete du systeme dans cette hypothese.

Quelques siecles plus tard, ARGAND, dans son Essai sur une maniere de
représenter les quantités imaginaires dans les constructions géométriques
[1806], appelle quantités imaginaires aussi bien les quantités négatives que
celles dont le carré est négatif.

Le texte qui suit montre que la méme démarche de pensée qui conduit a
admettre 'existence des nombres négatifs peut également nous amener a
concevoir celle des nombres que nous appelons imaginaires. Il s’agit d'une
traduction libre de la version anglaise de 1’ Algébre de J. WALLIS [1685], (in
D. Smith [1959]). John WALLIS (1616-1703) était professeur savilien? de
géométrie a Oxford (1649-1703). Contemporain de NEWTON, il fut le pre-
mier a apporter une contribution substantielle au traitement géométrique
des quantités imaginaires. Pour favoriser la diffusion de ses idées en dehors
de I’Angleterre, Il publia en 1693 une version latine de cette Algébre. En
voici un extrait (qu’on trouve au chapitre LXVI, Vol. II, p. 286 de la ver-
sion latine). Le méme texte — en vieil anglais — est fourni en annexe aux
pages 555 et 556.

Ces quantités, dites imaginaires, provenant des racines supposées de carrés négatifs, sont censées
impliquer que la situation est impossible. Et il en est effectivement ainsi si I’'on s’en tient stricte-
ment a ce qui est communément admis. Car il est impossible qu’un nombre (négatif ou positif),
multiplié par lui-méme puisse produire (par exemple) —4, en vertu de la regle des signes. Mais
il est tout aussi impossible qu'une quantité quelconque, méme non supposée carrée, puisse étre
négative. En effet, il n’est pas possible qu'une grandeur puisse étre moindre que rien, ou qu’'un
nombre soit plus petit que zéro.

Mais cette supposition (de existence de quantités négatives) n’est ni inutile, ni absurde, lors-
qu’elle est bien comprise. Et si, du point de vue de la notation algébrique pure, cela ameéne une
quantité inférieure a zéro, lorsqu’on I'applique a la physique, elle représente une quantité tout
aussi réelle que si le signe était +, mais il faut Uinterpréter en sens contraire. Ainsi, par exemple :
supposons qu’un homme ait avancé (de A vers B) de 5 yards, et qu’ensuite, il ait reculé (de B
vers (') de 2 yards. Si on demande de combien il a avancé (quand il est en C), ou & combien
de yards il est devant A, je trouve (en soustrayant 2 de 5) qu’il a avancé de 3 yards (parce que

5—2=3).

D A C B
-k =~ —————

Fig. 1

! Des cing hommes et une bourse. FIBONACCI propose ce probleme dans le chapitre
12 de son ouvrage, chapitre ot ’on trouve de nombreuses récréations mathématiques et
notamment le célebre probleme des lapins.

2 L'un des événements marquants de I’histoire des mathématiques & 1’Université
d’Oxford fut la fondation en 1619 par Sir Henry SAVILE, de deux chaires (dites savi-
liennes) en géométrie et en astronomie. Les statuts imposés par SAVILE prévoyaient,
notamment, d’enseigner ces deux matieres par 'exégese des grands textes du passé,
principalement les Eléments ’EUCLIDE et |’ Almageste de PTOLEMEE (in FAUVEL J. et
al. [1999]).
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Mais si, ayant avancé de 5 yards vers B, il recule ensuite de 8 yards vers D, et qu’on demande
de combien il a avancé quand il est en D, ou combien plus en avant il est de A, je dis —3 yards
(parce que 5 — 8 = —3). Clest-a~dire qu’il a avancé de 3 yards de moins que rien.

Ce qui, du point de vue de la justesse de I’expression ne peut étre, puisqu’il ne peut exister
moins que rien. Ainsi, si on se limite a la ligne AB vers I’avant, la situation est impossible.
Mais si (contrairement & notre supposition) la ligne partant de A peut étre prolongée vers
Parriere, nous trouverons D 3 yards derriere A (ce qui est supposé étre avant lui).

Et donc, dire qu’il a avancé de —3 yards représente ce que nous exprimerions, en langage
ordinaire, par : il a reculé de 3 yards, ou il manque 3 yards pour étre aussi en avant qu’il I’était
en A.

Ceci ne répond pas seulement par un nombre négatif a la question posée, car il n’a pas (comme
on Pavait supposé) avancé du tout, mais au contraire, il est si loin d’avoir avancé, qu’il a reculé
de 3 yards, et qu'il est en D, 3 yards plus en arriere que lorsqu’il était en A.

Et, par conséquent, —3 désigne le point D aussi réellement que +3 désigne le point C. Non pas
en avant, comme on ’avait supposé, mais en arriere de A. Ainsi, +3 signifie 3 yards en avant et
—3, 3 yards en arriére, mais toujours sur la méme ligne droite. Et chacun désigne (en tout cas
sur la méme ligne droite infinie) un et un seul point. Et il en va ainsi pour toute équation du
premier degré qui n’admet qu’une seule racine.

Maintenant, ce qu’on admet sur les droites doit, pour la méme raison, étre admis dans les plans.
Et par exemple, supposons qu’en un endroit, nous gagnons 30 acres sur la mer, mais que nous
en perdons 20 en un autre lieu, et qu’on demande combien d’acres nous avons gagné en tout;
la réponse est 10 acres ou +10 (parce que 30 — 20 = 10). Ceci représente aussi 1600 perches
carrées (car 'acre anglais est une surface rectangulaire de 40 perches de longueur sur 4 perches
de largeur dont laire est 160; 10 acres valent donc 1600 perches carrées).

Si cette surface est un carré, son coté sera long de 40 perches ou (si on admet la racine négative)
—40. Mais si en un troisieme endroit, on perd 20 acres de plus, et qu’on pose la méme question :
combien avons nous gagné en tout ? La réponse doit étre —10 acres (car 30 — 20 — 20 = —10)
c’est-a~dire que le gain est de 10 acres moins que rien. Ce qui revient a dire qu’il y a une perte
de 10 acres ou de 1600 perches carrées.

Et de la nait une nouvelle difficulté, qui n’est pas plus une impossibilité que celle que nous
avons rencontrée précédemment (en supposant une quantité négative ou moindre que rien). Ne
considérer que /1600 est ambigu, cela peut étre 40 ou —40. Et de cette ambiguité, il ressort que
les équations quadratiques ont deux racines.

Maintenant (en supposant que cette surface négative —1600 perches a la forme d’un carré), ne
doit-on pas admettre que ce supposé carré possede un coté? Et si oui, que sera ce coté?

Nous ne pouvons pas dire qu’il vaut 40, ni —40 (parce que I'une ou lautre de ces valeurs,
multipliée par elle-méme, donnera +1600, pas —1600). Mais plus vraisemblablement, sa valeur
est v/—1600 (la supposée racine d'un carré négatif) ou (ce qui est équivalent) 10y/—16 ou 20v/—4
ou 40y/—1. Le symbole Ve suggere une moyenne proportionnelle® entre une quantité positive et
une quantité négative. Car, de la méme maniére que v/be représente une moyenne proportionnelle
entre +b et +c, ou entre —b et —c (dont le produit vaut be dans les deux cas), v/—bc indique une
moyenne proportionnelle entre +b et —c¢, ou entre —b et +¢ (dont le produit vaut —bc). Et ceci,
sur le plan algébrique, fournit la véritable interprétation d’une telle racine imaginaire v/—bc.

Dans les chapitres suivants, WALLIS illustre cette notion par de nombreux
exemples géométriques.

3 La moyenne proportionnelle de a et b est la valeur z telle que ¢ = ¥ et donc

x = vab; on 'appelle aussi moyenne géométrique de a et b.
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1.2 Exposition de la méthode des équipollences

En 1867, TAIT publie un Traité élémentaire des quaternions, encouragé en
cela par Sir William HAMILTON, inventeur des quaternions. Le premier cha-
pitre de cet ouvrage s’intitule Des vecteurs et de leur composition et com-
mence par expliquer comment la découverte de I’emploi de v/—1 comme
réalité géométrique a conduit HAMILTON a fonder son Calcul des quater-
nions. Ensuite TAIT expose le début de ce calcul qui n’est rien d’autre que
ce que nous appelons le calcul vectoriel et que BELLAVITIS appelle Méthode
des équipollences.

Le texte qui suit est le début du chapitre II de 'ouvrage Théorie et ap-
plications des équipollences de C. A. LAISANT [1887], largement inspiré de
I’ Exposition de la méthode des équipollences de G. BELLAVITIS [1854].

Apres avoir défini les quantités géométriques qu’on soumet au calcul dans
la méthode des équipollences, et qu’on appelle droites (limitées)*, 'auteur
définit, dans le chapitre I, I’équipollence de deux droites, puis 1'addition
et la soustraction de droites. Nous reconnaissons dans ces définitions les
notions de vecteur libre, d’égalité de deux vecteurs et les opérations d’ad-
dition et de soustraction de vecteurs qui nous sont familieres. L’auteur
entreprend ensuite de définir une opération de multiplication des droites.

CHAPITRE 11

Multiplication et division des droites.

Produit de deux droites. — Produits de plusieurs droites.

28. Jusqu’a présent, dans les calculs que nous avons effectués sur les droites, nous n’avons fait
intervenir que la multiplication par un nombre réel. Nous avons maintenant a considérer des
produits de droites multipliées les unes par les autres, et pour cela, nous devons tout d’abord
définir le produit de deux droites, que nous supposerons ramenées a la méme origine O.

Le produit de deux droites OA, OB est une droite OC dont la LONGUEUR est égale au, PRODUIT
des longueurs de OA et OB, et dont I'INCLINAISON est égale a la SOMME des inclinaisons de
OA et OB.

11 suit de 1a que I’équipollence® OA.OB = OC entraine les deux égalités®
gr.0A x gr.OB = gr.OC et inc.OA + inc.OB = inc.OC.

Une premiere remarque, indispensable a faire, ¢’est que, tandis que la somme de deux droites
était tout a fait indépendante de tout autre élément du plan, leur produit dépend au contraire
de l'origine des inclinaisons que ’on a choisie.

Malgré la multiplicité des inclinaisons d’une droite donnée, il ne peut y avoir aucune indécision
sur la direction du produit, puisque I'inclinaison de celui-ci ne peut jamais étre altérée que d’un
nombre entier de circonférences, ce qui ne change rien a sa direction.

4 BELLAVITIS appelle droite ce que nous appellerions vecteur déplacement dans le
plan.

5 1l faut entendre 1’égalité.

5 La notation gr.AB désigne la longueur (grandeur) d’une droite AB, indépendam-
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Sans contester ce qu'une définition comme celle que nous venons de donner peut en apparence
présenter d’arbitraire a priori, il est bon de montrer cependant qu’elle se justifie assez naturelle-
ment, a la condition qu’on admette pour unité la droite OI de longueur égale a I'unité et dirigée
suivant l'origine des inclinaisons.

D’apres la définition de la multiplication admise en Arithmétique, on doit former le produit
OC, au moyen du multiplicande OA, comme le multiplicateur OB est formé au moyen de I'unité
OI. Or, quelles opérations a-t-on fait subir a OI pour 'amener en OB ? On a modifié la longueur

gr.Ol
convenable, de 'angle 3 = inc.OB. L’analogie nous conduit donc a dire, que pour avoir le

produit OA.OB, nous devons modifier la longueur de OA dans le rapport gr.OB, ce qui donnera
une droite de longueur gr.OA x gr.OB dirigée suivant OA, puis faire tourner cette droite de
I’angle (. Or, elle avait pour inclinaison a = inc.OA. Son inclinaison apres la rotation sera donc
a + (; c’est-a-dire que nous retombons précisément sur la droite OC, telle que nous 'avons
définie plus haut.

dans le rapport = gr.OB, puis on a fait tourner la droite ainsi obtenue, dans le sens

Le lecteur sera sans doute étonné de constater que cette multiplication des
droites ne correspond ni au produit scalaire de deux vecteurs, ni a leur
produit vectoriel. Par contre, 'analogie avec le produit de deux nombres
complexes écrits sous leur forme trigonométrique est assez frappante. Il
suffit d’identifier la longueur de la droite et le module du nombre complexe,
I'inclinaison de la droite et ’argument du nombre complexe pour se rendre
compte qu’il s’agit bien de la méme opération.

Si BELLAVITIS définit ainsi le produit de deux droites, c’est dans le but
d’utiliser cette opération pour faire de la géométrie : la multiplication par
une droite est une opération qui permet d’effectuer une similitude directe.

2 Nombres complexes et transformations du plan

De quoi s’agit-il ¢ A partir de l'interprétation géométrique des opérations sur les nombres
complexes, écrire les principales transformations du plan sous forme de
relations liant I'affixe d’un point quelconque du plan complexe et celle de
son image par cette transformation.

Exprimer quelques situations géométriques sous forme de calcul avec des
nombres complexes.

Enjeuz L’objectif est de mettre en place ’écriture en termes d’opérations sur les
nombres complexes de quelques transformations du plan, de facon a les
exploiter comme outils de démonstration pour établir des propriétés géo-
métriques de figures planes (voir la section 3 a la page 333). Les trans-
formations en question sont essentiellement les similitudes (et tous les cas
particuliers de similitude), ce qui tient & la nature méme des fonctions
linéaires sur les complexes (voir la section 8.5 du chapitre 16).

ment de la direction de cette droite.

La notation inc.AB désigne I'inclinaison d’une droite AB. C’est ’angle formé par la
droite OM (OM=AB) et une droite OX appelée origine des inclinaisons. L’inclinaison
est positive si la rotation qui ameéne OX sur OM s’effectue dans le sens contraire & celui
des aiguilles d’'une montre, sinon elle est négative.
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De quoi a-t-on
besoin ¢

Comment s’y
prendre ¢

Fig. 2

Compétences. — Construire une représentation géométrique des nombres
complezes et interpréter géométriquement les opérations.

Prérequis. — Les opérations sur les nombres complexes, y compris sous
leur forme trigonométrique.

2.1 Représentation géométrique des nombres complexes

Dans le plan muni d’un repere orthonormé, prenons le sens trigonométrique
)
pour sens positif de rotation. Considérons un nombre complexe z = x + iy

avec x et y réels. Il est représenté par le point P de coordonnées Z:j )

Le point P est le point représentatif ou I'image du nombre complexe z.

Le nombre complexe z s’appelle 'affize du point P, ce qu’on note
parfois zp. Par extension, on dit encore que z est l'affixe du vecteur

o de composantes ( Y ) et on le note z—4». Le lien immédiat entre

I'affixe et les composantes d’un vecteur nous indique que 'affixe du
vecteur AD est égale a la différence entre ’affixe de son extrémité et
celle de son origine (figure 2). On a

Z— — ZB — ZA.
B B A

Propriétés

Les définitions précédentes permettent d’établir que

I'affixe de la somme de deux vecteurs est la somme de leurs affixes,
“u

v T AW T AT

I’affixe de 'opposé d’un vecteur est I'opposé de son affixe,

T TR

I’affixe de la multiplication d’un vecteur par le scalaire k est égale a son
affixe multipliée par k,

2w = ke
L’affixe du milieu d’un segment est la moyenne arithmétique des affixes de
ses extrémités,
zZA+ 2B
—

L’affixe du centre de gravité d’un triangle est la moyenne arithmétique des
affixes de ses sommets,

si M est le milieu de [AB], alors zp); =

si G est le centre de gravité d’un triangle ABC,
ZA+ 2B+ z¢

alors zg =
3
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2.2 Interprétation géométrique des opérations sur les
nombres complexes

Les quelques questions suivantes sont destinées a guider les éleves dans leur
découverte de la signification géométrique des opérations sur les nombres
complexes.

Si P est un point quelconque du plan complexe, d’affixe z = x + yi, quel
est le point P’ représentatif du nombre complexe

Z=z+a+bi?

Quelques exemples devraient permettre aux éleves de constater que le point
P’ est 'image du point P par la translation de vecteur o d’affixe a + bi.

Si P est un point quelconque du plan complexe, d’affixe z = x + yi, quel
est le point P’ représentatif de son conjugué

Z=x—yi?

Des exemples montrent clairement que le point P’ est I'image du point P
par la symétrie orthogonale d’axe Ox.

Si P est un point quelconque du plan complexe, d’affixe z = x + yi, quel
est le point P’ représentatif du nombre complexe

2 =k-z ol k estun nombre réel non nul?

Ici encore, quelques exemples montrent clairement que le point P/, d’affixe
2" = kx + kyi est 'image de P par ’homothétie de centre O et de rapport
k. Nous noterons H(O, k) cette homothétie.

Si P est un point quelconque du plan complexe, d’affixe z = x + yi, quel
est le point P’ représentatif du nombre complexe

2 =2z (cosf +isind)?

L’interprétation de cette derniere opération nécessite d’écrire z sous forme
trigonométrique. Notons ¢ son module et 7 son argument, nous avons

2 =o(cosT +isinT)(cosf +isinf) = o(cos(d + 7) + isin(d + 7)).

Le point P’ est donc le point représentatif d’un nombre complexe de méme
module que z, mais dont I'argument a été augmenté de 6. Il s’agit donc
de I'image de P par la rotation de centre O et d’angle 6. Nous noterons
R(O, 0) cette rotation.

Si P est un point quelconque du plan complexe, d’affixe z = x +yi, quel
est le point P’ représentatif du nombre complexe

2=z p(cosf+isinh)?
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Comment s’y

En procédant comme pour la question précédente, nous écrirons
2 = o(cosT +isinT)p(cosf +isinf) = ap(cos(d + 7) + isin(d + 7)).

Le point P’ est donc le point représentatif d’un nombre complexe dont
le module est le produit de celui de z par p, et dont 'argument est celui
de z augmenté de 6. 1l s’agit donc de I'image de P par la composée de
I'homothétie H(O, p) et de la rotation R(O, ). Une telle composée est
appelée similitude directe. Nous noterons SD(O, k, #) la similitude directe
composée d'une homothétie de centre O et de rapport k£ et d’une rotation
de méme centre et d’angle 6.

2.3 Quelques transformations

Le travail précédent devrait permettre d’écrire les principales transforma-

prendre ¢ tions du plan sous forme de calcul avec des nombres complexes.
Dans le plan des complexes, considérons des transformations qui a P d’af-
fixe z associent P’ d’affixe 2/.
La translation de vecteur v
y
Pl
v
/ La relation vectorielle
P
—_—
OP' =0P + 7,
se traduit, sur les affixes, par
o X / N ) —
Z =z+a ou «estaffixe de’.
Fig. 3
L’homothétie de centre Q) et de rapport k
y
P La relation vectorielle
P
— —
Q/ QP =k-QP ou OQ/Zk'@,
Q ou k un nombre réel non nul, se traduit, sur les
affixes, par
o x Y —w=k(z-w) ou=w+k(z—-w),

ou w est 'affixe de Q.

Fig. 4
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La rotation de centre ) et d’angle 0

—, .
Le vecteur QP est 'image du vecteur QP par
la rotation R (€2, 6) de centre € et d’angle 6 (ex-

Q primé en radians)

ou

— .

le vecteur OQ" est 'image du vecteur @ par

la rotation R(O, 8) de centre O et d’angle 6 se

* traduit, sur les affixes, par la multiplication de
Paffixe de @, ou de Sﬁg, par (cosf + isinf).

Fig. 5

On obtient Z— = - (cos@ + isin ),

— z—
Qp’ QP

ou

z— =2z— - (cosf+isinf),
oQ’ oQ
c’est-a-dire 2 —w=(z—w)(cosh +isinb),
ou 2 =w+ (2 —w)(cosh + isinb).
On peut encore décomposer la rotation R(£2,6) de la maniére suivante,

Q est I'image de P par la translation de vecteur @, d’affixe —w,
2] =2 —Ww;
Q' est 'image de @ par la rotation R(O,6),
2 = (2 —w)(cosh +isinh);
P’ est I'image de Q' par la translation de vecteur O—Q, d’affixe w,

2 =2 +w=(2—w)(cosO +isinf) + w.

La similitude directe de centre (), de rapport k et d’angle 0

En combinant les deux opérations précédentes,
nous pouvons dire que

op ”
le vecteur QP est 'image du vecteur 0P par la
similitude SD(, k, 0),
ou que

vy »
le vecteur OQ)'" est 'image du vecteur @ par la
similitude SD(O, k, 0),

o \\l) x ce qui se traduit, sur les affixes, par la mul-

tiplication de l'affixe de @, ou de (ﬁ)’, par
k(cosO + isin ).
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On obtient z— =z— -k(cosf +isinb),

o “ap
ou %50 = %00 k(cos @ + isinf),
c’est-a-dire 7 —w=(z—w) k(cosh+isinb),
ou Z=w+(z—w) k(cosh+isinb).

La figure 6 illustre I'image d’un triangle par la similitude SD(2, 1.7, 75°)

Prolongements La symétrie orthogonale d’axe AB
possibles
y e
P B _~
_ »
A’/// * PO Pour compléter cet exposé, nous montrons ici
7 une méthode qui permet de découvrir la rela-
7 tion liant les affixes z et 2/ d’un point P quel-
- conque du plan complexe et de son image P’
-7 par la symétrie orthogonale d’axe AB. Nous la
donnons pour information, mais nous n’en fe-
rons pas usage dans les exercices proposés a la
0 . section 3.
Fig. 7
y 7
P B -
7 - Notons a et b les affixes respectives des points A
A7 et B.
7 Effectuons tout d’abord la translation de vecteur
7 A0. Elle envoie A sur O, B sur C et P sur Q.
d - ¥ On obtient
- zc=b—a et zg=2z—a.
- Cette premiere opération amene ’axe de symé-
0 * trie d sur la droite f passant par O.

Fig. 8
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y - Effectuons ensuite la similitude directe qui ap-
P li e plique C' sur le point d’affixe 1 + 0i. Cette simi-
7 litude, d’angle 6 (sens horlogique sur la figure 9)
A _-7 et dont le rapport est égal a I'inverse du module
e i de (b—a), applique @ sur R. L’opération sur les
7 affixes qui correspond a cette similitude est la
d - g s division par (b — a). On a
e c -
Q, . -~ (\ - 2Q ‘
e \ 0 b—a
s 1 . Notons que cette deuxieme opération amene
I’axe de symétrie sur 'axe Ox, axe par rapport
auquel il est aisé de réaliser une symétrie ortho-
Fig. 9 gonale.
’ P B_-~ -
< -
A 7 Nous sommes a présent en mesure d’écrire 1’af-
//’/ fixe de R’, symétrique de R par rapport a Ox ;
//// laffixe de R’ est le conjugué de celui de R. On a
/d/// . //f ZIZ<ZQ>:<Z—CL>:Z—&
e, PR R b—a b—a b—a’
-7 \ 6
R \1 oll @,b et Z sont les complexes conjugués de a, b
0| g0 x et z.
Fig. 10
P La derniere étape consiste a effectuer la simili-
Y P B //// tude qui applique le point d’affixe 1 + 0i sur C,
e puis la translation de vecteur OA. On obtient
A -7 o PO successivement
- - z =
//// ZQ/_I_)—d(b a)?
d -
7 0 c’ . J puis .
T N zp/:[;_d(b—a)—l—a.
~r "oo ! : . :
e R— . 1 Cette derniere relation peut encore s’écrire
0 RO X
Z—a Z-a
b—a b—a

Fig. 11
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2.4 Quelques situations géométriques

Comment s’y Considérons les points A, B, C, D, ... deux a deux distincts dont les affixes
prendre ? respectives sont a, b, ¢, d, ... (éléments de C).
Alignement. — Exprimer que les trois points A, B et C sont alignés.

La condition vectorielle d’alignement

A
se traduit, sur les affixes, par

c—a=k-(b—a) aveckeR,

o X
ou encore A, B (' sont alignés si et seulement si
c—a
Fig. 12 . R
Perpendicularité. — Exprimer que les deux droites AB et C'D sont
perpendiculaires.

Le vecteur CD, d’affixe (d—c), est 'image du vecteur AB, d’affixe (b—a),

par une rotation de 90° et une homothétie de rapport k.

Nous obtenons

d—c=(b—a)-i-k et donc

. : .d—c L
0 ¥ Ainsi AB 1 CD si et seulement si est un imaginaire

b—a
pur.

Fig. 13

—c
vaut le rapport des longueurs des segments

d
La norme du rapport 5
[CD] et [AB].
Remarquons que si (b—a) =r+is, (d—c¢) = (r+is)-i-k=k(—s+ri).
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Triangle rectangle isocéle. — Exprimer que le triangle ABC' est rec-
tangle isocele de sommet A.

y c
B
Comme conséquence directe de la relation précédente, il
vient : ABC est rectangle isocele de sommet A si et seule-
A ment si
c—a
0 X b—a
Fig. 1/
Carré. — Exprimer que la figure ABCD est un carré.
C
Y D
Cela peut se faire en écrivant deux relations du type
B .
A { d—a=(b—a)i
0 > a—b=(c—b)i.
Fig. 15
Triangle équilatéral. — Exprimer que la figure ABC est un triangle
équilatéral.
y
C
On peut écrire une relation du type
B
77 T
A c—a=(b—a)(cos - +isin -).
0 e 3 3
Fig. 16

REMARQUE. — Dans ce qui précede, lorsque 'on dit « triangle ABC », ou
carré « ABCD », cela signifie que 'on cite les sommets A, B, C', D dans
le sens trigonométrique (sens inverse des aiguilles d’une montre).
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De quoi s’agit-il ¢

Enjeux

De quoi a-t-on
besoin ¢

Commentaires

Il est intéressant de noter que tout ce qui précede suffit a exposer la premiere démonstra-
tion que GAUSS donne du théoreme fondamental de ’algebre : Toute équation algébrique
de degré n dans les complexes admet n racines (certaines d’entre elles pouvant étre
confondues). A ce sujet, on peut consulter F. Enriques [1924-1927].

3 Faire de la géométrie avec les nombres com-
plexes

Résoudre quelques problemes de géométrie plane au moyen des nombres
complexes”. C’est dans des problemes faisant intervenir des déplacements
et similitudes du plan que les nombres complexes sont particulierement
utiles.

Traiter une méme application avec différents outils : propriétés de figures,
transformations, nombres complexes et comparer ces différentes approches.
D’autres méthodes n’ont pas été développées ici : le calcul vectoriel (qui
n’est évoqué qu’a titre indicatif) et la géométrie analytique.

L’objectif est d’utiliser 'aspect géométrique des opérations sur les nombres
complexes pour établir des propriétés géométriques de figures planes. Bien
que cette méthode de démonstration ne differe guere de celle qui utilise le
calcul vectoriel, il convient de mettre en évidence ’avantage que présente la
multiplication par le nombre complexe adéquat pour effectuer une rotation
d’un angle qui n’est pas un multiple de 90°.

Par ailleurs, cette activité propose des applications dont les démonstrations
par la géométrie synthétique exploitent les propriétés des transformations
du plan. Ceci donne du sens a cette matiere, dont ’étude semble parfois
stérile aux éleves et aux enseignants, de par son manque d’utilisation.

De maniere plus générale, le but est aussi de rencontrer un nouvel outil de
démonstration en géométrie, de diversifier les méthodes, de les comparer
en évaluant les avantages de chacune d’elles.

Compétences. — Traiter des applications a caractere géométrique au
moyen des nombres complezes.

Prérequis. — La représentation géométrique des nombres complexes et
les principales transformations du plan sous forme d’opérations sur les
nombres complexes.

Fichiers Cabri. — Pour chacune des applications suivantes, un fichier
Cabri commenté est disponible sur le site du CREM a ’adresse
http://www.profor.be/crem/index.htm

Remarque. — Chaque fois qu’on désigne une figure par ses sommets,
ceux-ci sont donnés dans le sens trigonométrique.

" Certains de ces exercices sont proposés dans A. Bajart [1998].
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3.1 Un point fixe

Dans un plan, on considere trois points non alignés A, B et M. Au point
M, on associe le point R milieu de [BM], le point S, symétrique de R
par rapport a A, ainsi que le point P, point d’intersection des droites
MS et AB. Qu’advient-il du point P lorsque le point M se déplace dans
le plan?

Fig. 17

Ce probleme a déja été traité par calcul vectoriel au chapitre 8. Nous
en proposons ici deux autres solutions : I'une par les nombres complexes,
I'autre par la géométrie synthétique.

Par les nombres complexes

Placgons l'origine du repeére en A et le point unité sur I’axe des réels en B.
Les affixes des points A, B sont respectivement a = 0+ 07 et b = 1 + 0i.

Notons m = A 4 pi affixe du point mobile M.

L’affixe de R, milieu de [M B] est alors r = 2L+ &5 et celle de S symétrique

Al opy
> i.

de R par rapport a 'origine A est s = 5

L’alignement de M, P et S, qui s’exprime vectoriellement par M P =
k- M?, nous donne la relation p — m = k(s — m) pour les affixes.

L’affixe de P est donc

. A+1 . .
p:()\—i-,m)—l—k‘(—T—g — X — pi).

En regroupant les parties réelles et imaginaires, nous obtenons

3IN+1 2 -3k .
5 + 5 7.

p=A—kFk
Comme P est un point de I’axe réel, la partie imaginaire de son affixe est
nulle, ce qui donne k = % En remplacant k par cette valeur, on obtient
1
finalement p = —3 + 02.

Ce résultat s’interprete comme ceci : P est un point fixe, situé sur la droite
AB, a une distance @ de A, du coté opposé a B.
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Par la géométrie synthétique

Suivons les indications de ’énoncé pour découvrir les transformations du
plan qui sont appliquées au point M, et voyons quelle est 'image du point
P par cette composition de transformations.

Tout d’abord, une homothétie de centre B et de rapport %, notée H(B, %)
applique M sur R; ensuite R est lui-méme envoyé sur S par la symétrie
de centre A, notée SC4.

Si les éleves savent que la composée SC 4 o H(B, %) est une homothétie de
rapport —%, ils peuvent en déduire que le point P est fixe. En effet, le
centre de cette derniere homothétie est a la fois un point de la droite AB,
qui est sa propre image par la composée SC 4 o H(B, %), et un point de la
droite M S. C’est donc le point P.

Comme de nombreux éleves ne sont plus familiarisés avec les propriétés de
composition des transformations, il faudra peut-étre procéder autrement.

Quelle est 'image du point P par la composée SC 4 o H(B, %) ?

L’homothétie H(B, %) applique P sur ), milieu de [PB], ensuite @ est
envoyé sur Q' symétrique de ) par rapport & A. Montrons que @’ coincide
avec P.

H(B,Y) | SCa SCaoM(B,3)
M-—R| R— S M — S
P—Q Q—>Q' P—>Q'(:P?)

Fig. 18

Tragons la droite parallele a SM passant par A et notons T le point d’in-
tersection de cette droite avec M B (figure 18). La configuration de Thales
dans le triangle SRM nous indique que

puisque A est au milieu de [SR],
T est au milieu de [MR], et donc au quart de [M B], a partir de M.

Une configuration similaire dans le triangle PBM nous permet de déduire
que

puisque 7" est au quart de [M B], a partir de M,
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A est au quart de [PB], a partir de P, et donc au milieu de [PQ)].

Ainsi 'image de @ par la symétrie SC 4 est P, qui est donc un point fixe de
la similitude SC 4o H(B, %) Ce point fixe P est le centre de cette similitude
et toutes les droites joignant un point M quelconque a son image S par
cette similitude‘ Egssent par P. De plus, la position de P, sur la droite AB,

a une distance T| de A, du coété opposé a B est une conséquence du fait

que A est au quart de [PB], a partir de P.

REMARQUE. — Une autre facon de justifier que I'image de @ par la symé-
trie SC4 est P consiste a démontrer que les triangles SAP et RAQ sont
isométriques, ce qui permet de déduire que |[AP| = |AQ).

3.2 Probleme des deux triangles rectangles isoceles

On donne deux triangles isoceles OAB et OCD rectangles en O.
Montrer que la médiane issue du sommet O de I'un des deux triangles
AOD ou COB est hauteur de 'autre.

Envisager encore plusieurs types de démonstrations.

Fig. 19

Par les nombres complexes

Plagons l'origine du plan en O, 'axe des réels sur OA et 'axe des imagi-
naires sur OB. Le repere O AB est orthonormé puisque le triangle O AB est
rectangle et isocele. Les affixes respectives de A et B sont alors a = 1 + 0¢
et b =0+ 1:.

Notons ¢ = r 4 si l'affixe du point C. Comme D est I'image du point C'
par la rotation de centre O et d’angle 7, notée R(O, T), son affixe d vaut
ci et donc d = (r + si)i = —s + ri.

Plagons M au milieu de [C'B] et montrons que OM, médiane du triangle
OBC, est perpendiculaire & AD. Pour cela, calculons et comparons les
affixes des vecteurs OM et AD. On a

r s+1
+ i et Z2— = —8—1+r1.
AD

Z— =
oM 2 2
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Il reste a vérifier que, si on multiplie par i affixe de OM, on retrouve bien
celle de E, a un facteur pres. Et en effet,
r s+1. . —-s—1 r

. 1 . 1
.22(54_ 5 i)i = 5 +§z:§(—s—1—i—m):§zﬁ.

Z—
OM

Le facteur 3 nous indique de plus que [OM| = |AD].

Par le calcul vectoriel

La perpendicularité de OM et AD est établie en vérifiant que le produit
scalaire < OM |E > est nul; le calcul des normes des vecteurs OM et

AD montre que ||O—]\4)H = %Hﬁ“

Par la géométrie synthétique

Recherchons une transformation du plan qui amene, par exemple, [AD]
sur [OM]. La présence d’angles droits et d’un milieu nous suggere de nous
tourner vers les rotations d’un quart de tour ainsi que vers les homothéties
de rapport %

Fig. 20

Voici une des facons de s’y prendre.

Effectuons tout d’abord la rotation R(O, — 7). Elle applique D sur C' et A
sur @, ou @ est le symétrique de B par rapport a O.

Ensuite, I'homothétie H(B, %) applique C sur M et @ sur O.

D—C |C—M D— M
A—Q | Q— O A— O

Par conséquent, la composée H(B, %) oR(O, —7%) applique le segment [D A]
sur le segment [M O], et on peut en déduire que ces deux segments sont
perpendiculaires, et que |[OM| = %\AD|.
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3.3 Probleme des trois triangles équilatéraux

Le triangle ABC est équilatéral et G désigne son centre. Si D est un
point de [BC], on construit les triangles équilatéraux BED et DFC de
centres respectifs H et J, comme sur la figure 21.

Démontrer que le triangle GHJ est également équilatéral.

Fig. 21

Par les nombres complexes

Placons lorigine du plan en B, 'axe des réels sur BC, avec le point unité
en C, et 'axe des imaginaires perpendiculaire a BC'.

La recherche des affixes respectives des différents points de la figure 21
fournit 'occasion d’appliquer de maniere systématique les propriétés et les
expressions des transformations du plan complexe exposées aux pages 325
a 328. Voici les résultats.

B :
C:
A

b=0+0:;
c=1+0:;

a=c-(cost+isink) =3+ \/_z car A est I'image de C par la
rotation R(B, §);

tg=5+ ‘/_z car G est le centre de gravité du triangle ABC';

2

: d =k + 0i, car D est un point quelconque du segment [BC];

re=d-(cos§ —ising) = k_ k‘/_z car F est I'image de D par la
rotation R(B, —%);
th=3 k\[z car H est le centre de gravité du triangle BED ;

:f:d+(6—d) (cosT—isin %) = k+(1—k)(3 —‘/_z') kA1 %i,

car DF est P'image de DC par la rotation R(D,—%);
k+1 _ (1-k)V3.

1 j =" — g1, car J est le centre de gravité du triangle DF'C.
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Pour justifier que le triangle GHJ est équilatéral, il suffit de vérifier, par
exemple, que le vecteur GJ est I'image du vecteur GH par la rotation
R(G, 5). Ou encore que le vecteur HG est I'image du vecteur HJ par la
rotation R(H, §). D’autres possibilités de vérification peuvent étre évo-
quées par les éleves ; rien ne s’oppose a ce que chacun poursuive les calculs
en suivant sa propre idée.

Calculons, par exemple, les affixes des vecteurs GH et GJ.
k—1 (k+1)V3 (k—2)V3.

=h = t =7 —k+
e = 9="3 5 ioet zm=j-g=3 5 i.

Il reste a vérifier que

(cos 5 +isin 3)
z—(cos = +isin—) = z—
GH 3 3 GJ
c’est-a-dire que

(k—l_(k+1)\/§i) (1 \/3) kL (k=23

2 6 2" 2

ce qui est bien le cas.

Cette application montre tres clairement a quel point la méthode de dé-
monstration par les nombres complexes est efficace, méme et surtout si des
rotations d’angles non multiples de 7 interviennent dans le probleme. En
effet, un seul calcul suffit a établir que deux co6tés sont de méme longueur

et qu’ils forment un angle de 60°.

Par le calcul vectoriel

On peut démontrer que le triangle GHJ est équilatéral en calculant par
produit scalaire les longueurs des trois cotés, ou encore la mesure d’un
angle et les longueurs des deux cotés qui le bordent, ...

Par la géométrie synthétique

Cette démonstration utilise des propriétés concernant la composition de
deux rotations, et la décomposition d’une rotation en composée de deux
symétries orthogonales.

Ces notions ne sont peut-étre pas familieres a tous les éleves, et le pro-
fesseur jugera de 'opportunité d’effectuer cet exercice de démonstration
en fonction des connaissances des éleves de sa classe. Nous proposons ci-
dessous un schéma de réflexion qui permet de guider les éleves pour leur
permettre de retrouver ces propriétés, et d’en déduire la démonstration de
I’énoncé proposé.

II faut tout d’abord s’assurer que les éleves se souviennent que les tranfor-
mations du plan se répartissent en déplacements et retournements. Ensuite,
on pose quelques questions destinées a rafraichir leur mémoire.
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La composée de deux symétries orthogonales est-elle un déplacement ou
un retournement ?
Plus précisément, quelle est la transformation composée de deux symé-
tries orthogonales

d’une part, d’axes paralléles, distants d’une longueur £7

d’autre part, d’axes sécants en O, formant un angle 67

Il s’agit bien entendu d’un déplacement. Dans le premier cas, il s’agit d’une
translation dont le vecteur est perpendiculaire aux axes des symétries et
de longueur 2¢; dans le second cas, il s’agit d’une rotation de centre O et
d’angle 26. L’ordre dans lequel on effectue la composée des deux symétries
détermine le sens de la translation ou de la rotation, suivant le cas.

Peut-on décomposer toute rotation de centre O et d’angle o en une
composée de deux symétries orthogonales 7 De quelle maniere ?

La figure 22 apporte des éléments de réponse a cette question.

Fig. 22

La rotation de centre O et d’angle « est la composée de deux symétries
orthogonales dont les axes a et b se coupent en O et forment un angle 0 = 5,
0 étant 'angle allant de a vers b. Il convient d’étre trés attentif & 'ordre des
symétries dans la décomposition, car il s’agit d’angles orientés. La figure
montre que R(0,a) = SO 0 SO, tandis que la composée SO, o SO,

correspond a la rotation de méme centre O et d’angle (—a).

Cette décomposition est-elle unique ?

Comme le montrent les figures 23 et 24, la position du point intermédiaire
A" (tel que |[OA”| = |OA|) est arbitraire et chaque choix de A” détermine
une position des axes de symétrie. Ceux-ci se coupent toujours en O et
forment un angle 6 = 5.
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Fig. 23 Fig. 2/

La composée de deux rotations s’obtient donc par la composée de quatre
symétries orthogonales. Nous allons voir qu’en vertu de ce qui précede, un
choix judicieux des axes de symétries permet d’obtenir cette composée de
deux rotations comme composée de deux symétries orthogonales.

Notons SO, la symétrie orthogonale d’axe a, et décomposons, par exemple,
la composée de deux rotations de 120° et de centres respectifs A et B en
composée de quatre symétries. On a

R(A,120°) = SO, 08O, et R(B,120°) = SOy 0 SO,
R(B,120°) 0 R(A,120°) = SO40 SO, 0 SO 0 SO,.

Fig. 25

La mesure de I’angle de la rotation qui améne a sur b (ou ¢ sur d) est bien
de 60°. En amenant les axes b et ¢ dans la position de la droite des centres
AB, comme le montre la figure 26, nous obtenons

R(B,120°) o R(A,120°) = SOy 0 SO 0 SOy 0 SOy = SOy 0 SO
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CX 120
60
60 60 b'=c'
B A
d' a'
Fig. 26

L’angle de la rotation qui améne @’ sur d’ mesure (—60°) ou 120°. La
composée SOy 0SSO, est donc une rotation de centre C' et d’angle (—120°)
ou 240°, ce qui revient au méme. On peut donc écrire

R(B,120°) o R(A,120°) = R(C, 240°).

De maniere plus générale, déterminer sur un schéma le centre et 'angle
de la composée de deux rotations de centres respectifs A et B et d’angles
a et (.

Revenons au probleme des trois triangles.

Nous observons que la rotation R(J,120°) applique C sur D, et que la
rotation R(H, 120°) applique D sur B. Leur composée peut étre déterminée
en vertu de ce qui précede (figure 26). Il s’agit de la rotation de 240° dont
le centre forme un triangle équilatéral avec J et H.

Voit-on sur le dessin de la figure 21 une rotation de 240° qui amene C
sur B?

La rotation R(G, 240°) répond a cette question. Il faudra encore expliquer
pourquoi il y a unicité de la rotation d’un angle donné qui amene un point
donné sur un autre, lorsqu’on connait ’angle de la rotation. Nous pourrons
alors conclure que GHJ forme un triangle équilatéral.

Que se passe-t-il si le point D n’est plus sur la droite BC'?

Le fichier Cabri montre que 1’énoncé reste vrai. Il reste a voir que la dé-
monstration synthétique inclut ce cas. Cette propriété, appelée par certains
théoréeme de Napoléon, peut également étre démontrée par les nombres
complexes.
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3.4 Probleme des trois carrés

On donne un segment [OB] et un point A de ce segment. D’un méme
coté de OB, on construit les carrés de cotés [OA] et [AB], de l'autre
coté, le carré de coté [OB].

Désignons par C'; D et E les centres respectifs de ces trois carrés.

Démontrer que BC' est perpendiculaire a DE. Montrer en outre que
|BC| = |DE).

D
c T
(0] B
A
E
Fig. 27
REMARQUE. — On pourrait également démontrer que les segments [OD]

et [CE] sont perpendiculaires et de méme longueur.

Par les nombres complexes

Pour établir la these, il suffit de montrer que le vecteur DE est I'image du
vecteur BC par une rotation d’angle 5, ce qui peut se vérifier facilement
au moyen des affixes de ces deux vecteurs.

Plagons 'origine du plan en O, I'axe des réels sur OB, avec le point unité

en B, et 'axe des imaginaires perpendiculaire a OB.

Déterminons tout d’abord les affixes des points de la figure 27 nécessaires
au calcul des affixes des vecteurs BC' et DE:

O:0=0+0i;
B:b=1+0i;
A:a=k+0i;
C: cz%—i—%i;
D:d ="+ 5k
E:e=3— i
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Calculons ensuite les affixes des vecteurs BC' et DE. On obtient
k—2 k k k-2,

z— =c—b=——+—-i et z— =e—d=—— i
BC 2 2 DE 2 2

Il reste a vérifier que
1=z
BC DE
c’est-a-dire que

ce qui est bien le cas.

Le fait qu’il n’est pas nécessaire de connaitre le centre de la rotation pour ef-
fectuer cette vérification étonnera peut-étre les éleves et suscitera quelques
commentaires.

Par le calcul vectoriel

La perpendicularité des segments [BC] et [DE] est établie en vérifiant que
le produit scalaire < BC |1ﬁ/1> > est nul; 1’égalité de leurs longueurs est
vérifiée en calculant les normes des vecteurs BC et DE.

Par la géométrie synthétique

Nous cherchons une rotation d’angle 90° qui applique [BC| sur [DE], ou
ce qui revient au méme, une rotation d’angle —90° qui applique [DE] sur
[BC].

Fig. 28

La rotation de centre G et d’angle —90° envoie D sur B, elle applique aussi
B sur F et BE sur FC (figure 28). En effet, | BE| vaut la mesure de la
demi-diagonale du carré construit sur [OB], et |[F'C| = |FA| + |AC|, vaut
la somme des mesures des demi-diagonales des carrés construits sur [AB]
et [OA]. Comme la mesure de la diagonale du carré construit sur [OB] est
égale a la somme des mesures des diagonales des carrés construits sur [AB]
et [OA], on a bien |BE| = |FC|. 1l en résulte que FE est envoyé sur C, et
donc DE sur BC.
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Comment s’y
prendre ¢

R(Gv _%)

B—F
D— B
[BE] — [FC]
E—C
[DE] — [BC]

On peut déduire de tout ceci que les segments [DE] et [BC| sont perpen-
diculaires et de méme longueur.

3.5 Probleme des quatre carrés (et plus...)

On construit quatre carrés sur les cotés d’un parallélogramme exté-
rieurement a celui-ci. Démontrer que les centres de ces carrés sont les
sommets d’un carré.

P
D C
0
N
A B
M
Fig. 29

Par les nombres complexes

Plagons l'origine du plan en D, 'axe des réels sur DC', avec le point unité
en C, et 'axe des imaginaires perpendiculaire a DC'.

Déterminons tout d’abord les affixes des points de la figure 29.

D:d=0+0i;
C:c=1+0i;
A:a=k+ i
B:b=k+1+/i car B est 'image de A par la translation de vecteur

DC, d’affixe 1+ 0i;

S
Pp=g+ 35

~
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M:m=(k+3)+ -1

: Le point ) est I'image de A par une similitude directe de centre D,
de rapport \/_ et d’angle —7, notée SD(D, ‘é_, —7). Nous obtenons
donc q par la relation

V2, 1 s V2 V2 V2.

q:a‘7(cosz—isinz):a-7(7——z),

QO

et donc

1 1. k+1¢ N {—k .
= — i.

2 2

N : Le vecteur CN est I image du vecteur C' B par une similitude directe

de centre C', de rapport i et d’angle 7, notée SD(C, 5 V2 , 7). Nous

obtenons donc n par la relatlon

V2

n—c:(b—c)-T(cosz—i-isinz),

4 4
V2,72 V2,
n—c+(b—c)-7(7+71),
et donc
1 1. k—1¢ k+£

Les affixes de ces deux derniers points ) et N peuvent étre calculées par
différents procédés comme l'indique la remarque ci-apres.

Démontrons a présent que M N PQ est un carré. Pour cela, calculons par
exemple les affixes des vecteurs QM et Cﬁ) Nous obtenons

1+k—¢ —-1+k+71.

77 L e S S
1—k—€+1+k—€.
2 = — = 1
oP p—q D) 5 s

et nous vérifions que
(m—q)i=(p—q).

Ceci démontre que les segments [QP] et [QM] sont perpendiculaires et de
méme longueur, mais ne suffit pas a prouver que M N P(Q est un carré. Il
faut encore calculer, par exemple,

1—k—0¢ 1+4+k—1¢,

2, =n—m= 5 + 5 1,

et constater que
(n—m)i = (q—m),
ce qui termine la démonstration.
REMARQUE. — Une autre maniere d’obtenir les affixes des points @) et

N est de calculer les affixes d’un troisieme sommet de chacun des carrés
construits sur [AD] et [BC], et d’exprimer ensuite que @ et N sont les
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milieux des diagonales de ces carrés. Par exemple, si on désigne par A’ le
sommet opposé & A dans le carré construit sur [AD], son affixe @’ vaut
a-(—1i), ce qui donne @’ = £ — ki et pour @, milieu de [AA'],

E+t0 -k,
_T+ 5 1.

q

Il est fort possible que cette méthode de détermination des affixes de @
et N soit suggérée par les éleves. Elle ne doit pas étre rejetée puisqu’elle
est correcte, mais elle nécessite de calculer les affixes de points supplé-
mentaires. Le professeur peut cependant faire observer que les affixes ¢
et n peuvent étre obtenues directement grace aux similitudes. C’est une
excellente occasion de voir fonctionner ’expression de la similitude et d’en
montrer toute la puissance.

Par le calcul vectoriel

On peut vérifier, par exemple, que
o < MMM@ >=0et < QM|Q_1[3 >= 0, ce qui établit que la figure
possede des angles droits en M et Q,
. HNM | = HMQH = ||Cﬁ’||, ce qui établit 1’égalité des longueurs de
trois cotés.

Ceci suffit a établir que M N PQ est un carré.

Par la géométrie synthétique

Nous donnons ci-dessous un schéma de démonstration. Les éleves sont
invités a apporter des justifications aux étapes successives.

Il est possible de compléter la figure 29 pour obtenir un pavage du plan
(figure 30). En effet, si on considéere comme motif de base un polygone
constitué de deux carrés et de deux parallélogrammes ayant un sommet en
commun, on obtient, en reproduisant indéfiniment ce motif, un assemblage
de polygones isométriques qui peut étre étendu a tout le plan, et tel que
ces polygones ne se recouvrent pas et ne laissent entre eux aucune lacune
(c’est ce qu'on appelle un pavage).

Il faudra justifier qu’en chaque sommet du pavage la somme des angles
vaut bien 360°.

Désignons par « petits carrés » les carrés identiques a celui construit sur
[AD] et par « grands carrés » les carrés identiques a celui construit sur
[DC] (dans 'hypothese ol, comme dans la figure 29, |AD| est plus petit
que |DC|, sinon il suffit d’intervertir les mots « grand » et « petit »). La
figure 31 montre que chaque centre d’un « petit carré » est le centre d’une
rotation de 90° qui applique les uns sur les autres les « grands carrés »
et donc leurs centres, ce qui signifie que les centres des quatre « grands
carrés » situés autour d’'un méme « petit carré » forment aussi un carré.
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Fig. 30 Fig. 51

Dessinons deux de ces carrés, comme le montre la figure 32 et tracons leurs
diagonales (figure 33).

Fig. 32 Fig. 33

Nous voyons apparaitre un nouveau carré dont les cotés sont formés des
demi-diagonales des précédents, ce qui acheve la démonstration.
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FEchos des classes

L’expérience s’est déroulée dans une classe de 6° année de ’enseignement
général, option mathématique 6h. Elle s’est déroulée en approximativement
4h de cours. Les sections 2 et 3 de ce chapitre ont été abordées d’une
maniere plus ou moins semblable a celle décrite dans le texte. Il s’agissait
en effet de raccrocher ces deux points a ce qui avait été vu auparavant,
conformément au programme officiel (principales propriétés algébriques
des nombres complexes, forme trigonométrique et plan de Gauss).

On a commencé par montrer le lien entre les nombres complexes et les
principales transformations du plan (z — 2z +¢, 2 = —2z, 2 = Z, 2 — —Z,
z — z-(cos p+ising) et z — r-z (r € R)). Cette approche des transforma-
tions a tout de suite plu aux éleves, qui voyaient la une application concrete
des nombres complexes et une fagon tout a fait nouvelle pour eux d’aborder
les transformations du plan, d’une maniere analytique rassurante.

On est ensuite passé aux propriétés des affixes décrites au paragraphe 2.1.
La aussi, les éleves ont rapidement accroché et ont découvert par eux-
mémes plusieurs de ces propriétés.

Les Quelques situations géométriques du 2.4 ont été proposées en guise
d’exercices avec le méme succes. En particulier, la traduction en termes
de nombres complexes d’'une rotation non centrée a l’origine est apparue
comme tout a fait naturelle.

Dans la section 3, les problemes 3.2, 3.3 et 3.4 ont été résolus en classe mais
uniquement par les nombres complexes. Des éleves plus curieux ont cepen-
dant demandé s’il était possible d’aborder les choses par des méthodes plus
« classiques » de géométrie synthétique ou autre, et nous nous sommes at-
tardés a résoudre ainsi certains passages des problemes proposés, ce qui a
été 'occasion de revoir des propriétés des transformations du plan étudiées
durant les premieres années du secondaire.

Par exemple, dans le probleme 3.4, certains éleves ont été tres étonnés de
constater que prouver l'existence d’une rotation appliquant un segment
sur un autre ne nécessitait nullement que l'on détermine son centre. La
résolution de ce probléeme par la géométrie synthétique leur a prouvé la
puissance de l'outil « nombres complexes ».

L’application 3.5 a, quant a elle, été proposée en interrogation. Les résul-
tats furent assez médiocres et décevants car les éleves, quelque peu dé-
passés par le probleme, ne savaient pas toujours par ou ’entreprendre, et
se focalisaient davantage sur les calculs en oubliant I'aspect géométrique
de la question. Certains, par exemple, ont confondu carré et losange, ou
carré et rectangle. A ce stade, poser cette question sous cette forme lors
d’un controle fut une erreur, les difficultés calculatoires étant encore trop
présentes.

Apres une correction approfondie faite en classe, un exercice similaire a été
proposé en controle. Les résultats furent nettement meilleurs et certains
éleves, généralement faibles, sont presque arrivés au bout de la démons-
tration.
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Commentaires

Certains calculs liés a la résolution de ces exercices peuvent paraitre longs et fastidieux,
mais le contenu géométrique des probléemes leur donne une signification. Il nous parait
de loin préférable d’exercer les éleves au calcul avec les nombres complexes dans un tel
contexte, plutot que de leur soumettre des listes d’exercices vides de sens.

Par ailleurs, ces différentes applications montrent bien la puissance du calcul avec les
nombres complexes comme outil de démonstration. A partir des expressions des simili-
tudes du plan en termes d’affixes, on dispose d’'une méthode générale et systématique
pour démontrer toute une classe de propriétés de figures.
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11

DESSINS EN POSTSCRIPT ET

GEOMETRIE ANALYTIQUE

1 Utiliser les coordonnées pour dessiner

Réaliser quelques dessins en PostScript.

Mettre en ceuvre de maniere plaisante les premiers rudiments de géométrie
analytique en découvrant le PostScript.

La géométrie analytique prend place dans la construction de 'idée de li-
néarité d’une part par la correspondance linéaire, sur chaque axe, entre
distances (munies d’un signe) & l’origine et abscisses, et d’autre part par la
représentation des droites et plans a ’aide d’équations linéaires et affines,
voir sections 5 et 6 du chapitre 16.

Un éditeur de texte et un interpréteur PostScript!.

Prérequis. — Repérages : pour repérer un point sur une feuille de papier,
il faut par exemple deux directions (deux axes), une origine, une orienta-
tion et une unité de mesure sur chacune des deux directions, ainsi qu’une
convention quant a l'ordre des informations qui sont données.

Le PostScript permet de représenter des points, des lignes droites ou des
courbes & partir des coordonnées de points. Il possede deux axes (invi-
sibles). Au départ, le premier est horizontal et coincide avec le bord infé-
rieur de la feuille de papier. L’autre est vertical et coincide avec le bord
gauche de la feuille. L’origine des deux axes est donc le coin inférieur gauche

1 On écrit les commandes du PostScript avec n’importe quel éditeur de texte, par
exemple Alpha sur Macintosh ou NotePad.exe (le Bloc-notes) sous Windows.

Les commandes sont ensuite interprétées a l'aide d’un interpréteur PostScript. Sur
Macintosh on utilisera MacGS ou GSview que ’on trouve sur le site internet :

<http://www.cs.wisc.edu/ ghost/macos/index.htm>.
Pour Windows, on trouve GSview sur le site internet :
<http://www.cs.wisc.edu/ ghost/gsview/index.html>.

Ces programmes sont gratuits, sauf I’éditeur Alpha qui est un shareware. Il est a noter
que les imprimantes PostScript possedent un interpréteur PostScript incorporé.

351
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de la feuille. Le sens des axes est habituel : sur I’axe horizontal, le sens po-
sitif va de gauche a droite et sur ’axe vertical, il va de bas en haut. Ce
qui est moins habituel, c’est 'unité de longueur sur chacun des axes : elle
vaut exactement 7—12 pouce. C’est une tres petite unité qui permet de dessi-
ner sans devoir utiliser trop de chiffres apres la virgule, ou plutot apres le
point, car en PostScript la virgule est remplacée par un point. Dans cette
unité, la largeur d’une feuille A4 vaut 612 et la hauteur 792. Autrement
dit, le coin supérieur droit de la feuille possede par défaut (612,792) comme
coordonnées?.

Les premiéres commandes. — Pour le PostScript, un dessin est un
ensemble de lignes droites et de courbes qui sont soit tracées, soit remplies
(avec une certaine couleur). L’ensemble des lignes droites et courbes est
appelé chemin, en anglais path. La premiere chose a faire pour commencer
un dessin ou une partie de dessin est de dire que ’on commence un nouveau
chemin en écrivant : newpath.

L’idée de départ est assez simple : un morceau de ligne droite (un segment)
va d’un point a un autre. Sur cette base, une ligne brisée, en un ou plusieurs
morceaux, se définit grace aux instructions suivantes :

— moveto : on (dé)place le point courant a I’endroit spécifié; cela corres-
pond au fait d’aller placer son crayon en un point de la feuille (sans
tracer quoi que ce soit).

— lineto : on déplace le point courant a I’endroit spécifié tout en définis-
sant une partie de chemin qui devra étre tracé ; c’est un segment qui va
du point o I'on se trouvait au point indiqué.

— rmoveto : c¢’est la méme chose que moveto, mais ce sont les coordonnées
du déplacement qui sont indiquées et non celles du point d’arrivée ; c’est
un déplacement relatif.

— rlineto : c’est la méme chose que lineto, mais ce sont les coordonnées
du déplacement qui sont indiquées et non celles du point d’arrivée.

Lorsque le chemin a été défini au moyen de ces commandes, il n’apparailt
pas encore sur le dessin. Il faut encore le tracer, ce qui se fait au moyen de
la commande stroke.

Voici un premier dessin.

newpath

0 0 moveto /

400 500 lineto

0 200 rmoveto
-100 -200 rlineto
stroke

On peut observer que

— les coordonnées des points sont indiquées avant 'instruction qui leur
correspond ; par exemple

2 11y a une différence entre les dimensions réelles de la feuille et la partie qui peut en
étre imprimée. Il y a en effet une bordure inaccessible a 'imprimante, dont les dimensions
varient d’une imprimante a 'autre.
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0 0 moveto
signifie : déplacer le point courant en (0,0);

— on ne peut tracer de segment ou se déplacer de maniere relative que si
I’on se trouve déja quelque part, c’est-a-dire s’il existe un point courant ;
apres un newpath, il n’y a pas de point courant et il faut donc commencer
le chemin par un moveto avant d’utiliser lineto, rlineto ou rmoveto.

Modifier le systéme d’axes. — On peut modifier le systeme d’axes de
plusieurs manieres différentes. En voici deux qui sont utiles pour les dessins
de cette activité.

1. Pour déplacer les axes, sans les changer de direction, de sens, ni
d’unité, on utilise 'instruction translate qui en change uniquement
I'origine. Par exemple 100 100 translate déplace l'origine au point
(100, 100).

2. Pour faire tourner le systeme d’axes, on utilise l'instruction rotate.
Par exemple, 45 rotate fait tourner le systeme d’axes de 45 degrés,
autour de l'origine, dans le sens opposé a celui des aiguilles d’une
montre.

Les commandes translate et rotate sont toujours relatives au systeme
d’axes en vigueur au moment ou on les écrit.

Un carré

Dessiner un carré dont le co6té mesure 200 unités et dont le coin inférieur
gauche coincide avec le coin inférieur gauche de la feuille.

On travaille avec des coordonnées relatives pour devoir modifier les ins-
tructions le moins possible si on en change le point de départ.

newpath

0 O moveto

200 0 rlineto
0 200 rlineto
-200 O rlineto
0 -200 rlineto
stroke

Le carré se trouve en bas et a gauche de la feuille. On n’en voit bien que
deux cotés, ce qui peut étre génant.

Dessiner le méme carré mais avec son coin inférieur gauche au centre de
la feuille.

Voici deux possibilités pour déplacer le carré vers le centre de la feuille :
1. Placer le coin inférieur gauche au centre.
2. Déplacer les axes.

Placer le coin inférieur gauche du carré au centre de la feuille, c’est-a-dire
en (306, 396), se fait en remplagant 0 0 moveto au début par 306 396 mo-
veto.
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306 396 translate
newpath

0 0 moveto

200 0 rlineto

0 200 rlineto
=200 O rlimeto

0 -200 rlineto
stroke

Chapitre 11. Dessins en PostScript et géométrie analytique

newpath

306 396 moveto
200 O rlineto
0 200 rlineto
-200 0 rlineto
0 -200 rlineto
stroke

En déplacant 'origine du systeme d’axes au moyen de translate, le coin
inférieur gauche du carré reste (0,0); ce dernier point n’est toutefois plus
le coin inférieur gauche de la feuille mais le point dont les coordonnées ont
été transmises a 'opérateur translate.

306 396 translate
newpath

0 O moveto

200 O rlineto

0 200 rlineto
-200 0 rlineto

0 -200 rlineto
stroke

Faire tourner le carré

Dessiner le méme carré « sur une pointe ».

11 s’agit par exemple de faire tourner le carré de 45° (sens trigonométrique)
autour du sommet inférieur gauche. Une maniere de le faire est de calculer
les coordonnées de chacun des sommets du carré dans cette position. Une
autre maniere, beaucoup plus facile, consiste a faire tourner les axes de
45° au moyen de l'instruction rotate et a dessiner le carré dans ce nou-
veau systeme d’axes : si on garde les mémes coordonnées, le carré suit le
mouvement.

On voit ici 'intérét d’avoir déplacé 'origine du systeme d’axes au milieu
de la feuille : faire tourner le systéme d’axes se fait autour de son origine.
Si 'on gardait 1'origine située au coin inférieur gauche de la feuille et que
I’on faisait tourner le systeme d’axes, le carré, en suivant ce mouvement,
sortirait de la feuille.

45 rotate
newpath

0 0 moveto

200 O rlineto
0 200 rlineto
=200 O rlimeto
0 -200 rlineto
stroke

Dessiner les mémes carrés de telle maniere que le deuxiéme soit obtenu
par une rotation de 45° autour du centre du premier et non pas autour
de son sommet inférieur gauche.
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306 396 translate

newpath

-100 -100 moveto

200 O rlineto
0 200 rlineto
-200 0 rlineto
0 -200 rlineto
stroke

/carre {
newpath

-100 -100 moveto

200 O rlimeto
0 200 rlineto
-200 0 rlineto
0 -200 rlineto
stroke

} def

/carre {
newpath

-100 -100 moveto

200 O rlimneto
0 200 rlimeto
-200 O rlineto
0 -200 rlineto
stroke

} def

11 suffit que le centre du carré coincide avec 'origine du systéeme d’axes.
Pour cela on place son sommet inférieur gauche en (—100, —100).

45 rotate
newpath

-100 -100 moveto
200 O rlineto

0 200 rlineto
-200 O rlineto

0 -200 rlineto
stroke

Les instructions pour dessiner les deux carrés sont identiques! On peut
« mémoriser » ces instructions pour ne devoir les écrire qu'une seule
fois. Ceci sera utile lorsque 'on voudra dessiner plus de deux fois un tel
carré. .. Pour mémoriser une suite d’instructions, il faut choisir un nom,
par exemple carre. Ce nom ne peut pas comporter de caractere accentué.
Pour la définition on fait précéder ce nom du caractére /. En écrivant

} def

on mémorise la suite d’instructions entre les accolades dans carre. Lorsque
I’on écrira ensuite carre, cela aura exactement le méme effet que d’écrire
directement cette suite d’instructions.
306 396 translate
carre
45 rotate
carre

/carre { ...

Dessiner trois ou quatre carrés identiques ayant méme centre et placés
régulierement autour de ce centre.

La solution s’inspire directement de ce qui précede. La voici par exemple
pour trois carrés :

306 396 translate

carre
30 rotate

carre 7N
30 rotate N A
carre
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2 Parallélisme

Traiter, en PostScript, de questions concernant les parallélogrammes et les
cubes.

Utiliser des vecteurs pour dessiner et prouver.

Sur la place des vecteurs dans le développement de I'idée de linéarité, voir
la section 7 du chapitre 16.

Les outils informatiques pour travailler en PostScript (voir page 351).

Prérequis. — Une premiere initiation au PostScript, par exemple la sec-
tion 1 de ce chapitre. Une description plus compléete de quelques principes
et des opérateurs de base se trouvent dans 'annexe 4 a la page 501. Le
lecteur est invité a s’y référer lorsque les aspects du PostScript utilisés ici
nécessitent un peu plus d’explications.

En PostScript, on met toujours les arguments avant le nom de la fonction.
Pour la suite des activités, il est utile de préciser cela : le PostScript,
comme d’autres langages informatiques, travaille avec ce qu’on appelle
une pile. Bornons-nous a dire ici qu'une pile est une mémoire dans laquelle
s’entassent les uns au-dessus des autres (ou les uns a coté des autres) les
éléments que 'on y met. Chaque opérateur y prend, en commencant par
le dessus, les arguments dont il a besoin. Pour plus de détails, le lecteur
est invité a consulter la section 1.1 de 'annexe 4 a la page 501.

Pour faciliter le travail d’écriture des dessins, nous proposons d’utiliser des
opérateurs qui ne sont pas standard en PostScript, mais qui permettent
de travailler directement avec des vecteurs a deux ou a trois dimensions.
Ces opérateurs sont décrits dans I'annexe 5 a la page 509. Pour les avoir
a sa disposition, il suffit de les copier avant les instructions PostScript du
dessin que I’on souhaite réaliser?.

Les vecteurs s’introduisent entre crochets, avec un (ou plusieurs) espace(s)
pour séparer les composantes. Lorsque nous disons « vecteurs », il s’agit de
n-uples de réels qui représentent, selon le contexte et I'opérateur PostScript
utilisé, tantot une position, tantét un déplacement.

Les nouveaux opérateurs définis ont leur nom qui commence par une ma-
juscule. Par exemple Add permet d’additionner deux vecteurs. Comme tou-
jours en PostScript, les vecteurs que 1’on additionne se placent avant ’opé-
rateur.
Les opérateurs disponibles sont :

Add et Sub : addition et soustraction de deux vecteurs.

Mul : multiplication d’un vecteur par un scalaire. On écrit d’abord le
vecteur et ensuite le scalaire.

3 1ls peuvent étre téléchargés & partir du site internet du CREM,

http://www.profor.be/crem/index.htm



2. Parallélisme

Comment s’y

prendre ¢
[...]
/a [250 200] def
/b [500 600] def
/c [50 550] def
/d [80 300] def
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Div : division d’un vecteur par un scalaire. On écrit d’abord le vecteur
et ensuite le scalaire.

Neg : multiplication du vecteur par —1.

Moveto, RMoveto, Lineto et Rlineto : définition de chemins a partir
de vecteurs a deux ou trois dimensions. Lorsque les vecteurs ont trois
dimensions, il y a implicitement une perspective parallele qui projette
les vecteurs sur le plan du dessin. Il s’agit d’une perspective dont la
fuyante est a 30° et dont le rapport vaut un demi. On peut modifier les
parametres de la perspective cavaliere.

Point : dessine un point (un petit disque noir) a l’endroit mentionné.
On peut modifier le rayon du disque en introduisant, par exemple

/RayonPoint 3 def

Par défaut, ce rayon vaut 5.

2.1 Le quadrilatére passant par les milieux

Soit les points

250 500 50 80
A_<200>’B_<600>’C_<550> etD‘<300)‘
Dessiner le quadrilatere ABC'D et le quadrilatére joignant les milieux

des cotés de ABCD.
Que peut-on dire de ce dernier quadrilatere ?

Cette activité demande un aller-retour entre I'ordinateur et la feuille de
papier : certaines parties du travail demandent en effet de mettre au point,
ou de revoir, les outils mathématiques nécessaires a leur réalisation.

Lorsque 'on a recopié les opérateurs permettant de travailler directement
avec des vecteurs, on « écrit » le dessin de ABCD en PostScript par
exemple de la maniere suivante :

newpath
a Moveto b Lineto c¢ Lineto
d Lineto a Lineto stroke

Il faut ensuite déterminer le milieu de chaque coté. Prenons le milieu de
[AB]. Les coordonnées de A correspondent aux composantes du vecteur
OA. Rappelons qu’en PostScript, origine O se trouve au départ dans le
coin inférieur gauche de la feuille de dessin. Les coordonnées du point milieu
M so% les composantes du vecteurs OM que l’on peut trouver grace a OA
et a AB :

oM = O_A+%A_B>.
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Si 'on décompose AB en fonction de OA et O_B)7 on a:
1
OM = OA+ §(O_B) — 04),

et I’on trouve finalement :

OM = -(OA+OB).

1
2
Pour trouver les coordonnées de M, il suffit donc d’additionner celles
de A et de B et de diviser le résultat par 2. En PostScript, cela donne
a b Add 2 Div. Regardons ce calcul en détail* :

Etats successifs de la pile

a [250 200]

b | [250 200] | [500 600]
Add [750 800]
2 [ [750 800] [ 2

Div [375 400]

On peut donc ajouter maintenant le quadrilatere reliant les milieux des

cotés :
[...]

c d Add 2 Div Lineto
newpath d a Add 2 Div Lineto
a b Add 2 Div Moveto a b Add 2 Div Lineto
b ¢ Add 2 Div Lineto stroke

Le quadrilatere ressemble & s’y méprendre & un parallélogramme. On vérifie
que c¢’en est un grace aux vecteurs. Appelons My My, M3 et My les quatre
milieux (figure 1). Vérifier que M; My MsM, est un parallélogramme revient
a vérifier, par exemple, que My My = M, Ms.

Mo B
C
M3
My
D
M,
* A
Fig. 1

4 Dans beaucoup d’ouvrages, la pile est dessinée verticalement. Dans les représenta-
tions qui suivent, les piles sont dessinées horizontalement pour gagner de la place. Cela
n’a bien sir aucune importance. Ce qu’il faut garder en téte, c’est que les éléments de
la pile « sortent » du coté ou ils « entrent ».
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Calculons les coordonnées de ces quatre milieux :

m_%mw@—(%g);
o - 470 - (2 )
o1, = 400 +0D) = 52 ):
Of; = 40D+ 04) = 0 )

La conclusion vient du calcul suivant :

M1M2:0M2—0M1:(275)—(375):<_100);

575 400 175
65 165 —100
M4M3:OM3_OM4:<425)‘(250>:< 175)‘

Obtient-on un parallélogramme quel que soit le quadrilatere ABCD
de départ, ou bien les coordonnées ont-elles été choisies de maniere a
donner ce résultat ?

Les éleves peuvent essayer avec d’autres coordonnées et constater que la
propriété se répete. On peut le prouver en se ramenant, comme on 1’a fait
dans l'exemple précédent, aux coordonnées, mais le calcul algébrique qui
en résulte est assez lourd. Faire le calcul directement avec les vecteurs est
beaucoup plus simple. On veut donc vérifier que

My My = MyMs.

Calculons ces deux vecteurs en fonction de A, B, C et D :

M1M220M270M1: 0?450?707;0?: O?E(ﬂ:@7
M4M3:OM3—OM4: 074503_03;0? — O_CEO—A:@

2.2 Les parallélogrammes par trois points

Comment s’y

prendre ? Soit les points

150 250 180
A_<180>’B_<110) etc_(280>'

Dessiner tous les parallélogrammes qui ont ces points pour sommets.

Soit un point D tel que ABCD est un parallélogramme. Si les sommets
sont dans cet ordre-la (figure 2 a la page suivante), alors on doit avoir

AB =DC.
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On peut trouver les coordonnées de D a partir de ’égalité

OD = OC + BA.

¢ En traduisant cela en coordonnées, on obtient D = C + A — B.
Selon l'ordre dans lequel on effectue les opérations, on obtient plusieurs
manieres d’écrire cela en PostScript. Par exemple, D = C'4 (A — B) s’écrit
A /d ¢ a b Sub Add def
5 tandis que D = (C' + A) — B s’écrit
/d ¢ a Add b Sub def
Fig. 2
Regardons ces calculs en détail :
/d ¢ a b Sub Add def /d ¢ a Add b Sub def
Etats successifs de la pile Etats successifs de la pile
/d |4 /a |[d
c |[d] [180 280] c || d] [180 280]
a |[d] [180 280] | [150 180] a |[d] [180 280] | [150 180]
b || d | [180 280] | [150 180] | [250 110] Add | [ d [ [330 460]

Sub | [ d | [180 280] |

[-100 70] b |[d] [330 460] [ [250 110] ]

Add : [80 350]
def E

Sub : [80 3501
def \:

/a [150 180] def
/b [250 110] def
/c [180 280] def

d Lineto a Lineto
/d ¢ a b Sub Add def stroke R

[...]

/d b a c Sub Add def /d ¢ b a Sub Add def
newpath newpath

a Moveto c Lineto a Moveto b Lineto
b Lineto d Lineto d Lineto c¢ Lineto

a Lineto a Lineto

stroke stroke

On peut alors écrire la séquence d’instructions qui dessine le parallélo-
gramme ABCD.

newpath
a Moveto b Lineto c¢ Lineto

Pour trouver les autres parallélogrammes, il suffit de considérer les autres
ordres possibles pour les sommets. Il n’y a que deux autres possibilités.

1. ACBD : dans ce cas, OD = 0B + CA.
2. ABDC : dans ce cas, OD = O0C + AB.

On peut dessiner les trois parallélogrammes sur la méme feuille.




2. Parallélisme

361

2.3 Cubes

Soit un cube dont la base inférieure est ABCD et la base supérieure
A'B'C'D’" (A se trouvant au dessus de A4, ...) avec

100 300 100 100
A=11200 |, B=| 200 |, D= 400 | et A’=[ 200
0 0 0 200

Dessiner le cube de telle maniere que
(a) toutes les arétes soient visibles (le cube est transparent) ;

(b) le cube soit opaque.

Un schéma peut aider a visualiser la situation (figure 3).

300 o o
Al B’
200
100 ) -
300
200 A B
100
0 100 200 300 400
Fig. 3

Pour trouver les coordonnées du point C, on utilise les égalités vectorielles

AD = OD - OA4:
OC = OB+ AD.

Pour trouver les coordonnées des points B’, C' et D', on utilise les égalités
vectorielles

AAd = OA - 04;

OB = OB+ AA;

O—C; = 07 + H ;

0D = OD+ AA.

Pour dessiner le cube transparent, on écrit alors le programme PostScript,
par exemple, comme ci-apres.
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[...]

/a [100 200 0] def newpath

/b [300 200 0] def a Moveto b Lineto c¢ Lineto

/d [100 400 0] def d Lineto a Lineto

/ap [100 200 200] def ap Lineto bp Lineto cp Lineto
dp Lineto ap Lineto

/c b d a Sub Add def b Moveto bp Lineto

/bp b ap a Sub Add def c Moveto cp Lineto

/cp ¢ ap a Sub Add def d Moveto dp Lineto

/dp d ap a Sub Add def stroke

Pour le cube opaque, il faut uniquement modifier la deuxiéme partie du
programme, ce qui donne

[...] newpath
a Moveto b Lineto bp Lineto
ap Lineto a Lineto
b Moveto c¢ Lineto cp Lineto
bp Lineto b Lineto
ap Moveto bp Lineto cp Lineto T
dp Lineto ap Lineto
stroke

ProlQngement Dessiner un octaedre régulier.

possible

Indication : chaque sommet d’un octaedre régulier est le centre d’une face
d’un cube.

2.4 Sections de cubes

Comment s’y

0 Dessiner en PostScript la section du cube ABCDA'B'C'D’ ci-dessus
prendre

par le plan PQR ou

— P se trouve au tiers de l'aréte [AB], du coté de A;
— @ est au milieu de l'aréte [BC];

— R est au milieu de Paréte [C'C"].

Pour ce faire, déterminer des procédures générales pour trouver l'inter-
section d’une droite avec les différentes faces du cube.

Dans un premier temps, dessinons les points P, @) et R. Les milieux de
segments n’ont plus de secret pour nous. Pour le tiers, on a

OP =04+ 14B.

Ceci peut s’écrire immédiatement en PostScript

/p a b a Sub 3 Div Add def
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En détail,
Etats successifs de la pile
/p E
a [ p [ [100 200 0]
b [ p [ [100 200 0] [ [300 200 0]
a [ p | [100 200 0] | [300 200 0] [ [100 200 0]
Sub [ p [ [100 200 01 [ [200 0 0]
3 [ p | [100 200 0] | [200 0 0] |3
Div [ p [ [100 200 01 [ [%2 0 0]
Add | p | [*2 200 0]
def [

Pour placer un point (un petit disque noir) aux endroits requis, on utilise
lopérateur (non standard) Point. (On peut modifier la grosseur du point
en redéfinissant le parametre RayonPoint.)

[...]

/p a b a Sub 3 Div Add def
/q b c Add 2 Div def

/r ¢ cp Add 2 Div def

p Point q Point r Point
[...]

Pour déterminer les autres sommets de la section, il est nécessaire de trou-
ver des points intermédiaires. Ce sont les intersections de droites contenues
dans le plan de section avec une face du cube (ou plus précisément un plan
contenant une face). Par exemple, on peut rechercher le point S, intersec-
tion de la droite PQ avec le plan contenant la face DCC'D’ (figure 4).

300

D’ c’
A B’
200 R
100 o) e e
300 (3)
200 A P B
100
0 100 200 300 400
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Le point S se trouve sur la droite PQ. On peut donc écrire

@ = W)—I—/\Sm,

ol Ag est un scalaire. Comme le point S se trouve dans la face verticale
a l'arriere du cube, on sait que sa deuxieme coordonnée yg vaut 400. Par
conséquent,

400 = yp+ As(yq —yp),
ou encore

_ 400—yp _  400—200 _
As = yo—yp  300—200 2

Remarquons qu’une simple considération sur les triangles isométriques
QBP et QCS amene également ce résultat.

En PostScript, les coordonnées du point S se calculent alors de cette ma-
niere qui suit
/s p qp Sub 2 Mul Add def

Pour trouver les coordonnées du point 7', intersection de la droite SR avec
la face horizontale supérieure du cube (figure 5), on recommence le méme
genre de calcul. On sait que

O—T = O?-i—)\TS—['){,

et que la troisieme coordonnée zp de T vaut 200, ce qui entraine que

200 = zg+ Ap(zr — 29),

ou encore
. 200—zg¢ __  200-0 __
Ar = Zr—25 _ 100=0 2.
T
300 oY o’
A’ B’
200 R
100 5 2
300 (a)
200 A P B
100
0 100 200 300 400
Fig. 5

En PostScript, les coordonnées du point 1" se calculent alors comme suit
/t s r s Sub 2 Mul Add def.

Il faut rechercher les coordonnées du point U, intersection de la droite
passant par T et parallele & PSS (elle se trouve dans la face supérieure du
cube) avec la face gauche du cube (figure 6). On sait qu'il existe un scalaire
Ay tel que

oU = Oﬁﬂ—)@@.
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Comme U de trouve dans la face verticale a gauche du cube, on sait aussi
que zy = 100. Il en découle que

100 = 27+ Au(zg —zp),
ou encore
100 — a7
Ay = —.
rQ —Tp
D’ T
300 U o
A’ B’
200 B
100 o) 2
300 (9)
200 A P B
100
0 100 200 300 400
Fig. 6

Les coordonnées de T' (et donc z7) ont été calculées en PostScript. Nous
pouvons récupérer xp au moyen de I'opérateur get. Pour avoir la premiere
coordonnée de t, il faut écrire
t 0 get

car, en PostScript, les indices sont numérotés a partir de zéro. De méme,
nous pouvons utiliser get pour obtenir g —xp. Nous pouvons donc pour-
suivre le programme par

/1lu 100 t O get sub q p Sub O get div def

/ut q p Sub lu Mul Add def

Regardons le premier de ces calculs en détail®,

FEtats successifs de la pile

/1lu lu
100 [1u ] 100

t | 1u | 100 | [zr yr zr]

0 get | 1u [ 100 | ap

sub | 1u | 100 — zp

q p Sub |1u|1OO—xT| [rg —2p Yo —YrP 29 — 2p]
0 get | 1u ] 100 — zp | xg —xp

div 1u 71322: s

def [

5 Dans la description de la pile, les noms de variables en italigue indiquent une valeur
numérique dans la pile tandis que les noms en caractéres droits indiquent des noms
PostScript.
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Il nous reste a trouver 'intersection W de 'aréte AA’ avec le plan de sec-
tion. C’est le point d’intersection de la droite passant par U et parallele a
QR avec la face avant du cube (figure 7). Nous avons donc

W = W+AWCTR>,

et

200 = yy + Aw(yR — yQ).
Par conséquent,
200 — yu

by —
w 100

Nous pouvons donc écrire en PostScript

/1w 200 u 1 get sub 100 div def
/w ur q Sub lw Mul Add def

D’ T
300 o
Al B’
200 R
100 w ) o 2
300 O
200 A P B
100
0 100 200 300 400
Fig. 7

Nous avons tous les points permettant de dessiner la section. Il reste main-
tenant a les relier, et éventuellement a dessiner la section en grisé. Ceci se
fait au moyen de l'opérateur setgray qui prend un argument dans la pile :
le niveau de gris. La couleur blanche se définit par 1 setgray et le noir par
0 setgray. Les niveaux de gris intermédiaires® se définissent en donnant
une valeur entre 0 et 1. Si on utilise ensuite l'opérateur stroke, les traits
seront dessinés dans le gris choisi. Pour dessiner une surface en gris, il faut
utiliser 'opérateur £ill qui remplit 'intérieur du chemin courant dans
la couleur choisie. Comme 'opérateur £i11 rend le dessin opaque, 'ordre
dans lequel on place les instructions de dessin a son importance.

6 Le niveau de gris est en fait le rapport entre le nombre de pixels blancs et le nombre
total de pixels dans une surface donnée.
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0.85 setgray
newpath

p Moveto q Lineto
r Lineto t Lineto
u Lineto w Lineto
p Lineto fill

Prolongement
possible

367

0 setgray

newpath

p Moveto q Lineto
r Lineto t Lineto
u Lineto w Lineto
p Lineto stroke

[ dessin du cube ]

Les procédures mises en ceuvre pour trouver les coordonnées de S, T', U et
W sont semblables. La seule vraie différence se trouve dans la composante
utilisée pour déterminer la valeur du parametre (Ag, Ap, Ay ou Aw). Il
s’agit en effet dans tous les cas de trouver I'intersection d’une droite avec
un plan dont la principale caractéristique (du point de vue algébrique) est
précisément que tous ses points ont une de leurs coordonnées constante.

Ecrire une procédure automatique permettant de déterminer la valeur
de X en fonction des données suivantes :

— deux points de la droite;
— l’indice de la composante constante des points du plan;

— la valeur de cette constante.

Un telle procédure demande donc quatre arguments (a prendre dans la
pile) :

1. Le premier point de la droite.

2. Le deuxieme point de la droite.

3. L’indice de la composante constante des points du plan (1 pour z, 2
pour y et 3 pour z).

4. La valeur de cette constante.

Pour trouver la valeur de Ag avec une telle procédure, appelée par exemple
lambda et qui est détaillée ci-apres, on aura a introduire

P 9 2 400 lambda
et pour trouver Ap
s r 3 200 lambda

Construisons la procédure en suivant pas a pas ce qu’elle doit faire dans le
premier cas. Au moment ou l’on écrit lambda, il y a donc dans la pile

| Tzp yp 2Pl | [z yo 2] | 2 | 400

Pour pouvoir utiliser facilement les données qui se trouvent dans la pile,
nous les mettons dans des variables ayant un nouveau nom (leur nom
d’origine ne sert a rien car d’une fois a 'autre il sera différent) :

/Q@valeur exch def
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mettra 400 dans la variable @valeur.

Une remarque technique s’impose ici. Pourquoi utiliser le caractére « @ » 7
Il peut étre considéré comme une lettre au méme titre que les autres ca-
racteres de ’alphabet. Il convient relativement bien pour « protéger » les
noms de variables. Supposons que nous utilisons le nom valeur. Il y a un
risque qu’un utilisateur de la macro fasse appel a la macro lambda sans sa-
voir (ou en ayant oublié) qu’une variable avec ce nom y est définie. Il n’est
donc pas impossible que I'utilisateur définisse une variable avec ce méme
nom. Dans un tel cas, la valeur de la variable valeur sera « écrasée » par
celle que lui attribue la macro lambda. Celui qui programme la macro doit
donc « protéger » les noms. Ceci est une problématique générale en infor-
matique. Elle donne lieu aux notions de variables locales et globales. Une
maniere de réaliser une bonne protection a peu de frais est de réserver un

caracteére comme « @ » pour ne l'utiliser que dans des noms intermédiaires”.

Regardons la définition de @valeur en détail,

Etats successifs de la pile

[ Tep yp 2p) | [wq yo 2] [ 2] 400

/@valeur | [xp yp zp] | [zg Yo 20l | 2 | 400 | @valeur

exch | [xp yp zp] | [rg Yo 20l | 2 | @valeur | 400

def | [xp yp zp] | [xQ Yo ZQ] | 2

Nous récupérons ensuite 'indice de la composante utile. Nous avons vu
qu’en PostScript les indices des composantes sont numérotés a partir de
0. Nous devons donc retirer 1 pour que 'utilisateur puisse introduire la
valeur usuelle (numérotée a partir de 1)

1 sub /@indice exch def

mettra 1 dans la variable @indice. En détail :

Etats successifs de la pile
| zp yp zp] | [(zq Yo 20] | 2
1 | ep yp 2p] | [2g yg 201 [ 2] 1
sub | lep yp 2P | [zq yo 20l | 1
/eindice | | [zp yp 2p] | [xq yo 2¢] | 1 | @indice
exch [ [zp yp 2zp] [ [q yq 2¢] [ @indice [ 1
def | [zp yp 2p] | [2g yo 2]

Les instructions
@indice get /@q exch def
mettront yg dans la variable @q. En détail,

7 Méme si le PostScript ne posséde pas de variables locales liées & des opérateurs,
il existe une notion de noms locaux : ceux de variables ou opérateurs associés a un
dictionnaire. Ceci devient trop technique pour le travail suggéré ici, mais peut faire
I'objet d’un travail au cours d’informatique.
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Etats successifs de la pile

| Lep yp 2p] | [2q yo 2q]

@indice || [zp yp zp] | [q yo 2] | 1
get | [zp yr 2Pl [ yo

/@q | [zp yp 2p] [ yg | Oq

exch | [zp yp zp] [ @9 | yo

def lxp yp zpl

Les instructions

@indice get /@p exch def
mettront yp dans la variable @p.

Il reste alors a effectuer le calcul
400 — yp
yQ —yp’
c’est-a-dire
@valeur @p sub @q @p sub div
Reprenant les instructions les unes a la suite des autres, nous avons

/@valeur exch def

1 sub /@indice exch def
@indice get /@q exch def
@indice get /@p exch def
@valeur @p sub @q @p sub div

Définir 'opérateur lambda revient a compléter ces instructions de la ma-
niere suivante.

/lambdad{

/@valeur exch def

1 sub /@indice exch def
@indice get /@q exch def
@indice get /@p exch def
Q@valeur @p sub @q @p sub div
} def

On peut alors définir les point S et 1" comme ci-dessous.

[...]

/lambda{
/@valeur exch def
1 sub /@indice exch def
Q@indice get /@q exch def
@indice get /@p exch def

@valeur @p sub @q Op sub div

} def

/ls p q 2 400 lambda def
/s p q p Sub 1ls Mul Add def
/1t s r 3 200 lambda def
/t s r s Sub 1t Mul Add def

Pour déterminer U, il faut trouver un deuxieéme point de la droite qui passe
par T et qui est parallele a une direction donnée par un vecteur. Ceci est
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trés facile (figure 8) : on prend le point U’ (up) défini par
oU' = OT+PQ.

Lorsque U sera défini, pour déterminer W, on trouvera W' (wp) par

R
ow' = OU+ QR.
/up t q p Sub Add def /wp u r q Sub Add def
/lu t up 1 100 lambda def /1w u wp 2 200 lambda def
/u t up t Sub lu Mul Add def /w u wp u Sub lw Mul Add def
W/
D’ T/‘Ul
300 U o
A’ B’
200 R
100 W 5 el 2
300 O
200 A P B
100
0 100 200 300 400
Fig. 8

De quoi s’agit-il ¢

Enjeux

De quoi a-t-on
besoin ¢

3 Vu et caché

Déterminer les parties vues et cachées d’une droite traversant un tétraedre
opaque.

Approfondir la question du vu et du caché.

Travailler la vision dans ’espace.

Les outils informatiques pour travailler en PostScript (voir page 351).

Les opérateurs PostScript (non standard) pour travailler directement avec
des vecteurs a deux ou trois composantes (voir page 356).

L’opérateur PostScript (non standard) PPDP qui permet de déterminer le
point de percée d’une droite dans un plan, dont la définition est en annexe
(page 511).

Prérequis. — Les sections 1 et 2 de ce chapitre, ainsi que la question
concernant le point de percée d’une droite dans un plan, a la page 273
(chapitre 8, section 2.4).
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Comment s’y
prendre ¢

0 100 translate

newpath
/A [200 120 300] def A Moveto B Lineto
/B [0 200 0] def C Lineto D Lineto
/C [300 0 0] def A Lineto C Lineto
/D [400 200 0] def stroke
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200 0 300 400
Soit A= 120 |,B=| 200 |,c=| 0 |etD=] 200
300 0 0 0

Dessiner en PostScript le tétraedre opaque ABCD.
A

c

Il y a une maniere treés rapide de représenter le tétraedre (seules les faces
ABC' et ACD sont visibles) :

Meme si la représentation du tétraedre le fait apparaitre opaque, le dessin
ci-dessus n’est pas opaque. Un dessin est opaque lorsqu’il cache les dessins
qui se trouvent en dessous de lui. En PostScript, c¢’est I'ordre dans lequel
sont écrites les instructions de dessin qui détermine ce qui se trouve au-
dessus ou en dessous : ce qui est dessiné d’abord se trouve en dessous.
Travailler avec des dessins opaques est utile entre autres lorsque 'on veut
représenter des parties vues et cachées.

Pour rendre opaque le dessin du tétraedre, on peut procéder comme suit.
L’opérateur £ill permet de remplir une surface (c’est-a-dire 'intérieur
d’un chemin) avec une certaine couleur. On va donc « peindre » le tétraedre
en blanc avant d’en dessiner les arétes. L’opérateur setgray permet de
déterminer le niveau de gris d’'un dessin. Il prend une valeur dans la pile :
1 pour blanc, 0 pour noir, et toutes les valeurs intermédiaires pour les
nuances de gris. On remplace alors les cinq dernieres lignes ci-dessus par

1 setgray newpath A Moveto B Lineto

C Lineto D Lineto A Lineto fill

0 setgray newpath A Moveto B Lineto C Lineto D Lineto
A Lineto C Lineto stroke

Ajouter au dessin du tétraedre opaque ABCD la droite P(Q, en ne
représentant que ses parties visibles. Quatre positions différentes sont
proposées pour P et Q.
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20 400
Premzier cas. — Soit P=| 30 | et @ = | 400 |. Pour dessiner la
50 400

ligne PQ, on ajoute

/P [20 30 50] def
/Q [400 400 400] def

newpath P Moveto Q Lineto stroke

On obtient la figure 9. Ceci ne donne aucune indication sur la visibilité
de cette droite. On a évidemment 'impression qu’elle se trouve devant
le tétraedre. Mais c’est uniquement parce qu’elle a été dessinée apres le
tétraedre. Si on la dessine avant (ce qui se fait simplement en écrivant les
derniéres instructions avant celles qui dessinent le tétraedre), on obtient
la figure 10. On a alors 'impression que la droite se trouve derriere le
tétraedre. Qu’en est-il exactement ?

Q Q
A A
P B D P B D
C C
Fig. 9 Fig. 10

Utilisons la macro PPDP pour déterminer la position du point de percée de
la droite PQ dans le plan ABC :

A B CP Q PPDP Point.

On obtient la figure 11, ce qui montre que la droite PQ) rencontre le tétra-
edre a l'intérieur de cette face.

Fig. 11

Il reste deux possibilités pour dessiner la droite. Appelons R le point de
percée de PQ dans ABC.

1. On dessine d’abord [RQ)], ensuite le tétraedre et ensuite [PR] (figure 12).
On voit l'intérét de travailler avec un dessin opaque. Si le dessin était
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transparent, il aurait fallu déterminer les coordonnées de 'intersection
de la droite représentant R() avec le segment représentant ’aréte AD
du tétraedre.

2. On dessine d’abord [PR], ensuite le tétraedre et ensuite [RQ)]| (figure
13).

C C
Fig. 12 Fig. 13

Pour déterminer laquelle de ces deux représentations est correcte, on re-
cherche l'intersection de la droite PQ avec le plan ACD :

A CDP Q PPDP Point.

La figure 14 montre que le point de percée se trouve cette fois en dehors
du tétraedre. Il ressort de la position du point S dans cette figure, que le
deuxieme point de rencontre de la droite et du tétraedre se trouve dans
la face « arriere ». Ceci n’est compatible qu’avec la figure 12, qui est par
conséquent la bonne représentation. 0

20 400
Deuxiéme cas. — Soit P = | 30 | et Q = 50 |. On représente
50 400

sur un seul dessin le tétraedre, la droite PQ et les points de percée de P(Q)
dans les faces ABC et AC'D. La figure 15 semble montrer que la situation
est la méme que dans le cas précédent. Pourtant, lorsque 'on dessine la
méme chose, c’est-a-dire le segment [RQ)], le tétraedre et ensuite le segment
[PR], on obtient la figure 16, qui n’est pas la méme. En fait, les positions
des représentations des points de percée ont pratiquement permuté. Pour
s’en rendre compte, on dessine a nouveau les deux points de percée sur
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Fig. 15

/\

C
Fig. 18
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deux dessins différents®. Dessinons le point de percée R de PQ dans ABC
(figure 17), ce qui permet d’identifier les deux points de la figure 15. Les
positions des points de percée indiquent que la droite P(Q ne rencontre
pas le tétraedre et qu’elle se trouve devant lui. La figure 16 est donc la
représentation correcte.

Q Q
A
D P D
B
C
Fig. 16
20 400
Troisieme cas. — Soit P=| 40 | et@ = | 180 |.Lafigure 18 donne
50 400

la représentation du point de percée R de P(Q dans ABC. On complete
cette représentation avec le deuxieme point de percée (figure 19). On voit
que la droite PQ rencontre les deux faces. La représentation des parties
vues de la droite est donnée par la figure 20. Elle s’obtient en dessinant
simplement les segments [PR] et [SQ)].

Q Q Q
A A
D P D P D
B B
c c

Fig. 19 Fig. 20
—50 400
Quatrieme cas. — Soit P = 200 | et Q = 50 |. La figure 21
0 400

donne la représentation du premier point de percée R dans le plan de la
face ABC'. On complete cette représentation avec le deuxiéme point de
percée (figure 22). On voit que la droite PQ rencontre la face AC'D mais
pas la face ABC. La représentation est donnée par la figure 23.

8 Lorsque le dessin est fait en PostScript, les deux points ne sont pas distincts I'un
de l'autre et il faut donc trouver un moyen de les distinguer. Au lieu de le faire en
produisant deux dessins différents, on peut dessiner deux points dont les apparences
sont différentes.
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Q
A
P g D
C
Fig. 22 Fig. 23
Prolongement Dans les situations précédentes, nous avons vu qu’il pouvait y avoir plu-
possible sieurs possibilités pour dessiner les parties vues et cachées pour un méme

dessin. La position des points de percée de P@Q dans les plans des faces
visibles du tétraedre permet de choisir celle qui convient. Deux questions
assez différentes peuvent prolonger cette problématique.

Une méme représentation pour plusieurs situations spatiales dif-
férentes. — Reprenons le dernier cas. En gardant les mémes positions
apparentes de tous les points, on peut dessiner la figure 24. Cette figure
peut-elle représenter une situation réelle ?

C
Fig. 24

Trouver des points P et (Q tels que la représentation des parties vues et
cachées de la droite PQ soit exactement celle de la figure 24.

Pour trouver de tels points « expérimentalement », il faut pouvoir modifier
les positions des points P et @) (dans l’espace) sans modifier la position
de leur représentation. Résoudre la question ci-dessus passe donc par une
question intermédiaire, & savoir

T A B
Soit un point A = ya |. Trouver tous les points B = YB
ZA ZB

ayant la méme représentation en perspective que A.

Il faut examiner en détail comment une telle perspective est réalisée concre-
tement. C’est I'occasion de regarder de plus pres I'opérateur PostScript
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Fig. 25
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Perspective qui est utilisé avec les macros permettant le travail avec les
TA

vecteurs. Les coordonnées de la représentation d’un point A = YA
ZA

sont obtenues par le calcul

rael +yaes + zae€3,

ou les e; sont les coordonnées des images des points

1 0 0
0].[1]et] o
0 0 1

Pour la représentation avec une fuyante a 30° et de rapport un demi, on a
les coordonnées suivantes (cf. figure 25)

o — 1 o — 0.5 cos 30° ot g = 0
= o )"\ 05sin30° o\ )
Les points A et B ont donc méme représentation si et seulement si

TR 4+ 0.5cos30°%p = TA 4+ 0.5c0830°y4
0.5sin30°yp  + ZB = 0.5sin30°y4 + ZA.

Supposons que 'on fixe une valeur pour yp. On trouve alors que

xp = x4 + 0.5c0830°(ya —yB)
zp = za + 0.5s8in30°(ya —ypB).

On peut encore écrire ceci d’une autre maniere, a savoir

xp = x4 + (yB—ya)(—0.5c0830°)
yp = ya + (yp—ya)
zp = za4 + (yp—1y4)(—0.5sin30°),
ou encore
B TA —0.5cos 30°
YB = ya | + (yp —ya) 1
ZB ZA —0.5sin 30°

La forme que 'on obtient n’est pas tellement étonnante. Les points B qui
ont méme représentation que A sont les points de la droite passant par A
et parallele a la direction de projection, et ce que 'on vient d’obtenir est
bien I’équation vectorielle ou paramétrique d’une droite

OB = OA + \ v,
avec

—0.5cos 30°
A=yp—ys et U = 1
—0.5sin 30°
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Ceci permet de programmer facilement un opérateur pour donner un autre
point & partir du parametre yg — 4, qui donne ’écart entre la nouvelle et
I’ancienne valeur de la deuxieéme coordonnée. Pour I'utiliser, il faut placer
dans la pile les coordonnées (sous forme vectorielle) du point de départ et
la valeur de yp — y4. On a

/AutrePoint {
/0d exch def [30 cos -2 30 sin] -0.5 Mul @d Mul Add
} def

Nous pouvons revenir maintenant a la figure 24. Nous allons faire varier
un segment [P'Q’] de maniere qu’il ait méme projection (représentation en
perspective) que le segment [PQ)] et que son point de percée dans la face
ACD reste S (figure 26). Pour que le vu et caché corresponde a la figure
24, il faudra que le point de percée R’ de [P'Q'] dans le plan de la face
ABC se situe a gauche de S, mais a droite de la face ABC.

Si S reste fixe et que @ se déplace en @', la position de P’ est entierement
fixée : P’ est aligné sur Q' et S; sa projection coincide avec celle de P.
Considérons le plan contenant les droites PQ et P'Q" qui se coupent en
S. Puisque tous ces points ont méme projection (représentation en pers-
pective) les droites de projection sont contenues dans ce plan : ce sont les
droites PP’ et QQ' qui sont paralleles. Une telle situation est représentée
a la figure 27.

Fig. 27

Grace au théoreme de Thales, nous savons que si p est un scalaire tel que

. . oD &
SP = u@ , alors on doit avoir SP" = uQ'S. Pour trouver la valeur de p,
on peut faire le rapport entre les différences des premieres composantes

Tp—1Tg
zs —zqQ

ce que l'on traduit en PostScript par
/mu P S Sub O get S Q Sub 0 get div def.

On peut alors déterminer le point P’ en fonction du point @’. Dans ce
qui suit, nous notons Pp le point P’ et Qp le point @’. Voici un exemple
ou la valeur 5 a été choisie pour yg — yg, ce qui correspond donc a une
augmentation de 5 pour la deuxieme coordonnée de Q.

/Qp Q 5 AutrePoint def
/Pp S S Qp Sub mu Mul Add def

Le dernier calcul correspond a

P = S+u(S-Q).
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La valeur 5 choisie signifie donc que le point Q' « s’éloigne » puisque y
augmente. Comme S reste fixe, le point P’ « se rapproche ». Lorsqu’on
augmente cette valeur, ce point se rapproche encore plus et le point de
percée R’ de P'Q" dans la face ABC' se déplace vers la droite.

La figure 28 montre diverses situations des points de percée pour des va-
leurs de yo — yg de plus en plus grandes.

Q' Q'
A A A
P’ P’ P
B D B D B D
c c

Fig. 28

Une situation qui répond a la question posée est donnée par ygr —yg = 500.
On peut terminer ce prolongement en examinant ce qui se passe lorsque
I'on donne des valeurs négatives a y¢o — . La figure 29 en montre quelques
exemples. Une problématique intéressante est I'analyse de ce qui se passe
entre yor —yo = —5 et yor — yg = —50.

Q' Q' Q' ° Q'
A A A A
P P’ P’ P’
* B D p D B D g D
c c c c

Yo —yQ = =5

Yo' —yq = —10 Yo' — Yo = =50 Yo' —yg = —500

Fig. 29

Commentaires

Les logiciels graphiques 3D, qui traitent les représentations en perspective d’objets de
I'espace, ont des procédures pour déterminer automatiquement les parties vues et ca-
chées. Il est hors de propos de vouloir « vider » cette question ici. Toutefois il est possible,
pour ceux qui ont envie d’en savoir un peu plus, d’avoir une idée relativement générale de
cette problématique qui prolonge celle que l'on a traitée dans cette activité, en avancant
encore un peu vers 'automatisation des procédures de détection du vu et du caché.

Soit une figure plane opaque. Ecrire un programme PostScript qui permet de re-
présenter cette figure ainsi que les parties vues et cachées d’un segment [PQ)]. Pour
simplifier le programme, on suppose que ni P ni @) ne sont dans le plan de la figure.
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Il faut déterminer les positions relatives de P et de @ relativement au plan de la figure.
Soit R le point de percée de la droite PQ dans ce plan. Il y a quatre possibilités, a
savoir

1. P et @ sont devant le plan : il faut dessiner la figure et ensuite le segment [PQ].
2. P et @ sont derriere le plan : il faut dessiner le segment [PQ)] et ensuite la figure.

3. P est devant et @Q est derriere : il faut dessiner le segment [RQ], ensuite la figure et
le segment [PR] pour terminer.

4. P est derriere et Q est devant : il faut dessiner le segment [PR], ensuite la figure et
le segment [RQ)] pour terminer.

Il faut donc pouvoir déterminer si un point X est devant ou derriere le plan. Considérons
le point X’ qui se trouve dans le plan de la figure et dont la représentation en perspective
coincide avec celle de X. Si X est devant ce plan, X sera devant X’. Dans le systéme
d’axes utilisé jusqu'’ici (voir figure 25), ce sera le cas si la deuxieme coordonnée de X est
plus petite que celle de X’. Supposons que A, B et C soient trois sommets non alignés
de la figure considérée. Le point X’ est donné par le point de percée de la droite de
projection passant par X dans le plan ABC. Les coordonnées d’un deuxiéme point de
la droite de projection sont données par OX + ¥ on

—0.5cos 30°
E— 1
—0.5sin 30°

donne la direction de projection.

Il y a plusieurs manieres de programmer cela en PostScript, notamment en utilisant les
opérateurs if ou ifthen pour réaliser des tests. Ci-dessous, nous présentons une maniere
de programmer moins classique qui évite ces tests.

Supposons que la figure soit un parallélogramme ABCD tel que

150 300 400
A= 50 , B=| 400 | et C={ 200
150 250 400

La figure en question poura étre dessinée par une macro figure définie comme suit :

/A [150 250 150] def
/B [300 400 250] def
/C [400 200 400] def
/D C A B Sub Add def
/figure {1 setgray newpath
A Moveto B Lineto C Lineto D Lineto A Lineto fill
0 setgray newpath
A Moveto B Lineto C Lineto D Lineto A Lineto stroke
} def

Supposons aussi que les points P et () soient définis par :

/P [100 100 000] def
/Q [400 300 500] def

Nous allons maintenant définir la fonction TestDevantDerriere qui prend dans la pile
les coordonnées du point a tester et qui renvoie dans la pile la valeur 1 ou 0 selon que le
point est devant ou derriére le plan ABC'. Le principe en est le suivant. Soit X le point
a tester. On calcule 3’ —y o1 9’ est la 2° coordonnée du point du plan ABC ayant méme
représentation que X. Cette valeur est positive ou négative selon que X est devant ou
derriére le plan ABC. En la divisant par sa valeur absolue, on obtient 1 ou —1. En
ajoutant 1, cela fait 2 ou 0. En la divisant par 2, on obtient 1 ou 0. Appelons ip et ig
les valeurs ainsi obtenues pour P et Q. Le nombre

i=2xip+io

est entier et varie entre 0 et 3. Il vaut
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0 si P et @ sont tous deux derriére le plan;

1 si P est derriere et Q est devant le plan;;

2 si P est devant et Q est derriére le plan;

3 si P et @ sont tous deux devant le plan.
Appelons

DerriereDerriere,

DerriereDevant,

DevantDerriere et

DevantDevant

les macros & exécuter dans chacun de ces cas. Il s’agit donc d’éxécuter la i® composante
de la liste

[{DerriereDerriere} {DerriereDevant}{DevantDerriere} {DevantDevant}].

Pour pouvoir choisir cette i® composante, il faut que i soit considéré par PostScript
comme entier. Or, méme si sa valeur est entiére, il est considéré comme réel (au niveau
de sa représentation informatique) et il faut le convertir en entier. C’est ce que fait
l'opérateur cvi.

Pour exécuter la macro choisie, on utilise I'opérateur exec.

Voici les différentes macros :

/R ABCP Q PPDP def

/DevantDevant {figure newpath P Moveto Q Lineto stroke} def

/DerriereDerriere {newpath P Moveto Q Lineto stroke figure} def

/DevantDerriere {newpath R Moveto Q Lineto stroke figure
newpath P Moveto R Lineto stroke} def

/DerriereDevant {newpath P Moveto R Lineto stroke figure
newpath R Moveto Q Lineto stroke} def

/v [30 cos -2 30 sin] -0.5 Mul def

/TestDevantDerriere{/X@ exch def A B C X@ X@ v Add PPDP X@ Sub
1 get dup abs div 1 add 2 div cvi
} def

/i P TestDevantDerriere 2 mul Q TestDevantDerriere add def

[{DerriereDerriere} {DerriereDevant} {DevantDerriere}
{DevantDevant}] i get exec

Fig. 30 La figure 30 montre le résultat de cette macro pour les valeurs indiquées.
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PROBLEMES D’EQUILIBRE

1 Le levier

Déterminer le barycentre de points affectés d’un poids lorsque tous les
points sont alignés.

Etablir une formule générale donnant le point d’équilibre d’une tige a la-
quelle plusieurs objets sont suspendus. Les questions de barycentres offrent
une introduction significative a la notion de combinaison linéaire (voir la
section 7 du chapitre 16).

Matériel. — De quoi expérimenter I’équilibre d’une tige ot sont suspendus
plusieurs objets, par exemple : des regles graduées en bois, des écrous (tous
de méme poids), des élastiques et du fil de nylon.

Prérequis. — Calcul avec les nombres négatifs, calcul algébrique.

1.1 Le cas de deux objets

Préparation du matériel. — On fore un petit trou au milieu de chaque
regle graduée de maniere a pouvoir y attacher une ficelle par laquelle on
pourra la suspendre. Il faut que la regle graduée tienne en équilibre avec
les graduations tournées vers le bas. Pour cela, il est sans doute nécessaire
de forer un deuxieme trou de maniere a compenser celui qui a été prévu
par le fabriquant d’un coté de la régle. Plus le point de suspension est
placé haut, plus I’équilibre sera stable. Il est préférable que 1’enseignant
choisisse un modele de regle, qu’il fasse ’expérience lui-méme au préalable
et qu’il prépare ensuite suffisamment de regles pour les groupes de travail
qu’il aura prévus.

Des écrous sont attachés a un bout de fil, lui-méme attaché a un élastique
qui est placé autour de la regle et qui peut étre déplacé le long de celle-ci.
Dans la suite, nous appellerons poids un ou plusieurs écrous attachés de la
sorte. Les graduations permettront alors de déterminer de maniere assez
précise les positions des différents poids qui seront suspendus a la régle.

381



382

Comment s’y

prendre ¢

Chapitre 12. Probléemes d’équilibre

Remarque. — Le fait d’utiliser une tige suspendue en son milieu a pour
effet de supprimer 'effet du poids de la tige sur I'expérience.

Une tige est attachée en son milieu a un fil, lui-méme tenu en main. On
y suspend deux poids. Ou peut-on les placer de telle sorte que la tige
reste parfaitement horizontale 7 Donner si possible plusieurs solutions.

Les éleves sont répartis en différents groupes et expérimentent en choisis-
sant différents poids.

En exprimant les distances a partir du point de suspension de la tige, on
obtient par exemple :

1 écrou | 2 écrous 1 écrou | 3 écrous 2 écrous | 3 écrous
20 cm 10 cm 15 cm 5 cm 15 cm 10 cm
15 cm 7.5 cm 18 cm 6 cm 18 cm 12 cm

Trouver une formule générale reliant les distances dy et dos entre le point
ou la tige est suspendue et les poids constitués respectivement de p; et
po écrous.

Il s’agit ici d’inférer la formule

i _ p2
do P
ou encore
p1d1 = pads.

1.2 Le cas de trois objets

Soient trois poids constitués respectivement de 1, 2 et 3 écrous que
I’on souhaite suspendre a la regle. Il s’agit de prévoir les endroits ou les
placer pour réaliser I’équilibre, et de vérifier ensuite expérimentalement.
Y a-t-il plusieurs endroits possibles ?

L’idée est de regrouper deux poids afin de se ramener au cas précédent.
On réalise I'expérience suivante en pensée. On regroupe deux poids, par
exemple ceux de 1 et de 3 écrous. Il faut donc placer d’une part 4 écrous et
d’autre part 2 écrous. Si on place les 2 écrous a 20 cm a droite du milieu de
la tige, le poids de 4 écrous doit étre placé a 10 cm a gauche de ce milieu.
On sépare maintenant le poids de 4 écrous en deux poids de 1 écrou et 3
écrous. Si on déplace le poids de 3 écrous de 3 cm vers la droite, il faut,
pour conserver 1’équilibre, déplacer celui de 1 écrou de 9 cm vers la gauche.

On aurait pu déplacer le poids de 3 écrous de 4 cm vers la droite. Il aurait
alors fallu déplacer celui de 1 écrou de 12 cm vers la gauche.

On aurait encore pu déplacer le poids de 3 écrous de 12 cm vers la droite.
Il aurait alors fallu déplacer celui de 1 écrou de 36 cm vers la gauche. Dans
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ce cas, le poids de 3 écrous se trouverait a droite du point de suspension
de la tige.

On aurait aussi pu placer le poids de 2 écrous a 24 ¢cm a droite du milieu
de la tige. Dans ce cas, le poids groupé aurait été placé a 12 cm a gauche.

On aurait encore pu... Il y a énormément de solutions. Voici les quelques
solutions obtenues ci-dessus que 'on peut vérifier expérimentalement :

1 écrou

3 écrous

2 écrous

19 cm a gauche
22 cm a gauche
46 cm a gauche
21 cm a gauche
24 cm a gauche

7 cm a gauche
6 cm a gauche
2 cm a droite
9 cm a gauche
8 cm a gauche

20 cm a droite
20 cm a droite
20 cm a droite
24 cm a droite
24 cm a droite

On voit qu’il y a beaucoup de solutions. Peut-on exprimer toutes ces
solutions en une seule formule 7

Soit p1, p2 et ps les nombres d’écrous des trois poids suspendus a des
distances dy, da et d3 du point d’attache G de la tige (figure 1).

dy
- mmmmmmmm s >
da ds
e D~ == mmmmmmmm e >
G
P1 p2 p3
Fig. 1

Regardons d’abord le cas ou p1, po et ps valent respectivement 1, 3 et 2.

Si la tige est en équilibre, on a
40 = 2ds, (12.1)

ou { est la distance a laquelle il faut placer les deux premiers poids re-
groupés pour équilibrer les 2 écrous situés a une distance d3 du point G
(figure 2).

4 écrous 2 écrous

Fig. 2
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Si on déplace le poids de 3 écrous a une distance e vers la droite, il faut
déplacer le poids de 1 écrou a une distance ey vers la gauche de telle maniere
que

e1 = 3eo.
Comme e; = d; — ¢ et ea = £ — da (figure 3), on a
dy—¢ = 3({—dy),
et donc
40 = dy + 3da.

En replagant ce résultat dans I'expression (12.1), on obtient

d1 + 3do = 2d3.
¢
.(_ _______
€1 €2 ds
R R REE TR
G
1 écrou 3 écrous 2 écrous
Fig. 3

Si on décidait de mettre le deuxiéme poids a droite de GG, on trouverait
comme expression :

dy = 3ds + 2d3.

On peut vérifier que toutes les solutions trouvées plus haut vérifient une
des deux expressions, qui indiquent également comment trouver toutes le
solutions possibles : si on choisit par exemple d; et ds, elles permettent de
calculer ds.

Pour généraliser a tous les poids possibles, il suffit de remarquer que les
nombres 1, 3 et 2 sont bien les mesures des poids (en écrous !). On a donc

p1d1 + pads = p3d3 ou pidy = pada + p3ds.

1.3 Le cas de n objets

Trouver une relation générale entre les positions de n poids suspendus
a une tige en équilibre elle-méme suspendue en son milieu.
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Prenons le cas de quatre poids pi1, p2, p3 et ps. Supposons qu’on les a
numérotés selon leur position (de gauche a droite). En reproduisant ce que
I’on a fait avec trois poids, on arrive aux différentes expressions

p1di + pads + p3dz = pady,
ou
p1dy + pads = p3d3 + pady,

ou
p1dy = pads + p3d3 + pady.

Le choix de I’expression adéquate dépend de la position des poids po et ps
relativement au point de suspension G.

Il est difficile de généraliser ces formules lorsqu’on les laisse ainsi. En effet, il
faudrait écrire un nombre d’expressions qui serait variable selon le nombre
de poids. On peut déja se faciliter le travail en les écrivant toutes avec le
deuxiéme membre nul :

p1dy + pads + p3d3 — pady = 0

ou
p1dy + pads — p3d3 — pady = 0

ou
p1dy — pada — p3dz — pady = 0.
On peut alors écrire ces trois expressions sous la forme
p1dy £ pady & p3ds — pady = 0.
Les signes attachés a pods et a p3ds dépendent des positions de po et de ps3

a gauche ou a droite de G.

Pour n poids, on pourra écrire
pldl + p2d2 o :l:pn—ldn—l - pndn =0. (122)

Il y a donc « beaucoup » de formules possibles qui different selon les signes.
Ceux-ci dépendent des positions relatives des poids par rapport a G. S’ils
sont a droite de G, le signe est négatif. S’ils sont a gauche, le signe est
positif. Si on décide de remplacer les distances d; par les abscisses x; des
points de suspension des poids et que 'on fixe l'origine en G, on obtient
alors une expression qui est la méme dans tous les cas. En effet, si p; est a
gauche de G, x; = —d;, sinon z; = d;. I’équation (12.2) devient alors

—P1Z1 — P2x2 ... — Pp—1Tn—1 — PnZn = 0,
ou, ce qui revient au méme,

P1T1 + P22 ... + Pr_1Tn_1 + ppTy = 0. (12.3)
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1.4 Recherche du point d’équilibre

On attache plusieurs objets & une regle. Trouver le point ou il faut
suspendre la regle pour qu’elle soit en équilibre.

A la section précédente, la position de G était fixée au préalable. C’est
le contraire de ce que l'on fait en général : la position des points étant
fixée, on cherche la position du point G. Expérimentalement, cela pose des
difficultés pratiques puisque la regle sur laquelle les poids sont attachés a
elle-méme un poids qui modifie le point d’équilibre. Par contre, par une
expérience de pensée, on peut imaginer que la regle a un poids nul.

Il n’est toutefois pas possible d’utiliser la formule (12.3), puisque celle-ci
suppose que les abscisses des points de suspension des poids sont données
relativement au point G de suspension de la regle. Or, c’est précisément
ce dernier point que l'on cherche. Une question intermédiaire va permettre
de trouver une solution.

Comment se transforme la formule (12.3) si on place l'origine des abs-
cisses n’importe ot ?

Soient donc une autre origine pour les abscisses, g ’abscisse du point G et
x; les abscisses des points p;. Il faut se ramener au cas précédent, c’est-a-
dire amener l'origine des abscisses en G. Cela se fait simplement en retirant
g a chaque abscisse. L’expression (12.3) devient alors

pi(z1 —g) +p2(x2 —9) ... +Pn—1(@n—1 —9g) +pn(zn —g) =0,

ol g est I'abscisse du point d’équilibre. Cette expression peut s’écrire

sz‘fb‘z = (Zpi)g (12.4)

Elle permet de trouver I'abscisse du point d’équilibre & partir des différents
poids et de leurs abscisses, ce qui donne

_ > Diti
9= S (12.5)

Il est également possible de résoudre cette question sans imaginer une regle
de poids nul. Le poids de la tige a une influence sur la position du point
d’équilibre. On fait I’hypothese que cette influence est la méme que celle
d’un objet qui serait suspendu au milieu de la tige et qui aurait le méme
poids que celle-ci. On remplace donc la tige et son poids par un poids
ponctuel (pp41) situé en son milieu (d’abscisse x,+1). Notons que cette
supposition pourrait étre justifiée dans une théorie plus complete.

Une fois réalisé le calcul du point d’équilibre de la tige, la position trouvée
peut également faire ’objet d’une vérification expérimentale.
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2 Barycentres dans un plan

Déterminer le barycentre de points affectés d’un poids lorsque tous les
points sont dans un méme plan.

Etablir une formule générale donnant le point d’équilibre d’une plaque a
laquelle plusieurs objets sont suspendus.

Prérequis. — Premiers éléments de calcul vectoriel (cf. le chapitre 8 a la
page 218).

2.1 Le cas de trois poids égaux

Soit une plaque circulaire suspendue & un fil en son centre. On souhaite
lui accrocher trois objets de poids égaux. Caractériser les manieres de
placer ces objets pour que la plaque reste parfaitement horizontale.

On reprend la méthode de regroupement utilisée précédemment. La plaque
est suspendue au centre GG. On place un des poids en un point de la plaque
A. On regroupe les deux autres poids. Pour que la plaque reste en équilibre,
il faut que le point P ot on les place se trouve sur la droite AG (figure 4).
Comme le poids en P est double de celui en A, la distance de P a G doit
valoir la moitié de celle de A a G.

Lorsque I’on sépare les deux poids, il faut, pour garder I’équilibre, les placer
sur une ligne passant par P en veillant a ce qu’ils se trouvent a méme
distance de P. On en déduit que les trois poids doivent étre placés en des
points formant un triangle dont GG est I'intersection des médianes.

P
T\\\\ 2p
\ pl~=_
\ / =P
\ | /
/
\\ I G y
/ ’
\ | /
\ | /
v
\t//
p A
Fig. 4

2.2 Le cas de trois poids quelconques

Soit une plaque circulaire suspendue a un fil en son centre. On souhaite
lui accrocher trois objets de poids quelconques. Caractériser les maniéres
de placer ces objets pour que la plaque reste parfaitement horizontale.
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Soit a placer, par exemple, des poids formés respectivement de 3 écrous, 2
écrous et 4 écrous (figure 5).

3 écrous
A‘: - € p

\ : ="~ _ 2 écrous
\ dl‘ ’B
\ I /
\ I //
G
\ | ,
\ | V
\ dy /
\ | /
v
/
%
4 écrous
Fig. 5

Plagons le poids de 4 écrous en C et imaginons dans un premier temps
que les poids de 3 et 2 écrous sont regroupés au point P se trouvant sur
la droite C'P. Pour que la plaque reste en équilibre, la condition suivante
doit étre vérifiée :

5dy = 4ds. (12.6)

Si les deux poids de 3 et 2 écrous sont placés en deux endroits distincts, A
et B, il faut alors respecter en plus la condition

361 = 262. (12.7)

Ceci permet de déterminer concretement des manieres de disposer les trois
poids pour garder ’équilibre. Il y a moyen toutefois de caractériser de
maniere plus générale les positions des poids, comme cela a été fait pour
le levier.

Comme les distances sur la droite AB, ou se trouvent les poids de 3 et
2 écrous, ne peuvent se comparer a celles sur la droite PC, 'idée est de
s’occuper des positions des poids les uns relativement aux autres en termes
de vecteurs (changements de position) et non plus de distances. Supposons
connaitre les coordonnées des points A, B et C' ou sont placés les poids de
3, 2 et 4 écrous. Les expressions (12.6) et (12.7) se traduisent par (figure
6)

5PG =4GC et 3AP =2PB.
A

\ I =~ - _ B
|
|
|
|
|
|
|
|

4
c

Fig. 6
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Ces deux relations entre des vecteurs peuvent se réécrire comme relations
entre des coordonnées (indiquées ci-apres simplement par les lettres dési-
gnant les points) :

5(G—-P)=4(C —G) ouencore (5+4)G=5P+4C;
3(P—A)=2(B—P) ouencore (3+2)P=3A+2B.

En les combinant, on trouve alors une relation entre les coordonnées de G
et celles des trois points ou sont suspendus les poids :

9G = 3A+2B+4C.

Le coefficient de G provient de la somme 3 + 2 4+ 4 qui sont les nombres
d’écrous, c’est-a-dire les mesures des poids (dans l'unité « écrou »). On
peut donc écrire immédiatement ’expression correspondante dans le cas
général :

(p1+p2+p3)G = p1A+paB+psC, (12.8)

ou p1, p2 et p3 sont les mesures des poids suspendus en A, B et C. C’est
une relation entre quatre positions. Deés que trois d’entre elles sont fixées,
elle permet de calculer la quatrieme.

2.3 Recherche du point d’équilibre

De la maniere dont le probleme a été posé, la position de G est fixe. C’est
le contraire de ce que I'on fait en général : la position des trois points étant
fixée, on cherche la position du point G. Expérimentalement, cela pose
des difficultés pratiques, puisque le dispositif sur lequel les objets seraient
attachés a lui-méme un poids qui modifie le point d’équilibre. Comme
dans le cas du levier, par une expérience de pensée, on peut imaginer les
trois objets reliés par une structure ne pesant rien et trouver leur point
d’équilibre au moyen de 'expression (12.8).

Le résultat obtenu se généralise au cas de n objets. On peut le faire par
récurrence en reproduisant la démarche utilisée pour trois poids : on re-
groupe deux poids et on se base sur le résultat obtenu pour n—1 poids. On
trouve ainsi le résultat pour n objets dont les coordonnées sont données
par A; et les poids par p;, a savoir

O _pi)G =) pid;.
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3 Equilibre d’un point

Etablir expérimentalement les conditions d’équilibre d’un point soumis a
des forces.

La loi de composition des forces, c¢’est-a-dire la somme de deux forces par
la regle du parallélogramme ; les premieres propriétés de cette somme.

Il s’agit de la modélisation d’une situation physique. Cette modélisation
montre la parenté des forces avec d’autres entités mathématiques ou phy-
siques représentées par des vecteurs. Voir aussi a cet égard la section 8.4
du chapitre 16.

Matériel

Une corde de traction, comme par exemple celles qu’on utilise au cours de
gymnastique. Un assemblage de trois cordes de ce type nouées en un point.

Un seau d’eau.

Un dispositif de composition de forces d’un type déja décrit par E. MACH
[1903] dans un célebre ouvrage sur I’histoire de la mécanique. La figure 7,
extraite de cet ouvrage, en donne une idée. La figure 8 montre un dispositif
analogue disponible dans le commerce. Mais on peut sans trop de peine
construire cela soi-méme, de la maniere suivante.

Fig. 7 Fig. 8

On noue trois ficelles en un point et on fait passer chacune d’elles sur
une poulie fixée en périphérie de la table. Au bout de chaque ficelle on
attache un objet pesant, par exemple un godet contenant de la grenaille
de plomb. Il faut aussi disposer d’une balance pour peser ces godets. Nous
conseillons de choisir une table ronde, pour que le dispositif ne suggere
aucune direction privilégiée dans le plan horizontal. Toutefois, une table
carrée ou rectangulaire ne présenterait pas d’inconvénient majeur.
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3.1 Equilibrer deux forces d’égale intensité

Lorsque deux personnes tirent a chaque bout d’une corde avec des forces
égales dans des sens opposés, la situation est équilibrée, et donc la corde
ne bouge pas. Considérons maintenant un systeéme de trois cordes nouées
en un point. Une personne A tire sur une des cordes. On demande
a deux autres personnes B et C de tirer sur les deux autres cordes,
symétriquement par rapport a la premiere corde, comme le montre la
figure 9, qui est une vue du dessus. La personne A s’efforce de maintenir
son effort constant. Les personnes B et C' ajustent leur force pour que le
neeud ne bouge pas. Comment varie la force qu’elles doivent développer
lorsqu’elles augmentent 'angle entre leurs deux cordes ?

f\
R
i

Fig. 9 Fig. 10

Cette expérience, purement qualitative, fait voir qu’au fur et a mesure que
I’angle en question grandit, la force que doivent développer B et C' devient
de plus en plus grande. Et lorsque I'angle s’approche de 180°, la force qu’il
faudrait développer devient tellement grande que B et C' ne peuvent plus
résister.

Une corde est nouée sur 'anse d’un seau rempli d’eau. Que se passe-t-il
lorsque deux personnes tirent symétriquement sur la corde, comme le
montre la figure 107

Plus les forces exercées symétriquement sur la corde sont grandes, plus
grand est l'angle entre les deux moitiés de la corde. Il s’avere impossible
de tirer assez fort pour que cet angle devienne un angle plat.

Une fois réalisées ces deux expériences assez grossieres, on va s’efforcer de
comprendre mieux ce qui se passe en mesurant les angles et les forces!.

Pour cela, on se sert de I’appareil représenté a la figure 8.

! Ci-apres, nous donnons les mesures des forces en grammes-forces. Nous pensons
que mesurer ici les forces en Newton ne pourrait qu’embrouiller les éleves.
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Disposons deux poulies aux deux extrémités d’un diametre de la table,
faisons passer une ficelle sur ces deux poulies et suspendons des deux
cOtés des poids égaux, par exemple 50 g de chaque coté (voir figure 11).
Le point central ne bouge pas. Remplagons une des deux forces de 50 g
par deux forces de méme intensité disposées symétriquement comme le
montre la figure 12. Quelle intensité 2 (commune) devrons-nous donner
a ces deux forces pour que le point central ne bouge pas 7 Et comment
varie cette intensité lorsque nous faisons varier 'angle o ?

p°
\__

Fig. 11 Fig. 12

Faisons 'expérience pour quelques valeurs de I'angle «. Nos résultats sont
consignés dans le tableau suivant.

angle a | 30° 60° | 90° | 120° | 150° | 160° | 180°
forcex |24g |295¢g|3bg | 5lg|975g| 144 g ?

La figure 13 reprend graphiquement ces résultats. Elle montre que la force
varie avec l’angle, mais selon une loi que I’on ne pergoit pas immédiatement.
Essayons donc de préciser cette loi.

forces
eng.

150
140
120
100 o
80
60

40

20

angles

0 30 60 90 120 150 160 180 endeg.

Fig. 13
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Les points que nous venons de déterminer sont-ils — fut-ce & peu pres —
sur le graphe d’une fonction familiere 7 Difficile & dire. Tentons d’y voir
plus clair.

En fait, la situation que nous examinons a un premier aspect géomé-
trique, puisqu’on y discerne d’abord trois directions issues d’un point.
Ne serait-il pas éclairant de dessiner les forces a une certaine échelle
sur cette figure géométrique ? En ce faisant, nous garderions sous les
yeux un maximum d’informations. D’ou la proposition suivante : choisir
une échelle pour représenter les forces, par exemple 5 cm pour 100 g, et
représenter chacune des forces a I’échelle, en respectant sa direction.

A la figure 14, nous avons représenté toutes les forces mesurées ci-dessus.
Chacune d’elles correspond a une fleche issue du point fixe et dont la
longueur a été calculée a ’échelle choisie.

A
\
\
\
\
\

Fig. 1}

Il n’est pas étonnant que la figure obtenue soit symétrique, ou plus préci-
sément qu’elle possede un axe de symétrie, déterminé par la force donnée.
Mais — chose curieuse —, les extrémités de toutes les fleches ont ’'air d’étre
alignées sur une droite perpendiculaire a cet axe. Ainsi, toutes ces forces
auraient sur cet axe la méme projection orthogonale.

Qui plus est, le point commun de projection coupe sans doute cette force
F en deux : en effet, si on envisage le cas limite d’un angle nul entre les
deux forces symétriques, on voit bien que chacune de ces deux forces doit
avoir une intensité moitié de celle de la force F.

Fig. 15

Si on accepte cette analyse, on trouve la relation cherchée entre I'angle et
la force. En effet, comme on le voit sur la figure 15, on a

« F

fla)eos 5 = <,
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et par conséquent

forces
eng.

150

140

120

100

80

60

40

20

angles

0 30 60 90 120 150 160 180 endeg.

Fig. 16

La figure 16 superpose notre courbe expérimentale de tout-a-I’heure et le
graphe de la fonction que nous venons de découvrir. La correspondance est
assez bonne pour que nous puissions accepter notre modele théorique de
la situation.

Renversons maintenant la situation en nous donnant deux forces symé-
triques par rapport a une droite d, comme sur la figure 17. Trouver une
troisieme force qui les équilibre.

Fig. 18 Fig. 19

Une solution — trouvée en s’inspirant de la figure 15 — consiste a projeter
les deux forces sur la droite d, ce qui peut se faire en dessinant le segment
AB. On obtient ainsi le point C' (figure 18). L’intensité de la force cherchée
correspond au double de OC, ce qui nous ameéne au point D (figure 19).
La force cherchée est donnée par le segment OF opposé a OD (figure 20).
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Fig. 20 Fig. 21

On peut alors observer qu’il y a aussi moyen de trouver le point F, celui
qui détermine la force cherchée, en se servant d’une diagonale du losange
OADB : c’est ce que montre la figure 21.

3.2 Equilibrer deux forces d’intensités inégales

Comment s’y

prendre ? On donne maintenant deux forces de directions et de grandeurs quel-

conques (par exemple deux forces tirant sur des ficelles écartées de 83°,
l'une de 54 g et 'autre de 87 g) (voir figure 22), et on demande de les
équilibrer par une troisieme force.

[’argumentation suivante est plausible, quoique nullement évidente. On
a vu qu’on peut remplacer deux forces symétriques « par une diagonale
du losange qu’elles définissent ». On peut alors supposer qu’on pourrait
remplacer deux forces non symétriques par « une diagonale appropriée du
parrallélogramme qu’elle définissent » (voir figure 23). Il suffirait ensuite
d’équilibrer cette force par son opposée. On détermine l'intensité et ’orien-
tation de cette force en mesurant a I’échelle sur la figure 24. Nous avons
réalisé ’expérience sur I'appareil de la figure 8 a la page 390. 1l s’avere que
cette conjecture est bonne, aux erreurs de mesure pres.

87¢g

83°

54¢g

Fig. 22 Fig. 23 Fig. 2/

Si les éleves ne font pas cette conjecture, ils peuvent déterminer la force
cherchée en tatonnant expérimentalement, puis la représenter a 1’échelle.
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C’est le moment pour le professeur de donner le coup de pouce qui s’im-
pose : il expliquera la loi du parallélogramme des forces.

On peut remplacer cette derniere question par « l'expérience de
pensée » suivante, que nous présentons sous forme de dialogue.
L’un. — Considérons un fil dont une extrémité est attachée a une glis-
siere dans laquelle elle se meut sans frottement. On pourra imaginer
par exemple une tringle a rideau munie d’une attache a roulettes a
laquelle on a fixé une ficelle. La figure 25 schématise cette situation.
On sait que lorsqu’on tire sur la ficelle dans une direction perpen-
diculaire a la glissiére, on n’observe aucun mouvement. Pour que
I’attache mobile se déplace, il faut et il suffit d’incliner la direction
de la traction (voir figure 26). En disant qu'il suffit de faire cela, on
suppose implicitement que la glissiére ne comporte aucun frottement.
Jusqu’ici, ce que nous avons affirmé releve de 'expérience commune.
Et si maintenant on tire sur deux ficelles nouées a lattache (voir 27),
comment pensez-vous qu’il faudra tirer pour que ’attache ne bouge
pas?

AN

L3 A

Fig. 25 Fig. 26 Fig. 27

L’autre. — Regardons d’abord une seule force. Pour qu’il n’y ait pas
mouvement, on s’arrange pour que la situation soit équilibrée, autre-
ment dit pour que la projection orthogonale de la force sur la glissiere
soit nulle. Si on tire avec deux forces, il semble raisonnable de sup-
poser qu’il n’y aura pas de mouvement si les deux forces ont le long
de la glissiere des projections orthogonales qui se compensent, par
exemple comme sur la figure 28.

L’un. — On ne voit en effet guere d’autre réponse plausible. Considé-
rons maintenant la chose sous 'angle suivant. La figure 29 représente
a nouveau un force inclinée par rapport a la glissiere. Appelons cette
force F, et désignons respectivement par F; et F, ses projections
dans la direction de la glissiere et dans la direction orthogonale. On
peut dire que Fi est ce qui tend a mouvoir I'attache, tandis que F5
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est ce qui tire sur la glissiere. Convenons de munir F; du signe + si
la traction s’exerce vers la droite, et du signe — si elle s’exerce vers
la gauche. Revenons maintenant au cas ou deux forces F' et G sont
appliquées a l'attache, et décomposons chacune d’elles de la maniere
indiquée (voir figure 30). Est-ce qu’il n’est pas raisonnable de penser
que ce qui tend a mouvoir 'attache, c’est I} + Gy, et que ce qui tire
sur la glissiere, c’est Fo + G2 7

L’autre. — Mais oui, c’est une conjecture plausible. Et alors, comme
nous l’avons vu avant, la condition pour que ’attache demeure im-
mobile s’écrirait F} + G1 = 0. L’effet conjoint des deux forces serait
alors le méme que celui d’une seule force H perpendiculaire a la glis-
siere et dont les projections seraient 0 et Fy+Go. C’est ce que montre
la figure 30.

L’un. — Alors je peux montrer une fagon simple de trouver géométri-
quement le point qui détermine la force H. Je reproduis la figure 30
en donnant des noms a ses points principaux : voir figure 31. Ensuite,
je mene par D une parallele & EO qui coupe la droite d en un point
C (figure 32). Le triangle DK C est isométrique au triangle O/ E. En
effet, les cotés KD et IO sont isométriques. Les angles en [ et en K
sont tous deux droits, et enfin les angles en O et en D sont de méme
amplitude par construction (leurs cotés sont deux & deux paralleles).
Donc KC est isométrique a OL. Par conséquent OC' a pour longueur
F5 + Go. Ainsi C détermine bien la force H. On peut exprimer ce
résultat autrement : la force H est donnée par la diagonale appropriée
du parallélogramme ODCE.

On donne deux forces égales et opposées, par exemple de 100 g chacune.
On voudrait, sans menacer 1’équilibre, remplacer une de ces deux forces
par deux autres, mais dont 'une est donnée a ’avance. Est-ce possible ?

=
=

Fig. 33 Fig. 34



398

Prolongements
possibles

Chapitre 12. Probléemes d’équilibre

La figure 33 représente la situation pour un certain choix de la force 7
donnée & I'avance?. La réponse est que ’on peut trouver la force demandée :
on construit le parallélogramme dont une diagonale est la force a remplacer
et dont un des cotés est la force donnée a I’avance. La force g cherchée
est donnée par 'autre co6té du parallélogramme (voir figure 34).

3.3 D’autres questions d’équilibre

Le dispositif expérimental proposé permet de poser quelques autres ques-
tions conduisant a approfondir d’une part le probleme physique de 1’équi-
libre d’un point soumis a des forces, mais aussi d’autre part la regle du
parallélogramme. Voici quelques-unes de ces questions.

Trois points fixes (trois poulies) sont donnés sur le bord de la table. On
choisit un quatrieme point quelque part sur la table et on y amene le
point de jonction des trois ficelles. Est-il toujours possible, en faisant
passer les ficelles par les trois points donnés, d’y suspendre trois poids —
a déterminer — tels que le point de jonction des ficelles soit en équilibre ?

Supposons d’abord que le quatrieme point choisi soit a l'intérieur du tri-
angle déterminé par les trois points fixes. Les directions des forces a appli-
quer pour obtenir ’équilibre nous sont imposées (figure 35). Construisons
alors un parallélogramme ayant deux de ses cotés dans deux des directions
données, et sa diagonale dans la troisieme direction. Une telle construc-
tion est toujours possible (figure 36). Il nous suffira ensuite de choisir nos
poids proportionnels aux cotés et a la diagonale du parallélogramme ainsi

construit.

Fig. 35 Fig. 36 Fig. 37

D’autre part, si le quatrieme point choisi est a I'extérieur du triangle déter-
miné par les trois points fixes, on ne peut plus contruire le parallélogramme
requis : la figure 37 montre une situation de ce genre. Pour réaliser 1’équi-
libre dans un tel cas, il faudrait une ficelle qui pousse au lieu de tirer, ce
qui n’est pas possible.

La conclusion est que 'intérieur du triangle déterminé par les trois points
fixes est I’ensemble des points que 'on peut amener a 1’équilibre par un
choix approprié des trois forces. Remarquons au passage que si un point
est en équilibre sous I'action de trois forces, il demeure en équilibre si on
multiplie la grandeur de chacune de ces forces par un méme nombre.

2 Nous représentons maintenant les forces par des lettres surmontées d’une fleche.
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L’appareil présenté a la figure 8 a la page 390 permet de vérifier
notre conclusion expérimentalement avec une bonne précision. Les
trois points fixes sont les sommets des poulies. La figure 38 illustre
une réponse particuliere.

Fig. 38

Une remarque pratique s’impose & propos de cette expérience. Le
point dont on étudie I’équilibre (c’est-a-dire 'endroit ol se rejoignent
les trois ficelles) n’est plus maintenant le centre du cercle. Or chaque
poulie se trouve dans un plan vertical passant par ce centre. Il s’ensuit
que la ficelle qui passe sur une poulie n’est plus dans le plan de celle-
ci, et qu’elle risque donc de quitter la poulie. L’expérience montre
qu’avec I'appareil de la figure 8 on peut quand méme tolérer un angle
assez important (de lordre d’une trentaine de degrés) entre chaque
ficelle et le plan de la poulie correspondante sans que cet accident se
produise.

On accroche des poids aux trois ficelles. Y a-t-il toujours moyen de
déterminer ou il faut placer les trois points fixes au bord de la table
pour que le point de jonction des ficelles demeure en place ?

Fig. 39 Fig. 40
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Fig. 41

Pour obtenir un équilibre, il faut que l'on puisse, avec les trois forces,
« faire un parallélogramme et sa diagonale ». C’est possible, en vertu de
I'inégalité triangulaire, si le plus grand poids est plus petit que la somme
des deux autres. Si tel est le cas en effet, on peut « disposer les trois forces
en triangle » (figure 39), et donc aussi les disposer comme sur la figure
40 en configuration d’équilibre. 11 suffit alors de déposer cette figure sur la
table en placant l'origine des trois forces au centre : celles-ci pointent vers
trois points du bord de la table ot on peut placer les poulies (figure 41).
Il y a bien entendu une infinité de solutions, correspondant a une rotation
d’ensemble d’un angle quelconque du systeme des trois ficelles autour du
centre de la table.

Nous savons qu’'un point est en équilibre sous ’action de trois forces si
la somme de deux d’entre elles est opposée a la troisieme et de méme
intensité que celle-ci. Mais pour vérifier cela, peut-on commencer par
sommer deux quelconques des forces?

Fig. 44

La figure 42 montre deux forces 7 et g en équilibre avec une force .
Montrons tout d’abord que les forces §" et h sont en équilibre avec la force
— R — —

f . Pour cela, construisons la somme k de g et h comme le montre la
figure 43. Il faut montrer que k est égal et opposé a f . Or,
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AC est égal et parallele a DA par construction ;
F'H est égal et parallele a AC' par construction ;
donc DA est égal et parallele & F .H ;

donc DF' est égal et parallele a AH puisque DFHA est un parallélo-
gramine ;

mais DFE est égal parallele & EA par construction ;
donc AH est égal et parallele a FA;
, — —
et par conséquent k = — f.
On tire aussi de cet exercice un nouvel énoncé de la condition d’équilibre
d’un point soumis & trois forces : le point est en équilibre si la somme des
trois forces qui lui sont appliquées est nulle. Cet énoncé a ceci d’agréable
qu’il fait jouer le méme role a chacune des trois forces.
Si, arrivés a cette question, les éleves manient déja les vecteurs et s’ils ont
reconnu la nature vectorielle des forces, alors la démonstration que nous
venons d’achever se résume a remarquer que
— —
. —>
S1 f + g = — h )
— —
alors g+ h =—f.
Il est assez agréable de constater, comme le montre la figure 44 , que trois

forces en équilibre et leurs sommes deux a deux déterminent les sommets
d’un hexagone dont les cotés opposés sont deux a deux paralleles.

On se donne trois poids et trois points fixes au bord de la table. Existe-
t-il un point sur la table qui soit en équilibre sous ’action de ces trois
poids ? Si oui, ou est ce point ?

Traitons d’abord un cas particulier. Soient les trois forces dont les intensités
sont spécifiées par les segments de la figure 45 et les trois points de la figure
46.

Fig. }5 Fig. /6

Pour pouvoir trouver un point en équilibre, il faut d’abord bien entendu
que les trois forces puissent étre disposées en un systeme de somme nulle.
Nous savons pour cela que le plus grand des trois poids doit étre plus
petit que la somme des deux autres (voir ci-dessus). Tel est le cas pour les
forces que nous nous sommes données. Disposons-les donc en un systeme
de somme nulle (figure 47).
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C

Fig. J7 Fig. 48

Ces trois forces déterminent trois angles «, § et . Tragons sur AB un arc
de cercle tel que tout angle AX B ayant son sommet X sur cet arc soit égal
a «. Tragons de méme sur BC un arc de cercle correspondant a l’angle 8
(voir figure 48). L’intersection de ces deux arcs de cercle nous donne une
position possible pour 1’équilibre. Nous avons donc une solution a notre
probleme : le point cherché existe et nous ’avons situé.

Par ailleurs, si les angles « et 3 avaient été tous deux suffisamment proches
de 7, les deux cercles ne se seraient pas coupés. Nous pourrions alors essayer
de travailler au départ d’'un autre couple de cotés du triangle ABC. Mais
on voit bien que, quels que soient les angles de ce triangle, il existera
des cas, si a et § sont trop grands, ou nous ne trouverons pas de point
d’intersection aux deux cercles.

On tire sur un point avec des forces de méme grandeur réparties de telle
sorte que deux forces successives fassent entre elles un angle de 72°.
L’anneau est-il en équilibre ?

Fig. 49 Fig. 50

La figure 49 montre les forces en jeu. On peut en faire la somme par la regle
du parallélogramme, et on trouve une force nulle, aux erreurs de tracé pres.
La figure & construire est quelque peu confuse (figure 50). Mais on peut
aussi s’aviser que pour trouver la somme de deux forces, au lieu de passer
par la diagonale du parallélogramme (figure 51), il suffit d’enchainer les
deux fleches (voir figure 52). Si on procede de la sorte pour les cing forces
en jeu dans notre probleme, les fleches dessinent évidemment un pentagone
régulier (figure 53), et il va alors de soi que leur somme est nulle.



3. Equilibre d’un point

Vers ou cela va-t-il ?

403

Fig. 51 Fig. 52 Fig. 53

Ce chapitre prépare évidemment I'enseignement de la mécanique. Plus pré-
cisément, nous avons examiné ici 1’équilibre d’'un point. La matiere qui
vient naturellement ensuite est 1’étude de I’équilibre d’un solide indéfor-
mable, avec pour cas particulier I’équilibre dans un champ de pesanteur
uniforme et la théorie des centres de gravité. Le parallélogramme des forces
est aussi I'un des éléments clés de la dynamique, qui est 1’étude des mou-
vements des corps sous 'action des forces.
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LES MOUVEMENTS ET LES VITESSES

Avant-propos

La notion de vitesse est essentielle en mécanique. Elle se précise a travers
deux étapes importantes de sa construction : son évaluation numérique et
sa caractérisation géométrique. Or, des qu'un mouvement se révele étre un
peu complexe, ces deux aspects se retrouvent presque inextricablement liés,
et 1a ou en mathématiques on étudie au départ deux notions distinctes : la
dérivée et le vecteur, en physique on ne considere plus qu’un seul objet :
la vitesse.

A la croisée des deux disciplines, une image mentale commune peut se
dégager de I'étude de photographies stroboscopiques du mouvement de
projectiles. Elle est subordonnée & un principe général de discrétisation :
les éclairs successifs d’un stroboscope figent des positions trés rapprochées
du projectile, et invitent a décomposer son mouvement en une succession
trés dense de mouvements simples, quasi rectilignes et uniformes, mais
dont la direction et l'intensité de la vitesse changent tout le temps.

C’est a partir de cette image discrete que nous proposons ici de construire
progressivement la notion de vitesse.

En bref, ce chapitre vise a

e détailler pourquoi et comment la vitesse d’'un mouvement rectiligne
uniforme peut étre considérée comme un prototype de grandeur vec-
torielle en physique,

e définir la vitesse instantanée d’un mobile comme vitesse d’un mou-
vement rectiligne uniforme « idéal »,

e mettre en évidence efficacité de ce double point de vue :
grandeur vectorielle/mouvement rectiligne idéal

a travers I’étude du mouvement circulaire uniforme.

En plus des photographies stroboscopiques — et des expériences de pen-
sée, cheres aux physiciens — le recours aux fonctions d’un tableur permet
de proposer des modeles et de simuler des situations. En outre, dans le
cas du mouvement circulaire uniforme, la définition méme de ce genre de
mouvement permet d’en construire a priori des stroboscopies a 1’aide d’'un
tableur !

404
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De quoi s’agit-il ¢

Enjeux

De quoi a-t-on
besoin ?

Comment s’y
prendre ¢

1 Marcher ou nager, c’est la méme chose ?

Décrire un mouvement rectiligne uniforme (inaccessible & des mesures di-
rectes) a partir des caractéristiques d’autres mouvements rectilignes uni-
formes (accessibles a de telles mesures).

La caractérisation vectorielle de la vitesse d’'un mouvement rectiligne uni-
forme. Une interprétation cinématique des équations paramétriques d’une
droite.

Sur les vitesses situées dans le cadre général du calcul vectoriel, voir la
section 8.3 du chapitre 16.

Un tableur (EXCEL, par exemple).

Prérequis

Les éléments du calcul vectoriel dans le plan, par exemple en termes de
changements de position (voir le chapitre 8). La notion de mouvement
rectiligne uniforme, en particulier de vitesse d’'un tel mouvement, congue
dans un premier temps comme vitesse moyenne.

1.1 La décomposition d’un mouvement rectiligne

La situation suivante est simple, et tres classique’.

Question 1.

Lors d’un entrainement de triathlon, un athlete doit traverser a la nage
une riviere large de 200 m et animée d’un fort courant. Il part du pied A
d’un pont qui traverse cette riviere (cf. la figure 1 ci-dessous) et s’efforce
de toujours nager droit devant lui, perpendiculairement a la berge, mais
— bien str! — le courant le déporte. Yves et Xavier sont eux aussi au pied
A du pont, et observent le nageur prét a s’élancer. Comment devraient-
ils s’organiser (aussi simplement que possible) pour estimer la vitesse
du nageur pendant sa traversée ?

Une maniére simple de s’organiser

Voici une méthode qui suppose qu’Yves et Xavier disposent tout au plus
d’une montre ou d’un chronometre, et savent marcher. .. intelligemment.

Xavier emprunte le sentier le long de la berge et marche en restant toujours
a hauteur du nageur ; en allongeant le pas, il fait des enjambées d’un metre
(en moyenne) et note la distance parcourue pour chaque minute écoulée.
Yves fait de méme sur le pont, et en s’efforcant lui aussi de rester toujours
a hauteur du nageur. Tout cela revient donc a situer la position du nageur
de minute en minute, dans un repere orthonormé « naturel ».

! Pour des variantes et des prolongements, on se reportera par exemple & E. Hecht
[1999] : p. 51-59, A. Meessen [1984] : probléme 5 & la p. 122, Physical Science Study
Committee [1970] : p. 86-87 ou FESeC [1997] : p. V9 & V11, ... sans oublier Formes et
mouvements, CREM [2001a] : p. 274-275.
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[l sentier
—
—>
—
—
— pont » sens du courant
—
4>
4>
— —
4>
A
M sentier

Fig. 1 : Le décor.

Il est relativement raisonnable de faire ici une hypothese d’uniformité concer-
nant les déplacements de Xavier et d’Yves. Pour fixer les idées, supposons
donc que Xavier parcourt ainsi d’une démarche réguliere 40 metres par
minute, tandis qu’Yves traverse pareillement le pont d'un pas égal en 10
minutes, c¢’est-a~-dire a raison de 20 metres par minute.

Les éleves peuvent facilement simuler cette situation a ’aide d’un tableur,
et représenter ainsi les positions respectives de Xavier, d’Yves et du nageur
toutes les minutes.

> Microsoft Excel - Hageurl _xls
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Fig. 2 : Les positions de Xavier, Yves et du nageur, toutes les minutes.
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Par subdivisions successives, ils peuvent ensuite faire apparaitre les posi-
tions des trois protagonistes de la question de maniere presque continue.

D0 2 age —TEl=
”ﬁ Fichier Edition Affichage Insertion Format Outils Données Fengkre 2 _|ﬁl|£|
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Fig. 3 : Les positions de Xavier, Yves et du nageur, toutes les 0,01 s.

Yves atteint ainsi I'autre rive en méme temps que le nageur; celui-ci a
donc, lui aussi, mis 10 minutes pour traverser la riviere. Quelles sont les
autres caractéristiques de son mouvement ?

Le déplacement du nageur est rectiligne

Décrire le déplacement du nageur revient a exprimer sa position en fonction
de celles d’Yves et de Xavier. Or, nous avons supposé que le déplacement
de chacun des deux observateurs est rectiligne et uniforme. La position
de Xavier — comptée en metres & partir du point A — s’exprime donc par
I’équation

x = 40t,

ou t est la durée de marche, comptée en minutes; et pareillement pour
Yves

y = 20t.

La position du nageur est ainsi déterminée a tout instant grace aux deux

équations
x = 40¢,
y = 20t,
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qui méritent des lors d’étre appelées les équations du mouvement.

Occupons-nous de la trajectoire du nageur, c’est-a-dire de ’ensemble de
toutes ses positions. C’est une figure géométrique indépendante du temps.
Elle s’obtient donc en « chassant » le temps ¢ hors des deux équations du
mouvement. La premiere équation donne ¢ = 5, ce qui permet d’écrire la
deuxieme, a savoir

z 1
0= 3%
C’est 1’équation d’une droite?. Le nageur suit donc une trajectoire recti-
ligne dont le point de départ est l'origine A du repére « naturel ».

y=20-

Le mouvement du nageur est uniforme

Rappelons qu’un mouvement est qualifié d’uniforme si une méme durée
d’observation correspond toujours a un méme espace parcouru, indépen-
damment de I'instant ou débute I'observation.

Le mouvement du nageur détermine celui de Xavier et d’Yves, et chacun
de ces mouvements est rectiligne. Montrons alors que le déplacement du
nageur est uniforme si et seulement si celui de Xavier et d’Yves le sont
aussi.

Supposons d’abord que les mouvements de Xavier et d’Yves sont uni-
formes. Situons leurs positions & deux instants d’observation (différents) :
soient X1, X9 et Y7, Y5. Les mouvements étant uniformes, si la durée d’ob-
servation est la méme, les distances parcourues par chacun doivent donc
étre identiques (cf. figure 4). On a

|X1X1} = \X2X§

x| = ¥4

ou X1, X} et Y], Y] désignent les positions atteintes & la fin de 'observa-
tion.

| |
| |
| |
| |
| |
| |
| |
| |
X X 400

Fig. 4 : L’uniformité en termes de triangles isométriques.

2 Le contexte est différent, mais les idées mises en ceuvre ici sont exactement celles
des chapitres 5 et 6.
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Comment s’y
prendre ¢

Mais alors les triangles (rectangles) TlSlTl’ et T2S2T2/ sont isométriques :
pendant cette durée d’observation, les distances | 1177 et | T>T4| parcourues
par le nageur sont donc bien identiques.

La réciproque s’établit d’'une maniere analogue, c’est-a-dire a ’aide d’une
isométrie de triangles rectangles. Supposons que le mouvement du nageur
est rectiligne uniforme. La trajectoire du nageur étant rectiligne, les angles
T, et Ty des triangles rectangles 715177 et T5.S52T4 sont égaux, et le mouve-
ment du nageur étant uniforme, les distances |T1T7| et |T2T4| sont égales.
Les triangles rectangles T71517] et T2S2T% sont donc isométriques, d’ou
on déduit immédiatement que les distances parcourues par Xavier (resp.
Yves) pendant les durées d’observation sont identiques.

Une estimation de la vitesse du nageur

Le déplacement du nageur étant rectiligne et uniforme, sa vitesse est
constante, et peut se calculer des qu’on connait la distance parcourue pen-
dant un intervalle de temps. Or, la distance parcourue pendant les 10
minutes que dure la traversée s’obtient grace au théoreme de Pythagore
(cf. figure 5) :

!
!
!
!
!
!
!
!
I
A ‘ 400

Fig. 5 : L’espace parcouru par le nageur.

|AB| = \/|AX]* + |AY [ = /4002 + 2002 = 2005 = 447,21 ... (m)

La vitesse du nageur est donc approximativement de 45 metres par minute
(c’est-a-dire 0,75 m/s ou 2,7 km/h).

1.2 La vitesse d’'un mouvement rectiligne uniforme

Aussi satisfaisantes qu’elles soient, les réponses apportées a la question 1
méritent d’étre approfondies. C’est ce que la question suivante se propose
de faire. Son caractere plus théorique explique que sa résolution n’est pas
nécessairement laissée a la seule initiative des éleves. L’enseignant veillera
néanmoins a ce que les caractéristiques essentielles de la vitesse en tant
que grandeur vectorielle — puisque c’est de cela qu’il s’agit ici — soient
clairement mises en évidence pour tous les éleves.
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Question 2.

Quelles sont les relations qui lient les trois vitesses, celle de Xavier, celle
d’Yves et celle du nageur, et plus précisément, comment exprimer ces
relations en termes mathématiques (direction, sens des mouvements) et
en termes physiques (mobiles concernés, grandeurs associées aux mou-
vements) ?

Un bilan des observations

On vient de montrer que le mouvement du nageur est rectiligne et uniforme
si et seulement si celui d’Yves et Xavier le sont et que la vitesse du nageur
peut étre évaluée en conséquence, a partir des vitesses respectives d’Yves
et de Xavier.

Ceci remis en mémoire, les déplacements et donc les vitesses d’Yves, de
Xavier et du nageur ont néanmoins des caractéristiques physiques assez
différentes. Précisons ces différences.

e Chacun des déplacements considérés concerne des personnes diffé-
rentes, et dans notre représentation, ce sont bien des points différents
qui bougent.

e D’autre part, les droites suivant lesquelles les mouvements rectilignes
uniformes se manifestent sont completement distinctes pour chacun
des trois protagonistes.

e Enfin, ni Yves ni Xavier n’exercent d’effet physique contraignant sur
le nageur, ils ne lui communiquent pas I’énergie nécessaire a son effort
et ils ne sont donc en rien la cause de son mouvement.

Et néanmoins, comme on 'a vu par exemple en écrivant 1’équation de
la trajectoire du nageur, les trois mouvements ne sont pas indépendants.
Les déplacements de Xavier et d’Yves permettent méme de reconstituer
completement le mouvement du nageur.

Comment relier le mouvement de Xavier ou d’Yves, avec ce que
le nageur ressent ?

On peut introduire dans le raisonnement des mouvements et donc des vi-
tesses dont les effets physiques sont directement perceptibles par le nageur.

e Si le nageur est en eau calme (un étang ou un lac par exemple),
I’absence de courant lui permet de nager effectivement droit devant
lui sans étre déporté. Cette vitesse existe aussi pour notre triathlete
pris dans le courant d’eau : c’est celle qu’il acquiert par 'exercice de
sa (seule) force musculaire. C’est aussi celle qu’il s’efforce de diriger
toujours perpendiculairement a la rive. Comme il essaie de se diriger
ainsi indépendamment du courant, on appelle cette vitesse : la vitesse
du nageur par rapport au courant, ou par rapport a l’eau.

e Si le nageur se laisse dériver sous l'effet du courant sans nager?, son
déplacement, comme sa vitesse, est parallele a la rive. La vitesse

3 ... Mais sans oublier de rester & la surface de leau. ..
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correspondante n’est alors en fait que la vitesse du courant, ou si on
veut étre précis : la vitesse du courant par rapport a la rive.

Résumons-nous : nous disposons maintenant de cing vitesses au lieu de
trois pour analyser le mouvement du nageur! Mais comme trois d’entre
elles possedent des effets physiques ressentis directement par le nageur, il
y a peut-étre du sens a décrire la maniere dont ces effets sont reliés les uns
aux autres.

Comment combiner des grandeurs caractérisées aussi bien par
leur direction que par leur intensité ¢

Chacune des vitesses rencontrées jusqu’a maintenant est associée a un
mouvement rectiligne uniforme et est entierement déterminée par quatre
caractéristiques :

e le point en mouvement, ou point d’application de la vitesse,

e la direction de la vitesse, c’est-a-dire la droite suivant laquelle le
mouvement rectiligne se produit,

e le sens de la vitesse, qui est un des deux sens? de parcours sur la
droite en question,

e intensité de la vitesse, c’est-a-dire la mesure de 'espace parcouru
par unité de temps.

Les résultats obtenus dans la question 1 suggerent alors une maniere de
combiner des grandeurs physiques ayant autant de caractéristiques géomé-
triques diverses. La vitesse du nageur par rapport au courant et la vitesse
du courant par rapport a la rive sont en effet deux grandeurs physiques du
type que l'on vient de définir. Elles concernent directement notre nageur.
Il y a donc du sens a envisager leur effet simultané, qui se manifeste dans
le mouvement résultant du nageur. De plus, les caractéristiques de ce mou-
vement résultant sont déterminées a partir d’un rectangle naturellement
associé a la situation :

e ce mouvement résultant est lui aussi rectiligne, et on sait déterminer
sa direction, c’est celle de la diagonale d’un rectangle dont les cotés
sont proportionnels a chacune des vitesses primitives ;

e il est de plus lui aussi uniforme, de telle sorte qu’on sait aussi mesurer
I'intensité de la vitesse correspondante : elle est équivalente a la lon-
gueur de la diagonale d’un rectangle dont les c6tés sont équivalents
a chacune des mesures des vitesses primitives.

Pour faire bref, une grandeur physique possédant les quatre caractéris-
tiques géométriques décrites plus haut, et obéissant a cette regle de combi-
naison « en rectangle » sera appelée une grandeur vectorielle, afin de mettre
en évidence les traits communs de ce type de grandeur avec la notion de
vecteur.

On représente alors par o ,,geur /rive la vitesse du nageur par rapport
a la rive, considérée comme grandeur vectorielle; on note pareillement

4 Le sens du courant est distinct de sa direction, du moins dans le langage mathéma-
tique. ..
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U courant /rive 12 Vitesse du courant par rapport a la rive, et 0 qgeur/courant
la vitesse du nageur par rapport au courant. La résultante® des deux vi-
tesses U pageur Jcourant €% U courant /rive donne donc naissance a la vitesse
N )
VU nageur/rive du nageur :

U nageur /rive = U nageur/courant U courant/rive:
— —
\ .
nageur/('uuram‘ nageur/rlve

=l

courant / rive

Fig. 6 : La combinaison des vitesses se visualise ici a l'aide d’un rectangle.

L’opération de combinaison ou d’addition vectorielle met ainsi bien en jeu
les quatre caractéristiques des grandeurs concernées : le point d’application
(commun), la direction, le sens et la mesure ou intensité.

... Mais on n’a pas encore répondu a la question !

Au travers de la notion de grandeur vectorielle, la relation

o T + T .
U nageur /rive = U nageur/courant U courant/rive

est maintenant revétue d’une signification tant mathématique que phy-
sique. Mais cette relation n’est pas celle qui a été mise en scene dans la
question 1, et qui serait plutot du type

— — — )
VU nageur /rive = U Yves T U Xavier;

Ol U Xavier €6 U yyes désignent les vitesses de Xavier et d’Yves. Comme il
est important ici de préciser les points d’application des vitesses en ques-
tion, il vaudrait méme mieux écrire :

T>nageur/rive(Tll) = T>Yves(yvl) + T>Xavier()(l)a

ou Y7 et X sont les positions respectives de Yves et de Xavier lorsque le
nageur est observé en 7 dans la riviere (cf. figure 7). Mais que signifie une
telle écriture, mathématiquement correcte, au point de vue physique ?

5 Ou combinaison, ou encore somme vectorielle. . .
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=l

Yves ~

-

\4
nageur / courant

—

v .
nageur / courant

1% .
courant | rive
Il

VXavier

Fig. 7 : Des grandeurs a priori différentes traduisent des effets équivalents.

La réponse vient en deux étapes. Au moment initial, ¢’est-a-dire lorsque
Xavier, Yves et le nageur entament leurs mouvements respectifs au pied A
du pont, on a

T>nageur‘/rive (A) = T)nageur/courant (A) + T)couramf/rive(A>7

et donc aussi

T>nageur/rive(‘4) = T>YUGS(‘LU + @ Xavier (A)> (1)

puisqu’au point A, on a des égalités de vitesses
T)ncheur/courant(14) = T>Y’Ues(fq) et T>courafrzt/rive(‘4) = T>Xtiwie?’(fl)'

D’autre part, le mouvement d’Yves est rectiligne et uniforme, de telle sorte
qu’il y a un sens physique a écrire

F>Y'Ues (A) = T>Y'Ues (Y1)7 (2>

puisque cela signifie que, lors d’un déplacement le long de sa propre tra-
jectoire rectiligne, Yves ne voit pas changer sa vitesse. On donne ainsi
une signification physique a ce que cette vitesse-la ne soit pas liée a son
point d’application : c’est une caractéristique fondamentale du mouvement
sous-jacent ! Pour la méme raison, on a aussi

T>X(wz'e7“(14) = TXavier(Xl)y (3)
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et
T>ngeur/m’ve(‘A) = T)ngewr/rive(,I’l)' (4)

La relation (1) devient ainsi, suite a (2), (3) et (4),

T>nageur/rive(TI) = T>Yves(le) + T>Xavier()(l)a

qui est bien la relation en jeu dans la question 1. En termes de grandeur
vectorielle, cette relation s’interprete donc maintenant comme une maniere
d’exprimer globalement — c’est-a-dire indépendamment du point d’appli-
cation — la composition de mouvements rectilignes uniformes.

Et st on veut vraiment aller au fond des choses. ..

Une question en appelle une autre. Quelles sont en général les conditions
physiques qui autorisent certaines vitesses a se libérer de leur point d’ap-
plication ? Par exemple, quelle est la signification physique des égalités
mathématiques

D'y yes (Yl) = F>nageur/courant (Tl) et U Xavier (Xl ) = T>courant/rive (Tl ) ?

A nouveau, il vaut mieux décomposer le raisonnement en deux étapes.
D’abord, une égalité telle que

T>Yves (YI ) = T>nageur/courant (Yl )

exprime que deux grandeurs vectorielles ont la méme manifestation phy-
sique au méme point. Mais 1’égalité qui vient ensuite a ’esprit, a savoir

—> _ =
U nageur /courant (}/1 ) = VU nageur/courant (Tl ) )

se révele avoir un statut assez nouveau! En effet, le point d’application de
cette vitesse se déplace le long d’une trajectoire rectiligne qui n’est pas du
tout celle du mouvement sous-jacent, c’est-a-dire du nageur (cf. la figure
7), et ce n’est donc pas le caractere uniforme du mouvement du nageur qui
peut rendre compte a lui seul de 1’égalité en question. Comment interpréter
néanmoins cette égalité en termes de mouvements rectilignes uniformes 7

Cette interprétation prend en compte I’hypotheése suivante : quel que soit
I’endroit de la riviere ou il se trouve, le nageur déploie pour se déplacer
(en restant perpendiculaire au courant) une énergie qui est toujours la
méme®. De maniere presque équivalente, s’il n’y a pas de courant, et si
plusieurs nageurs de méme force que notre triathlete partent en méme
temps de la rive en nageant droit devant eux, ils progresseront en restant
toujours a méme hauteur ; une telle circonstance s’observe d’ailleurs assez
souvent dans les premiers instants d’une course de vitesse en natation. Et
la conclusion est analogue si on imagine que ces nageurs partent de la ligne
YlTl.

6 Cela sous-entend, par exemple, qu’il n’y a pas un endroit dans la riviere ou la
température de I’eau est anormalement froide, et ot un engourdissement ou des crampes
peuvent ralentir le nageur; ce genre d’effet est évoqué dans la question 4 plus loin.
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Comment s’y
prendre ¢

-

vnageur / courant

T,
X,

1

Y,

A rive

Fig. 8 : Le transport paralléle de la vitesse du nageur par rapport au courant.

C’est au sens de telles expériences de pensée que I'égalité

—_— _ —_
U nageur/courant (Yl ) = VU nageur/courant (Tl )

prend alors une double signification physique, & savoir :

e il existe un mouvement rectiligne uniforme qui part du point Y7 pour
arriver en 77,

e ct le long de la trajectoire de ce mouvement, une famille continue de
mouvements rectilignes uniformes permet de relier 0”,,qgeqr Jeourant(Y1)
a T>nageur/couron’nﬁ (Tl)
En bref, deux mouvements rectilignes uniformes peuvent étre considérés

comme équivalents des qu’il y a moyen de les « transporter par parallélisme »
I’'un sur I'autre de maniere continue.

Une description analogue s’applique aux deux égalités

F>Xavie7‘()(1) - T>couramf/?"ive()(1> - T>courant/’rive(Tl)7

et correspond d’ailleurs a l'idée d’un courant constant en tout point de
la riviere, c’est-a-dire un courant dont la mesure de I'effet donne toujours
le méme résultat, quel que soit 'endroit de la riviere ou cette mesure est
réalisée.

1.3 Du rectangle au parallélogramme

Revenons-en a notre triathlete, et remarquons d’abord qu’il y a un moyen
bien simple pour aider le nageur a se déplacer perpendiculairement a la
direction du courant. Il suffit qu’il nage en restant face a un troisieme
larron — appelons-le Jacques — qui se déplace sur l'autre rive, en restant
toujours a la méme hauteur que Xavier (cf. la figure 9).
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positions de Jacques

|

+

positions de Xavier

Fig. 9 : Le nageur se dirige en restant en face de Jacques.

Question 3.

Que se passe-t-il alors si Jacques, au lieu de partir du point Y, a I'ex-
trémité du pont sur l'autre rive, entame son mouvement par exemple
120 metres avant ce point 7 Que faut-il changer dans la résolution de la
question 17

Pour que cette nouvelle situation reste comparable a celle qui précede,
on suppose encore que la vitesse de Jacques reste la méme que celle de
Xavier, que le nageur s’efforce de garder toujours Jacques en point de
mire et qu'il essaie de maintenir sa vitesse (dans la direction qu’il vise)
a 20 metres par minute.

Il n’y a pas grand-chose a changer!

En fait, on peut reproduire textuellement tout le raisonnement développé
dans la réponse a la question 1 ainsi que la formulation vectorielle qui en
a été présentée dans la réponse a la question 2. Car ce qui importe, c’est
qu’on combine encore deux mouvements rectilignes uniformes : le fait que
leurs directions ne soient plus orthogonales ne change rien a l'affaire. Le
mouvement résultant du nageur est donc encore rectiligne et uniforme : le
parallélogramme remplace le rectangle (cf. la figure 10).

* 200 Y c

ST T T T T T S S S W N VA W i i Nt S
——————— i S Tt Sl i i S ol

o X
A 40 80 120 160 200 240 280 320 360 400 440 480

Fig. 10 : La trajectoire du nageur est déterminée par des parallélogrammes.
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L’écriture vectorielle permet de manifester cette permanence du raisonne-
ment. En effet,

v ive = U + v :
nageur/rive — nageur /courant courant/rives

pourvu qu’on identifie correctement la direction des différents vecteurs
— — — : ’ :

U nageur/rive; U nageur/courant et v courant/rive; PUISqUE C est uniquement
en terme de directions que les changements par rapport a la question 1 se
produisent.

Le calcul de la vitesse du nageur

Le calcul de la vitesse réelle du nageur dans la nouvelle situation peut
encore s’obtenir par analogie avec le cas « rectangulaire ». D’abord, dans un
repere adapté (cf. la figure 10), les deux équations du mouvement s’écrivent

x = 40t,
z = 20t,
ou t est toujours la durée du déplacement compté en minutes. Ensuite, le

calcul du temps nécessaire a la traversée résulte de 'utilisation du théoreme
de Pythagore dans le triangle rectangle AJY (cf. la figure 11) : la relation

200% 4 120% = (20t)*

implique en effet : ¢ = /136 = 11,66 ... (en minutes).

X
»-
|

Fig. 11 : Le théoréme de Pythagore permet d’évaluer la vitesse.

On en déduit |YC| =40- (11,66... —3) = 346,47... (m). Le théoreme
de Pythagore, employé cette fois-ci dans le triangle AY C' permet alors
d’évaluer

|AC| = 400,05 ... (m).

Et finalement, la vitesse du nageur vaut

400,05. .. )
mesure de 0 qgeur /rive = 11,66, =34,30... (m/min).
Ce résultat n’a rien de bien étonnant : le nageur a mis plus de temps
qu’auparavant pour parcourir une plus petite distance!
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1.4 Synthese : la notion de grandeur vectorielle

Beaucoup de grandeurs utilisées en physique proviennent d’une description
géométrique des phénomenes qu’on souhaite étudier, cette description in-
cluant presque toujours le mode de calcul de ces grandeurs. Les vitesses
des mouvements rectilignes uniformes fournissent peut-étre I’exemple le
plus simple de grandeurs susceptibles d’une telle description géométrique.
A ce titre, elles servent de modeles & ce qu’on appelle ici une grandeur vec-
torielle. On se limite dans la suite aux premieres considérations relevant
de la mécanique du point matériel.

La définition de grandeur vectorielle

Lorsqu’on étudie le mouvement d’un point matériel dans le plan ou dans
I’espace, la premiere chose a délimiter est I’ensemble des positions que ce
point peut occuper durant son mouvement. Il s’agit souvent d’une région
plus ou moins bien définie du plan ou de 'espace, sans qu’on exige a priori
de se restreindre ainsi a la seule trajectoire. De plus, la partie en question
n’est pas nécessairement rectiligne ou plane : le mouvement pendulaire ou
le mouvement a la surface de la terre en sont deux illustrations. Cette
partie de I'espace dans laquelle se déroule le mouvement du point matériel
s’appelle I'espace de configuration de ce point ; on est supposé assez natu-
rellement y disposer d'un procédé de calcul de la distance séparant deux
points quelconques.

Une grandeur physique d’une espece donnée est qualifiée de grandeur vec-
torielle si elle possede les trois séries de propriétés suivantes.

e D’abord, des proprié¢tés de représentation géométrique : au sens ou il
existe une représentation géométrique de cette grandeur qui possede

— une origine ou point d’application, pris dans ’espace de confi-
guration,

— une direction,
— un sens,

— une intensité évaluée par rapport a une unité de mesure associée
a lespece de grandeur en question (par exemple le metre par
seconde, s'il s’agit d’une vitesse).

Une telle représentation géométrique est souvent figurée par un seg-
ment orienté dans un plan ou un espace, qui est de par sa nature
meéme, distinct de 'espace de configuration. Ce segment est atta-
ché a son point d’application, qui est le seul point commun a ces
deux mondes différents : 'espace de configuration et ’espace de re-
présentation de la grandeur en question. Des échelles appropriées
(par exemple une échelle pour les longueurs et une échelle pour les
vitesses) permettent de faire coexister dans un méme dessin des gran-
deurs vectorielles de nature différente.

e Ensuite, des propriétés de composition : I’ensemble de ces représen-
tations géométriques attachées a un meéme point obéit aux regles
du calcul des vecteurs liés a ce point. Plus précisément, ’ensemble
de toutes les grandeurs de cette espece attachées a un méme point
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est muni d’une structure d’espace vectoriel euclidien, la structure
euclidienne reflétant le choix de 1'unité de mesure de la grandeur en
question.

e Enfin, des propriétés de comparaison : I’ensemble de toutes les gran-
deurs de cette espece attachées a un méme point peut étre transporté
par parallélisme en un autre point de I’espace de configuration, et étre
ainsi comparé a I’ensemble des grandeurs de méme espece attachées
a ce dernier point.

De maniere un peu plus concrete, les propriétés de composition at-
tribuées a ces grandeurs signifient que

— lorsqu’une telle grandeur est multipliée par n’importe quel nom-
bre (réel, et différent de 0), il en résulte une grandeur de méme
espece, dont la représentation géométrique garde le méme point
d’application, conserve sa direction, ne modifie son sens que si
le signe du nombre est négatif, et voit son intensité multipliée
par la valeur absolue du nombre considéré (cf. la figure 12);

AS =2 . AV

AAT =+05. A_‘)/
Fig. 12 : La représentation géométrique de multiples d’une grandeur vectorielle.

— des que deux d’entre elles ont leurs représentations géométriques
qui possedent le méme point d’application, ces grandeurs peu-
vent étre composées ou combinées pour redonner une grandeur
de méme espece, et la représentation géométrique du résultat
se réalise suivant la « régle du parallélogramme » (cf. la figure
13).

AW = AU + AV

Fig. 13 : La composition de grandeurs vectorielles se repré-
sente grace a la regle du parallélogramme.
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Ces deux définitions suffisent pour établir que les représentations géométri-
ques des grandeurs en question obéissent aux regles usuelles (associativité,
commutativité, distributivités, ...) du calcul des vecteurs attachés, ou liés,
a un point donné de ’espace de configuration.

La raison d’étre des propriétés de comparaison peut paraitre anodine ou
détournée, mais elle est pourtant fondamentale! Ces propriétés décrivent
en termes géométriques un protocole de comparaison des grandeurs atta-
chées a des points différents de I'espace de configuration, et qui n’est pas
limité a la seule intensité de ces grandeurs. C’est en particulier ce pro-
tocole qui permet de définir ’égalité de grandeurs vectorielles de méme
espece attachées a des points distincts.

Un exemple fondamental de grandeur vectorielle

Les questions 2 et 3 ont montré en effet que la vitesse d’un point animé d’un
mouvement rectiligne uniforme se comporte en chaque point de 'espace
de configuration comme un vecteur attaché a ce point. Lorsqu’on travaille
en des points distincts de I'espace de configuration, ces mémes questions
ont mis en évidence un critere d’égalité. Pour mémoire, ce critere peut
s’énoncer comme suit :

si " (P) et w (Q) sont des vitesses attachées respectivement

aux points P et ), alors @ (P) = W (Q) si et seulement si,

en notant P’ et Q) les positions respectivement atteintes par

P et @ apres les mémes durées de parcours : le quadrilatere

PP'Q'Q (situé entierement dans 'espace de configuration)

est un parallélogramme.
Plus concretement peut-étre, deux telles vitesses sont égales en tant que
grandeurs vectorielles si et seulement si les trajectoires des points mobiles
correspondants sont paralleles et parcourues dans le méme sens, et si les
intensités des vitesses correspondantes sont égales. C’est ce qui semble
traduire au mieux 1’idée intuitive d’égalité de ces grandeurs lorsque 1’espace
de configuration est I'espace usuel’.

D’autres exemples de grandeurs vectorielles

A toute position d’un point (mobile) a un instant donné dans un repere
fixé, on peut associer le vecteur-position de ce point, dont l'origine est
lorigine du repere et 'extrémité la position du point mobile a 'instant
considéré. Ainsi, dans le cas de la situation étudiée dans la question 1, si
on note N (t) la position du nageur a I'instant ¢, on peut écrire les équations

7 Quand on commence & étudier les premiers rudiments de la mécanique dans len-
seignement secondaire, on se place presque toujours dans ’espace de configuration le
plus commode possible, qui est le plan — ou ’espace — affine euclidien. On y dispose
d’un « parallélisme absolu », qui permet souvent de considérer comme allant de soi les
propriétés de comparaison des grandeurs vectorielles.

Il faut néanmoins essayer de garder présent a ’esprit que la représentation sur une
méme figure des positions et des vitesses n’est pas naturelle, au sens ou il s’agit en effet
de grandeurs de nature différente. Les sections suivantes permettront de préciser cette
remarque. Par exemple, les propriétés du mouvement circulaire uniforme montrent que,
dans le cas d’un mouvement a la surface de la terre, la vitesse est toujours située dans le
plan tangent a la sphére terrestre, et n’a donc que son origine en commun avec celle-ci!
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De quoi s’agit-il ¢

Enjeux

De quoi a-t-on
besoin ¢

du mouvement

x = 40t,

y = 20t,
comme une égalité entre grandeurs vectorielles

AN(t) =t- AN,

N 40 . R .
ol AN = <2 O) est le vecteur-position du nageur apres une minute d’ef-

fort. Un déplacement — ou changement de position — est alors une différence
(vectorielle) entre deux vecteurs-position, etc ; on retrouve ainsi, & quelques
nuances de langage pres, la géométrie du plan ou de ’espace affine.

Les questions 7 et 15 ci-apres construiront la vitesse (instantanée) comme
grandeur vectorielle dans le cas de deux types de mouvement curviligne :
le mouvement du projectile (lancé horizontalement), et le mouvement cir-
culaire uniforme.

Les forces constituent un autre exemple de grandeur vectorielle (voir le
chapitre 12).

La quantité de mouvement, le champ électrique, le champ magnétique, . ..
constituent encore d’autres exemples de grandeurs vectorielles qu’on ren-
contre en physique.

Par contre, la température, la charge électrique, ... sont des exemples de
grandeurs physiques qui ne sont pas vectorielles, mais scalaires.

2 Comment immobiliser le temps ?

Décrire quantitativement le mouvement d’un projectile a partir des carac-
téristiques de deux mouvements rectilignes bien choisis. Montrer pourquoi
la vitesse instantanée doit étre une grandeur vectorielle.

La caractérisation vectorielle de la vitesse instantanée.

Un montage appelé « le jet d’eau articulé » décrit dans les figures 15 et 16
ci-dessous, ainsi que dans le texte qui accompagne ces figures.

Deux photographies stroboscopiques, ou chronophotographies, (cf. les fi-
gures 19 et 22 dans la suite, en annexe aux pages 496 et 497).

Un tableur (EXCEL, par exemple).

Prérequis
Les notions et lois fondamentales concernant la chute libre®, plus précisé-
ment :

e l'accélération de la pesanteur g est constante et vaut 9,81 m/s?,

e la vitesse est une fonction linéaire du temps : v = gt,

gt?

e ct I'espace parcouru est décrit par la formule e = %

8 11 serait possible de ne pas en faire des prérequis, et de les découvrir ici : les pho-
tographies étudiées dans la suite permettant en effet d’établir ces lois. Mais cela nous
éloignerait de notre but. ..
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2.1 Le nageur se fatigue.

Tout ce qui a précédé supposait que notre triathlete nageait avec une

prendre ¢ vigueur anormalement constante.
Question 4.
Comment peut-on se rendre compte que le nageur se fatigue 7
Ce qut ne change pas, et ce qui change
Comme la vitesse du courant est exactement celle de Xavier, celui-ci n’a
aucun moyen de se rendre compte que le nageur est en train de se fatiguer.
Par contre, Yves, qui n’est concerné que par la partie transversale du mou-
vement du nageur, en percoit toutes les variations. Si le nageur progresse
avec moins de vigueur, Yves avancera moins vite, et s’il doit s’immobili-
ser pour rester a hauteur du nageur, c’est que celui-ci, fatigué, s’est laissé
emporter par le courant.
Une stmulation vaut mieux qu’un long discours. ..
En voici une, mais beaucoup d’autres sont envisageables.
t 2 4 6 8 10 12 14 16 18 20  (en minutes)
x(t) 80 160 240 320 400 480 560 640 720 800 (en metres)
y(t) 38 72 102 128 150 168 182 192 198 200 (en metres)
y
200 ——————— e —————— =~ — g~ - - ——-
[ ] i ¢
([ ]
[ ]
[ ]
[
[
] ] ] ] ] ;x
A 160 320 480 640 800

Comment s’y
prendre ¢

Fig. 14 : L’effet de la fatigue.

Au vu de tout ce qui a été mis en évidence précédemment, une question se
pose presque tout de suite : comment parler de la vitesse du nageur dans
une telle situation ? Son déplacement n’est manifestement plus rectiligne,

ni uniforme? !

2.2 Le jet d’eau articulé

Lorsqu’on arrose une pelouse avec un tuyau d’arrosage, quelle est la forme
du jet d’eau?

9 Sauf bien siir dans le cas on le nageur se laisse emporter par le courant. Mais un
triathléte qui se respecte ne se laisse jamais entrainer de la sorte. ..
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Si on arrose a la verticale, le jet d’eau fournit une description de l'arro-
seur. .. arrosé. Si on n’arrose pas a la verticale mais, par exemple, suivant
un angle de 30° avec ’horizontale, le jet d’eau emprunte une trajectoire
qui n’est pas rectiligne, mais bien incurvée vers le sol.

En effet, aussi puissant que soit le jet d’eau et méme si la direction initiale
du jet est bien rectiligne, I’eau retombe de toute facon sur la pelouse : la
trajectoire ne peut donc pas étre une droite. Par ailleurs, on observe que

la portée de ’arrosage varie avec ’angle initial du jet, et la pression d’eau
a la sortie.

Voici un procédé expérimental qui permet de mieux observer et de com-
mencer a décrire la forme du jet d’eau. On se procure une longue latte en
bois, bien rigide, d’environ 2 m de long. L’extrémité du tuyau d’arrosage
est fixée sur 50 cm a une des faces de cette latte; il peut se révéler utile
d’insérer entre la latte et le tuyau une fine tranche d’isomo (ou polystyréne
expansé) afin d’empécher que le jet d’eau ne mouille trop la latte. A partir
de la sortie du tuyau, on fixe des petits clous dans 'autre face de la latte, a
des intervalles réguliers (de 30 cm par exemple). On y suspend des lattes,
marquées de 10 cm en 10 cm, de telle sorte qu’elles puissent pivoter autour
de leur point d’attache (cf. la figure 15).

°
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Fig. 15 : Le jet d’eau articulé.

On peut ainsi reproduire (& 1’échelle) la forme du jet d’eau avec une plus ou
moins bonne précision. On trouve dans certains laboratoires de physique
de I’enseignement secondaire des appareillages de ce type, produits par des
firmes spécialisées (un exemple est visible sur la figure 16 ci-dessous), et
qui permettent de réaliser des mesures de meilleure qualité.
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Fig. 16 : Un jet d’eau mieux articulé

Question 5.

Qu’observe-t-on lorsqu’on redresse cet appareillage (le tuyau et le sys-
téme formé du baton et des lattes graduées, solidairement), en visant a
30° avec I'horizontale par exemple ?

Quelle(s) conclusion(s) peut-on en tirer ?

Une observation étonnante, et ce qui s’en déduit

Des qu’on redresse le jet d’eau, on observe que les écarts verticaux de la
trajectoire par rapport a la direction initiale du jet ne changent pas ou,
plus simplement, que redresser le jet d’eau n’a aucune influence sur sa
déviation.
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Fig. 17 : La déviation verticale du jet d’eau ne change pas.

En termes plus géométriques, et avec la représentation et les notations de
la figure 18 : tant que |[AM| = |AM'|, on a |MT| = |M'T"|.

M'

Fig. 18 : Les rectangles deviennent des
parallélogrammes.

Il s’ensuit que comprendre la trajectoire du jet d’eau lorsque sa direction
initiale est horizontale permet ensuite de comprendre la trajectoire lorsque
la direction initiale est quelconque.

Par ailleurs, comme la direction initiale du jet d’eau semble n’avoir aucune
influence sur la déviation verticale, on peut suspecter que la cause du
caractere curviligne de la trajectoire est « quelque chose » dont l'effet est
relativement universel. Malheureusement, si on peut conjecturer que la
pesanteur est ce « quelque chose », 'expérience du jet d’eau articulé ne
permet pas de s’en convaincre. . .
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2.3 La conjugaison de deux mouvements

Une maniere efficace d’étudier des mouvements (relativement) complexes
consiste — pourvu que le mouvement s’y préte! — & en tirer une photo-
graphie en pose dans une chambre noire éclairée uniquement par un stro-
boscope. On appelle cela une photographie stroboscopique ou une chro-
nophotographie ; pour disposer d’un peu plus de détails techniques a ce
sujet, on peut se reporter a A. Meessen [1984] : compléments, p. 18 a 22.
Des résultats analogues peuvent aussi s’obtenir a ’aide d’un appareil pho-
tographique numérique (& partir d’une fréquence de prises de vues de 10
images/seconde) ou d’une caméra vidéo, utilisée en plan fixe. Dans ce der-
nier cas, il suffit lors de la reproduction sur magnétoscope, de reporter les
positions successives du mobile sur une feuille transparente.

La figure 19 est une chronophotographie du mouvement de deux balles :

e l'une, commence a tomber au point A (cf. la figure 20), verticalement,
suivant un mouvement de chute libre, exactement a l'instant ou

e 'autre, lancée initialement sur un plan horizontal, quitte ce plan a
partir de ce méme point A.

Un systeme de déclenchement simultané (visible dans le coin supérieur
gauche de la figure) permet de synchroniser le départ des deux balles au
point A. La fréquence des éclairs est de 1/30 s, et la distance entre deux
horizontales égale 15,24 cm (extrait de Physical Science Study Committee

[1970]).

Fig. 19 : Une chronophotographie du mouvement de deuz balles.
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deuxiéme balle

premiere balle

Fig. 20 : Le point A et le mouvement des deuz balles.

Quelle relation y a-t-il entre le jet d’eau — orienté horizontalement — et une
chronophotographie comme celle ci-dessus? Le jet d’eau est évidemment
un ensemble de gouttes, et on peut faire 'hypothese (tres raisonnable) que
la forme du jet d’eau est celle de la trajectoire de n’importe laquelle de
ses gouttes. En d’autres termes, le jet d’eau fige 'histoire (physique) du
mouvement de n’importe quelle goutte, il immobilise toute la trajectoire
en continu d’une goutte. On pourrait parler du « modele corpusculaire »
du jet d’eau. La chronophotographie de la figure 19 est donc un outil idéal
pour étudier la forme du jet d’eau, puisqu’elle fige, elle aussi, I’écoulement
du temps, et nous dévoile ainsi beaucoup de propriétés des mouvements
qui, sans cela, échapperaient a I’ceil.

Question 6.
Quelles sont les équations du mouvement de chacune de ces deux balles 7
Quelles sont les équations de leur trajectoire ?

La premazeére balle est animée d’un mouvement de chute libre

La premiere balle tombe suivant une trajectoire verticale qui ne peut étre
qu’'un mouvement de chute libre.

Si on veut s’en convaincre, il suffit de comparer les espaces parcourus sur
la photographie avec ceux prédits par la loi de chute libre. Avant cela, il
faut fixer un repere commun'® pour le mouvement des deux balles (il est
tracé sur la figure 21).

10 . et observer en fait un léger décalage entre la position initiale de la premiere

balle et celle de la deuxiéme balle. Cela ne porte pas a conséquence pour la trés grande
majorité des calculs numériques qui suivent.
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2

La loi de la chute libre s’écrit alors y = —%, olt g = 9,81m/s?, y est

mesuré en metres et le temps t est compté en secondes a partir de I'instant
(initial) ou la premiere balle passe par le point A.

La comparaison s

‘effectue simplement & partir d’un tableau reprenant les

positions en fonction du temps écoulé.

t  (en multiples de 1/30 s) 1 2 3 4 ) 6
—y (observé, en metres) ? 0,03 0,05 0,09 0,14 0,19
—y (calculé, en metres) 0,005 0,02 0,06 0,09 0,14 0,20

7 8 9 10 11 12 13 14

0,27 0,34 044 0,54 0,65 0,79 0,92 1,07

0,27 0,35 044 0,56 0,66 0,78 0,92 1,07

Les résultats concernant les positions calculées sont arrondis avec la méme
borne d’erreur absolue que celle qu’il semblait raisonnable d’attribuer a la
chronophotographie, c¢’est-a-dire 1 cm.

La projection verticale du mouvement de la deuxiéme balle coin-
cide avec le mouvement de la premiére balle.

C’est la conclusion la plus manifeste de cette chronophotographie! Elle

implique immédiatement que la deuxieme équation du mouvement de la

2
deuxiéme balle s’écrit (aussi) y = —97.

La projection horizontale du mouvement de la deuxiéme balle est
un mouvement (rectiligne) uniforme.

La construction de cette projection n’offre aucune difficulté (cf. la figure
21).

Fig. 21 : Les projections verticales et horizontales des positions de la
deuzxiéme balle.
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Un tableau des positions observées met bien en évidence le caractere uni-
forme du mouvement.

t

(en multiples de 1/30s) || 1 2 3 4 5 6

X

(observé, en metres) ?7 0,15 0,22 0,29 0,36 0,43

7 8 9 10 11 12 13 14 |

0,50 0,56 0,63 0,70 0,77 084 091 0,97 |

La vitesse de ce mouvement (rectiligne) uniforme vaut donc (approxima-
tivement'!)
0,07

L
30

=2,1(m/s).
Des lors, la premiere équation du mouvement s’écrit x = 2, 1t.

La trajectoire de la deuxiéme balle est parabolique.

On vient d’obtenir les deux équations du mouvement de la deuxieme balle :

= 2,1t,
En isolant le temps ¢ dans la premiere équation, on obtient ¢ = 2%, d’ou
y=-7 <i>2 = 1,1122... 22
2\2,1 ' '

puisque g = 9,81m/s?. C’est 1’équation d’une parabole passant par le point

A.

2.4 La vitesse de la deuxiéme balle

Ainsi, et comme dans le cas de la trajectoire du nageur, la trajectoire de la
balle n’est pas trop difficile a déterminer. Mais dans le cas du nageur, c¢’est
surtout la vitesse et ses caractéristiques qui ont été I'objet de la réflexion.

Comme pour la question 2, le caractere plus théorique des deux questions
suivantes explique que leur résolution ne soit pas nécessairement laissée
a la seule initiative des éleves, et ’enseignant veillera encore a ce que les
étapes essentielles des raisonnements soient bien rencontrées par tous les
éleves.

Question 7.

Comment définir la vitesse de la balle qui suit la trajectoire para-
bolique de la figure 19, a chaque instant ou 1’éclair du stroboscope
« 'immobilise » ?

11 Tes erreurs résultent du défaut de synchronisation entre les départs des deux balles,
déja relevé plus haut.
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Il faut une nouvelle définition de vitesse. ..

Jusqu’ici la notion de vitesse a toujours été associée a un mouvement
rectiligne, méme si on a déja pu relever des différences significatives, suivant
qu’on parlait de la vitesse d’un mouvement rectiligne uniforme, ou des
vitesses moyenne ou instantanée d’un mouvement rectiligne uniformément
accéléré. Or, dans le cas du mouvement parabolique, la trajectoire n’a plus
rien de rectiligne! Alors, que faire ?

Evidemment, 'intuition nous souffle qu’il y a encore un sens a parler de
vitesse, méme pour un mouvement qui n’est pas rectiligne. Il s’agit donc
de passer d’'une sensation de vitesse pour un mouvement curviligne a une
définition de vitesse.

Or, dans un mouvement curviligne, I'intuition de vitesse peut assez natu-
rellement étre associée a l'idée de direction, sous une forme tres visuelle
et intuitive elle aussi. Par exemple, la chronophotographie d’une balle qui
rebondit (cf. la figure 22 ci-apres, extraite de Physical Science Study Com-
mittee [1970]) suggere qu’a chaque rebond, la vitesse change de direction.

Fig. 22 : Quelle est la direction de la vitesse au rebond ?

Nous savons que la vitesse d’'un mouvement rectiligne uniforme est une
grandeur vectorielle, et que ce statut de grandeur vectorielle est indisso-
ciable'? de I'idée de direction. Une premiére hypothese de travail consiste
donc a vouloir définir la vitesse pour un mouvement curviligne comme une
grandeur vectorielle.

Des lors, on doit commencer par se choisir un point d’application de cette
grandeur & définir. Pour fixer les idées, ce sera le point P correspondant
T o < 79s s . 5
ici a la position de la balle a I'instant d’observation ¢ = 35 s.

12 1] s’agit de grandeurs physiques! Les vecteurs du mathématicien sont moins contrai-
gnants.
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Il y beaucoup de vitesses possibles pour le point P.

Une chronophotographie ne fige que certaines positions de la balle. Une
premiere approximation de la réalité consiste alors a ne retenir que ces
positions-la, a réduire donc le mouvement réel a la succession de mou-
vements (aussi simples que possible) qui font passer d’une position a la
suivante. C’est ce qu’on appelle « discrétiser le mouvement ».

Mais le mouvement le plus simple possible qui fait passer du point P au
point suivant P; est le mouvement rectiligne uniforme correspondant. A
ce mouvement est associé une vitesse qui est une grandeur vectorielle ; on
la note v, (P) , ou U, si la mention du point P n’est pas essentielle. La
figure 23 représente la direction de cette vitesse.

A’

\/

Fig. 23 : La direction de la vitesse du mouvement discrétisé.

Et comme la chronophotographie qui nous occupe a été réalisée avec une
fréquence d’éclair de % s, on peut aussi calculer la mesure de cette vitesse
(notée alors v, , sans la fleche) grace aux positions déja relevées,

t  (en multiples de 1/30's) || ... 5 6
x (observé, en metres) ... 0,36 043
—y (calculé, en metres) ... 0,14 0,19

et a I’éternel théoreme de Pythagore (cf. la figure 24)

0,05)% 4 (0,07)>
Upy, = \/( )L ( ) =2,58... (m/s).
30
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\

0,06 NP

Fig. 24 : La mesure de la vitesse du mouvement discrétisé.

Mais cette vitesse est entierement tributaire du choix de la fréquence
d’éclairs du stroboscope. Par exemple, si la discrétisation est réalisée a
la fréquence de % s, la direction de la vitesse au point P est différente,
comme le montre la figure 25.

\

Fig. 25 : La direction de la vitesse dépend de la discrétisation choisie.

La mesure de cette vitesse est également différente. Les données corres-
pondantes

t  (en multiples de 1/30s) || ... ) 8
x (observé, en metres) ... 0,36 0,56
—y (calculé, en metres) ... 0,14 0,34
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Fig. 26 :
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Résumons-nous ! En discrétisant le mouvement, il est possible — au départ
d’un point P fixé — de I'approximer (localement) par un mouvement rec-
tiligne uniforme, et donc d’y associer une vitesse en tant que grandeur
vectorielle. Le probleme est qu’il y a beaucoup de discrétisations possibles,
donc beaucoup de mouvements rectilignes uniformes possibles, et donc
beaucoup de vitesses possibles pour le méme point P. Et qu’a part ce
point d’application P commun, toutes ces vitesses ont des directions et
des mesures différentes.

Une définition idéale

La fréquence des éclairs du stroboscope ne permet pas d’aller voir le mou-
vement de la balle d’assez pres, c’est-a-dire sans discontinuité entre les
positions successives. Mais heureusement, les éleves en savent maintenant
assez pour passer de ’expérimentation & la simulation !

D’abord, ils peuvent facilement reproduire a I'aide du tableur les positions
de la balle au % s, en accord avec les résultats de la chronophotographie,
et les équations du mouvement qui en ont été déduites.
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Les positions des deuz balles (et de la projection horizontale), au trentiéme de secondes.

A partir des équations du mouvement, et en travaillant sur des intervalles
de temps suffisamment brefs, ils peuvent ensuite faire apparaitre la trajec-
toire parabolique de la deuxiéme balle, apparemment sans discontinuité.
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Fig. 27 : La trajectoire de la deuziéeme balle, au milliéme de secondes.

Plus l'intervalle de temps est petit (c’est-a-dire plus la fréquence des éclairs
du stroboscope est grande), et plus la trajectoire discrétisée se révelera
proche de la trajectoire réelle. Mais cette trajectoire quasi continue n’est
pas pour autant la trajectoire compleéte. Pour s’en rendre compte, il suffit

de « zoomer », par exemple autour du point P atteint apres

5 -
35 S5 on

obtient alors la figure suivante.
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Fig. 28 : La trajectoire de la balle au voisinage du point P, au milliéme de secondes.
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Cette image est tout a fait surprenante : la trajectoire de la balle se ré-
vele extrémement proche de celle d’'un mouvement rectiligne uniforme!
Passé l'effet de surprise, cette image donne lieu a quelques observations et
conséquences importantes.

D’abord, elle confirme encore un peu plus la représentation de la trajec-
toire parabolique comme une succession suffisamment resserrée de trajec-
toires de mouvements rectilignes uniformes. Visuellement, la direction et
la grandeur de la vitesse en des points successifs ne paraissent méme pas
étre différentes. Mais bien sur, la trajectoire globale nous rappelle que cette
apparence est trompeuse : il n’y a rien de rectiligne, ni d’uniforme dans ce
mouvement.

D’autre part, deux positions successives sont tellement resserrées qu’iln’y a
rien de bien audacieux a supposer qu’entre ces deux positions le mouvement
est quasiment rectiligne et uniforme. On ne voit d’ailleurs pas tres bien ce
qu’on pourrait proposer d’autre : ¢’est en effet le seul modéle de mouvement
dont on dispose.

De plus, le tableur permet de calculer I'intensité de la vitesse en question,
a des instants successifs, avec une bien meilleure précision qu’auparavant.
Ainsi, au départ de la simulation au millieme de secondes, on obtient

t(ens) | x=2,1t (enm) | y = —% (en m) | vpyo(t) (en m/s) | vpyy(t) (en m/s)
0,165 0,3465 -0,13353863 2,1 -1,623555
0,166 0,3486 -0,13516218 2,1 -1,633365
0,167 0,3507 -0,13679555 2,1 -1,643175
0,168 0,3528 -0,13843872

on (£ +0,001) — 2(¢)
x(t+ 0, -
Ur.u.z (t) = 0,001 )
“ (£ +0,001) — y(t)
+0,001) —
Orany (1) = 2 .

0,001

On en tire que

r.w.(0.166) = \/(2,1)2 + (=1, 633365)2 = 2,6604 ...m/s,

U (0.167) = 1/(2,1)2 + (—1,643175)2 = 2,6664 ... m/s.

De maniere générale, ce mode d’approche permet donc d’assimiler la tra-
jectoire parabolique & une succession suffisamment resserrée de trajectoires
de mouvements rectilignes uniformes, dont la direction et la grandeur de
la vitesse changent continiiment.

Ainsi, on peut proposer de définir la vitesse du point P comme celle de
ce morceau de mouvement rectiligne uniforme (au départ de P) obtenu a
partir de « la meilleure simulation possible » ou de « la meilleure chro-
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nophotographie possible »'3. L’origine photographique de cette définition
aide peut-étre a mettre en évidence pourquoi on parle alors aussi de vitesse
instantanée'® ; on la note U;,5 (P) ou tout simplement o (P).

Mais n’y a-t-il pas moyen d’étre un peu plus précis quant aux caractéris-
tiques de direction et de mesure de cette vitesse idéale ?
Le rectangle magique

Puisque la vitesse du point P se définit a partir d’un mouvement rectiligne
idéal, elle peut étre décomposée, comme dans le cas du nageur. Si pour
abréger on ne note pas les points d’application, on peut donc écrire

- —_ _
V= Vg + Uy,

ou Uy est la vitesse du point P, dans son mouvement rectiligne obtenu par
projection du mouvement du point P sur 'axe des x, et pareillement pour
Ty, comme les représente la figure 29.

A’

A Px Vx X
* I
| |
| |
| |
| |
| |

Pl U
Py - — - T
/
/
, 0
/
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y
%
7777777777 1% w

Fig. 29 : Le rectangle magique.

Or, il s’agit a chaque fois de mouvements idéaux, c¢’est-a-dire des mouve-
ments observés sur « la meilleure chronophotographie — ou simulation —
possible », et nous savons que

e le mouvement rectiligne horizontal (c’est-a-dire le long de l'axe des
x) est un mouvement rectiligne uniforme,

e le mouvement rectiligne vertical (c’est-a-dire le long de I'axe des y)
est un mouvement de chute libre.

13 En d’autres termes, la vitesse ainsi définie est une notion « idéale » que les chro-
nophotographies et les simulations permettent d’approcher. Une telle approximation
peut toujours étre améliorée, pourvu que les appareils de mesure (stroboscope, appareils
photographiques) ou les outils de calcul le permettent.

14 Comme on le rappelle plus bas, cette appellation concorde avec celle déja utilisée
dans ’étude de la chute libre.
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Cela nous permet d’identifier v; et 7, a des grandeurs vectorielles bien
déterminées,
e pour ce qui concerne le point d’application, la direction et le sens,
tout est clair,

e et pour ce qui concerne la mesure de chacune de ces vitesses :

— la valeur v, étant a priori la mesure de la vitesse (instantanée)
du point P, animé d’un mouvement uniforme, elle est identique
a la vitesse « ordinaire » de ce point et comme cette derniere a
déja été calculée plus haut, on a : v, = 2,1 (m/s);

— la valeur v, étant a priori la mesure de la vitesse (instantanée)
du point P, animé d'un mouvement de chute libre, on sait qu’il
s’agit d’une fonction linéaire du temps et qu’elle vaut a I'instant
considéré : vy, = g- 55 = 1,635 ... (m/s).

Dés lors, si on note 6 I'angle que forme la vitesse @ avec ’horizontale
passant par le point P (cf. encore la figure 29), on calcule

.
_M_v_y_g_w:o,wsa..,

tgh = .
ST PUL T w21

d’ou 0 = 38° et

5 o o o 2 2 2 2
v <%> — 0(0,166...) = [PW| = \/|PUP + [UW]> = /12 + 02

2
_ \/(2’1)2 . <g. %) = 2,6614... (m/s).

Pour mémoire, le calcul réalisé plus haut directement sur la chronopho-
tographie avait fourni v,, = 2,58... (m/s); par ailleurs, on peut aussi
calculer : v(0,166) = 2,6574... (m/s) et v(0,167) = 2,6634... (m/s), et
comparer ces résultats avec vy, (0.166) = 2,6604 . .. (m/s) et vy, (0.167) =
2,6664 ... (m/s).

Ces deux résultats achevent de déterminer toutes les caractéristiques de la
vitesse au point P, considérée comme grandeur vectorielle idéale ou alors
— plus précisément ? — comme vitesse d’un mouvement rectiligne uniforme
idéal'®.

2.5 La formulation vectorielle de 1’équation du
mouvement de la deuxiéme balle

Arrétons-nous encore un instant sur les équations du mouvement de la
balle, telles que la question 6 nous les a fait découvrir.

Question 8.
Comment reformuler en termes de grandeurs vectorielles les équations
du mouvement obtenues lors de ’analyse de la chronophotographie ?

5 Ce mouvement rectiligne uniforme idéal est tangent & la trajectoire de la balle au
point P, mais c’est 14 une autre histoire. ..
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Comme il n’y a plus de raison pour fixer a priori U'instant d’observation,
on va reprendre I'analyse de la chronophotographie (cf. la figure 19) pour
un instant d’observation ¢ quelconque. On note alors P(t) la position de
la balle & un tel instant, et on convient d’abréger P(t) en P lorsqu’il n’en
résulte aucune ambiguité.

Une décomposition du mouvement héritée du rectangle magique

Puisque la décomposition de la vitesse a déja permis de résoudre la ques-
tion précédente, on va pareillement décomposer le mouvement du point P
suivant les deux directions associées a ce mouvement,

e l'horizontale, qui est la direction initiale du mouvement,

e et la verticale, qui est la direction d’un mouvement ordinaire'® de
chute libre.

Avec les notations de la figure 30 ci-apres, le mouvement horizontal a
considérer est donc celui de la projection P, du point P sur l'axe des x;
c’est un mouvement (rectiligne) uniforme. Comme on a (déja) noté v, la
mesure (constante) de la vitesse de ce point, on a

|AP,(t)| = vst.

Le mouvement vertical est celui de la projection P, du point P sur 'axe
des y; c’est un mouvement (rectiligne) de chute libre. La loi fondamentale
de la chute libre permet d’écrire

gt?
AP, ()] = =

Considérons alors le changement de position qui amene le point A sur le
point P, et associons-y la grandeur vectorielle définie comme suit,

e son point d’application est le point A,
e sa direction est celle de la droite passant par les deux points A et P,
e son sens est celui qui mene de A & P sur cette droite,

e sa mesure est celle de la distance, prise en metres, qui sépare les deux
points en question.

On note AP ce changement de position. On peut définir pareillement les
—_— —_—
changements de position AP, et AP,, et on a (cf. la figure 30)

AP (t) = AP, (t) + AP, (t).

y
P
A >o oy
|
|
|
|
|
Y |
P Pou P(1)

Fig. 30 : Le changement de position est une grandeur vecto-
rielle qui se décompose.

16 (est-a-dire sans autre mouvement qui s’y ajoute.
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Fig. 51 :

Une décomposition qui se décompose encore. ..

On peut mieux exprimer I'information fournie par ’expression précédente
en mettant en valeur les mesures des changements de position calculées
plus haut : |AP,(t)| = vt et |[AP,(t)| = %. Pour cela, on introduit deux
nouvelles grandeurs vectorielles :
e le vecteur Zz; est un changement de position qui sert de référence
pour tout mouvement suivant la direction initiale du tir de la balle;
il a comme point d’application le point A, comme direction celle de
l'axe des x, comme sens le sens positif de parcours de cet axe, et
comme mesure 'unité de longueur, c’est-a-dire le metre,

e le vecteur E,e¢ est un changement de position qui sert de réfé-
rence pour tout mouvement suivant la direction verticale; il a en-
core comme point d’application le point A, comme direction celle de
I’axe des y, comme sens le sens positif de cet axe, et toujours comme
mesure 'unité de longueur (le metre).

On fait alors apparaitre les différentes caractéristiques de la grandeur vec-

. - 7 .

torielle AP, (t) en I’écrivant sous la forme

AP, (t) = vyt - &737.

Cette écriture concentre en effet toute I'information de mesure dans le fac-
teur v,t et toute 'information de direction dans le terme &;,.. Pareillement,

I’écriture
—_— gt2 —
APy (t) = ——2 * Evert

. . . . 2 . .
distingue I'information de mesure dans le terme %, celle de direction dans

le terme E,¢,¢ et précise avec le signe « — » que le sens de AP, (t) et le sens
de Eyeri sont opposés.

Lorsqu’on écrit finalement 'équation AP (t) = AP, (t) + AP, (t) en préci-
sant toutes les caractéristiques des grandeurs vectorielles AP, (t) et AP, (t),
on obtient (cf. la figure 31)

t2
E(t) = Uyt - %} + <_g_> * Evert-

2
y
c A
vert y—)
81" Vx rYe tiL X
Al TP
|
|
|
|
|
|
2
=8 ¥ Y |
73 7777777777777 Pou P(t)
Y

L’équation vectorielle du mouvement de la balle se visualise a l’aide d’un rectangle.
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La position de la balle est ainsi completement décrite a n’importe quel
instant en termes de grandeurs vectorielles de référence. L’équation obte-
nue mérite bien d’étre appelée 1’équation vectorielle du mouvement. Pour
mémoire, on a obtenu comme équations du mouvement dans le probleme
du nageur (cf. la question 1 et la synthese de la section 1)

AN(t) =t- AN,

N 40 » R .
ott AN = < 9 O) est le vecteur-position du nageur apres une minute d’ef-

fort. Ces équations s’écrivent aussi
Eﬁ(ﬂ = 40t - Exavier + 20 - Eypes,

Ol EX guier (respectivement Ey,cq) est le changement de position qui sert de
référence pour tout mouvement le long de la berge (respectivement le long
du pont), en parfaite analogie avec les équations vectorielles du mouvement
du projectile.

3 Le tir oblique

Décrire de maniere quantitative la forme d’'un jet d’eau.
L’équation vectorielle générale du mouvement d’un projectile.
Une chronophotographie (cf. la figure 33, en annexe a la page 498).

3.1 Retour au jet d’eau articulé

Revenons-en a I’étude du jet d’eau.

Nous savons déja que la forme du jet d’eau est celle de la trajectoire de
n’importe laquelle des gouttes qui le constituent. La question qui nous
intéresse maintenant est de décrire le mouvement d’une goutte d’eau des
sa sortie du tuyau d’arrosage, suivant les principes qui ont permis de décrire
le mouvement de la balle dans la chronophotographie. Mais cette fois-ci,
il s’agit de prendre en compte le fait que le tuyau est dirigé suivant un
angle avec I’horizontale qui n’est pas nécessairement nul. Or, la description
d’un tir a 'horizontale n’est pas sans rapport avec celle d’un tir dans une
direction quelconque. En effet, expérience du jet d’eau articulé (cf. la
question 5) a livré un résultat assez étonnant : peu importe que la direction
de tir soit horizontale ou oblique, lorsque les distances mesurées dans cette
direction sont les mémes, alors les écarts verticaux correspondants sont eux
aussi identiques. Tout semble donc étre indépendant de la direction...?
Comme les grandeurs vectorielles prennent explicitement en compte les
questions de direction, il est assez naturel de se poser la question suivante.



3. Le tir oblique

441

Question 9.

En termes de grandeurs vectorielles, qu’est-ce qui change — et qu’est-ce
qui ne change pas — dans la description du mouvement d’une balle ou
d’une goutte d’eau, lorsqu’on passe d’une direction de tir horizontale a
une direction de tir oblique ?

Commencons par adapter les notations. Le point A devient le point de
sortie de la goutte d’eau ou, de maniere plus explicite, ’orifice du tuyau
d’arrosage. On note G(t) la position de la goutte d’eau & un instant d’ob-
servation ¢t quelconque, et on a donc G(0) = A. On convient toujours
d’abréger G(t) en G lorsqu’il n’en résulte aucune ambiguité.

Comme précédemment, on décompose le mouvement en deux mouvements
qui integrent ce que l'expérience du jet d’eau articulé a mis en évidence.
Le mouvement vertical est donc celui de la projection G, du point G sur
I’axe des y parallélement a la direction de tir; et le mouvement dans la
direction de tir — ou mouvement oblique — est alors celui de la projection
G, du point G sur l'axe des z (c’est-a-dire 'axe de la direction initiale
du mouvement) parallelement a la verticale (cf. la figure 32). Suivant les
résultats obtenus lors de la résolution de la question 3, on peut des lors
écrire — en parfaite analogie avec le cas du tir horizontal — le changement de
position AG comme combinaison vectorielle des changements de position
TGZ et A—G;,

AG (t) = AG. (t) + AG, (t).

Fig. 32 : Le changement de position de la goutte d’eau se
décompose suivant la verticale et la direction de tir.

Une hypothése qui découle (!) de l’expérience du jet d’eau

On est alors amené assez naturellement a faire une hypothese de décompo-
sitton : chacun de ces deux mouvements a les mémes caractéristiques que
le mouvement correspondant dans le cas de la direction de tir horizontale.
Plus précisément, on suppose donc que

e le mouvement du point G, est un mouvement rectiligne uniforme
suivant la direction du tir,

¢ le mouvement du point G, est un mouvement de chute libre le long
de la verticale passant par le point A.
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Il y a au moins deux manieres de justifier cette hypothese. La premiere
consiste a faire une nouvelle expérience de stroboscopie, avec une direction
initiale de tir qui ne soit plus horizontale : cf. la figure 22, ou la figure 33
ci-apres (extraite de A. Meessen [1984]).

Fig. 33 : Une nouvelle expérience de stroboscopie.

Un traitement analogue'” & celui de la question 6 permet alors de vérifier
que le mouvement des points G, et G, est exactement celui qui est impliqué
par I’hypothese de décomposition.

Une deuxieme méthode consiste a faire appel a la notion de force de pe-
santeur et au principe d’inertie'®. Pour mémoire, ce principe affirme que
« tout corps persévere dans l’état de repos ou de mouvement uniforme en
ligne droite dans lequel il se trouve, a moins que quelque force n’agisse sur
lui et ne le contraigne a changer d’état. » Comme la force de pesanteur est
la seule! force qui s’applique & la goutte d’eau, c’est elle qui se retrouve
responsable de la forme curviligne de la trajectoire. De maniere équiva-
lente, si la force de pesanteur n’existait pas, le mouvement de la goutte
d’eau serait rectiligne uniforme, suivant la direction initiale de mouvement,
c’est-a-dire 'axe des z.

17 Sur le cliché, les dimensions sont fournies en ¢m, et l'intervalle de temps entre deux
éclairs consécutifs est de 0,059 s.

8 Pourvu évidemment que les éléves le connaissent. Les raisonnements en termes de
chronophotographies sont entierement cinématiques, et donc indépendants du principe
d’inertie!

19 Comme souvent, on néglige la résistance de I’air, et les effets hydrodynamiques
propres au jet d’eau lui-méme.
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Les conséquences de l’hypothése de décomposition

Comment caractériser la vitesse du mouvement rectiligne uniforme du
point G, 7

Cette vitesse étant constante, on peut l'identifier avec celle de la goutte
d’eau au moment exact ou elle sort du tuyau d’arrosage au point A. Pour
mettre en évidence cette caractéristique dans les notations, on convient de
noter U;,;; cette vitesse « initiale » puisqu’il s’agit de la vitesse de la goutte
d’eau a l'instant initial d’observation.

Précisons ensuite que la caractérisation de la grandeur vectorielle &, doit
étre modifiée : elle a toujours comme point d’application le point A, mais
sa direction a changé — c’est maintenant celle de ’axe des z dans la figure
34, c’est-a-dire celle suivant laquelle le tuyau d’arrosage projette toutes les
gouttes d’eau — le sens quant a lui reste le sens « positif » de parcours de
cet axe, et la mesure reste I'unité de longueur, c’est-a-dire le metre.

Avec ces modifications, on montre comme précédemment que le mouve-
ment d’une goutte d’eau est décrit par I'équation vectorielle

2
gt
E (t) = Vinitt - W + <—7> * Evert -
D’une certaine maniere, cette équation décrit les variations avec le temps
d’un parallélogramme « magique » (cf. la figure 34 ci-dessous). Comme
dans la question 7, on pourrait en déduire la vitesse du point G(¢) & n’im-
porte quel instant de son mouvement, etc.

Fig. 34 : Un parallélogramme magique décrit le mouvement.

Il est encore intéressant d’observer que 1’équation vectorielle que ’on vient
d’obtenir a la méme forme que celle issue de I’étude de la chronophotogra-
phie, alors que la situation physique est a prior: différente.

En réalité, tout a été fait pour obtenir cette identité de forme troublante :
I’hypothese de décomposition, et surtout la maniere dont le calcul des



444

Comment s’y
prendre ¢

Chapitre 13. Les mouvements et les vitesses

grandeurs vectorielles regle les questions de directions ont été des deus
ex machina. Et cette identité de forme redevient tres naturelle des qu’on
s’apercoit que toute la différence entre les deux situations physiques est
prise en compte par 'interprétation géométrique différente qu’on réserve
a la grandeur vectorielle de référence ;. .

3.2 La forme du jet d’eau

La question suivante n’a rien pour surprendre !

Question 10.

Quelle est finalement la trajectoire d’une goutte d’eau — ou la forme du
jet d’eau — si le tuyau d’arrosage est dirigé suivant un angle de 45° avec
I’horizontale ?

Et s’il s’agit d’un angle 8 quelconque ?

... Et tout le travail est quasiment fait, il ne s’agit plus que de mise en
forme!

Un changement de références

Si on veut travailler avec les coordonnées ordinaires du point G(t), ¢’est-a-
dire celles prises suivant les axes des = et des y de la figure 32 ou 34, il est
intéressant d’introduire deux nouvelles grandeurs vectorielles de références
qui soient appropriées a ce (nouveau) choix d’axes. On définit donc

Zs : C’est le changement de position qui sert de référence pour tout
mouvement suivant la direction horizontale; il a comme point d’ap-
plication le point A, comme direction celle de 'axe des z, comme
sens le sens positif de parcours de cet axe, et comme mesure 'unité
de longueur, c’est-a-dire le metre,

g, : c’est le changement de position qui sert de référence pour tout
mouvement suivant la direction verticale; il a encore comme point
d’application le point A, comme direction celle de I'axe des y, comme
sens le sens positif de cet axe, et toujours comme mesure I'unité de
longueur (le metre) ; évidemment Eyerf = €.

D’autre part, un peu de trigonométrie (en s’aidant de la figure 35) permet
de relier entre elles les grandeurs vectorielles &, €7 et g,.

Fig. 35 : De nouvelles grandeurs vectorielles de référence.
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Eir = cosf - &7 +sinf - gy .

L’équation vectorielle AG (t) = Vinitt - &gy + (—%) - Zyert Obtenue a la fin

de la question précédente devient alors

t2
m:wmtt(cose-g_x’ +sind - ;) +<_97>.a;,

¢’est-a-dire, en regroupant les termes suivant les deux grandeurs vectorielles
de référence qui ont été associées aux coordonnées, il vient

—_—

2
AG(t) = vipit cosb - 27 + (vimtt sinf — %) By

La trajectoire, enfin. . .

Bien str, on peut aussi écrire le résultat précédent directement en termes
de coordonnées

T = Uinittcosh,

Y = Uipitsingd — g.
Pour tirer alors de ces deux équations la trajectoire du mouvement, il
suffit de tout immobiliser, c¢’est-a-dire de « chasser le temps », cela donne
I’équation de la trajectoire

g

5.2 .~ 92p
203, 5, cos= 0

Yy = a2 +tgh - x.

Comme dans le cas du tir horizontal, c’est I’équation d’une parabole. Elle
passe par le point A de coordonnées (0;0), ce qui n’a évidemment rien
d’étonnant !

y direction
de tir

Fig. 36 : La forme du jet d’eau.

Le matériel utilisé dans I’expérience du jet d’eau articulé permet de relever
tres facilement les coordonnées de plusieurs points de la courbe formée par
le jet d’eau, et de confirmer??, si on le souhaite, son caractere parabolique?.

29 Dans les limites de précision que I’expérience permet d’atteindre. . .

21 Ce genre de mesure peut fournir aussi une estimation — indirecte, mais relativement
précise — de la vitesse vin;+ du jet d’eau a la sortie du tuyau. Si, avec les notations de la
figure 36, p = |AB] est la « portée » du jet d’eau, exprimée en m, on obtient aprés un
petit calcul

gp
sin 20"

En particulier, si § = %, on trouve Vinit & 3./p.

Vinit =
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Pour 6 = 0, on retrouve la parabole de sommet A déja étudiée précédem-
ment?2. Pour 0 = 1> équation de la trajectoire se simplifie sensiblement
de cette maniere,
y=———"- 2%+ z.
Vinit

Si 6 = 7, on retrouve la situation de 'arroseur arrosé. L’équation de la tra-
jectoire n’est alors plus d’aucun secours (sic!), mais I’équation vectorielle
est quant a elle tout a fait parlante (resic!)

2
AG[H = (vimtt _ %) &,

z = 0,
2
y = Uit — %

3.3 Le probleme du poisson-archer

ou, si I'on préfere

Déterminer les caractéristiques de rencontre (position, instant...) de deux
projectiles partant en méme temps d’endroits différents.

Une illustration des propriétés communes de deux mouvements de projec-
tiles.

Une interprétation cinématique des points d’intersection d’une droite et
d’une parabole.

La question suivante est ’occasion de rassembler et de prolonger les résul-
tats obtenus lors de I’étude du jet d’eau et de la chronophotographie, et
d’y ajouter une pincée de biologie (cruelle!) Elle est inspirée de H. Benson
[1993], exemple 4.4, p. 61-62.

Fig. 37

22 Dans le cas particulier ot de plus viniz = 0, il n’est évidemment plus possible de
chasser le temps de I’équation vectorielle du mouvement.
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Question 11.

Dans la figure 37, un insecte est posé sur une brindille & une certaine
hauteur au-dessus de la surface de ’eau. Un poisson-archer projette
une goutte d’eau directement sur 'insecte, afin de I’étourdir et d’arriver
ainsi & le gober. Au moment exact ou la goutte est projetée, l'insecte
voit venir le danger et se laisse tomber pour y échapper.

La goutte d’eau peut-elle atteindre l'insecte ? Si oui, & quelle(s) condi-
tion(s) 7 Si non, pourquoi ?

Le probleme revient a décrire le mouvement d’une goutte d’eau projetée
par le poisson-archer, et a mettre ce mouvement en correspondance avec le
mouvement vertical de chute libre de I'insecte. Le poisson-archer projette
la goutte d’eau dans une direction qui n’est manifestement pas horizontale.

On peut reprendre mutatis mutandis les notations déja utilisées dans les
questions précédentes. Le point A est le point de sortie de la goutte d’eau
ou, de maniére plus explicite, le bord de la gueule?® de notre prédateur
aquatique. On note

e ((t) la position de la goutte d’eau,
e I(t) la position de I'insecte

a un instant d’observation ¢ quelconque, en convenant encore d’abréger
G(t) en G et I(t) en I lorsqu’il n’en résulte aucune ambiguité. On a en
particulier G(0) = A, tandis que (0) désigne la position de l'insecte au
tout début du drame, la-haut sur sa brindille. Et nous savons déja tout ce
qu’il faut savoir du mouvement de la goutte d’eau meurtriere.

direction
y de tir

1(0)

I(1)

s G(1)

Fig. 38 : Le cadre du drame.

Le mouvement de l’insecte

L’insecte se laisse donc tomber suivant un mouvement rectiligne de chute
libre a partir du point 1(0). Quel que soit I'instant d’observation ¢, le chan-

23 Au moment du tir, on suppose que le bord de la gueule du poisson-archer affleure
la surface de I’eau.
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gement de position se décompose sous la forme
-
Al (t) = AT (0) + AL, (),

avec les notations de la figure 39. Comme ce mouvement reste parallele a
I’axe des y, une de ces composantes — celle suivant la direction de tir — est
donc constante, c’est-a-dire indépendante du temps.

Fig. 39 : Le changement de position pour le mouvement de chute libre
de linsecte.

Notons, suivant la figure 40
e d, la distance horizontale (mesurée en metres, comme il se doit) qui
sépare 'insecte du poisson-archer,
e 0, I'angle de tir mesuré par rapport a I’horizontale, qui est aussi
I’angle sous lequel I'insecte est vu par le poisson-archer.

Fig. 40 : Deux parametres permettent de déterminer
la position de [’insecte.

Le triangle rectangle AEI(0) livre immédiatement la relation

d
cosf’

|AL(0)] =

On en déduit — comme précédemment — I’équation vectorielle du mouve-
ment de 'insecte

d 2
ﬂ(ﬂzcose-m +<—97)s—z
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L’issue du drame

Est-il possible que la goutte d’eau frappe l'insecte? En d’autres mots,
existe-t-il un instant ¢ pour lequel la goutte d’eau et l'insecte se trouvent
exactement au méme endroit, c’est-a-dire pour lequel A (t) = AG (t) ?

Pour bien voir ce qui se passe, il est intéressant d’introduire — apres le
rectangle magique — le « parallélogramme de la mort » : il est défini (cf.
la figure 41) a partir du segment |G(¢)I(t)|, qui décrit toute 1’évolution du
drame, puisqu’il est de longueur nulle lorsque la goutte d’eau frappe sa
cible.

1(0)

I(1)
T T4

o G(1)

Fig. 41 : Le parallélogramme de la mort!

Or, le parallélogramme AC(t)J(t)I(t) montre que G(t)I(t) = AI(t) +
(—AG(t)) (cf. la figure 42).

y
1)
Jt) L~ G(1)
-7 X
/// A
Clt) = £AG()

Fig. 42 : Deux grandeurs vectorielles équivalentes.

A partir de I’équation vectorielle du mouvement de la goutte d’eau,

t2
zﬁ (t) = Vinitt - &}7 + <_97> - Evert
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et de celle de I'insecte,

d t?
ﬂ(t) = cos 0 m + (_97> * Evert

on peut alors calculer vectoriellement la caractéristique fatale du « paral-
lélogramme de la mort », a savoir

d
cos b

Gt)I(t) = AJ(t) = AI(t) + <—AG(t)> = < — vim-tt> - Eti
Si la rencontre meurtriere de la goutte d’eau et de I'insecte a bien lieu, cet
instant fatal est donc déterminé par la condition

—

GHIt) =0,

et vaut

d
tnort = ————-
Vinit cOS 0
Et donc, ca ne rate jamais ? Quels que soient I’angle de tir?*, la vitesse d’ex-
pulsion de la goutte d’eau et la distance horizontale qui sépare le poisson-
archer de sa cible, I'issue est inéluctable : le poisson-archer fait mouche ?
Voire. .. Rien dans ce qui précede n’a pris en compte que le mouvement de
chute libre de 'insecte s’arréte des que celui-ci touche la surface de I'eau
au point E (cf. la figure 40). La goutte d’eau n’atteint donc I'insecte avant
que celui-ci ne touche l’eau que si

2

t
1(0)B| > Lot

Comme on sait que tmort = —7o5 et que |[[(0)E| = dtgf, un peu de

calcul livre alors la « condition d’impact »

2 gd
Vinit = sin 20°

Z

1(0)

Fig. 43 : L’évolution inéluctable du parallélogramme de la mort.

24 Pourvu qu’il reste (strictement) compris entre 0° et 90°, mais le poisson-archer n’est
pas bigleux au point de ’ignorer!
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On peut mener un raisonnement analogue, et plus géométrique, a I'aide
du « parallélogramme de la mort ». En effet,en se limitant aux compo-
santes verticales de leurs mouvements, I'insecte et la goutte d’eau doivent
se rencontrer s’ils « partent » en méme temps. La forme dégénérée du pa-
rallélogramme de la mort — c¢’est-a-dire celle pour laquelle la longueur du
segment |G(t)I(t)| est nulle — correspond a la condition d’impact, pourvu
que cette forme dégénérée se réalise au-dessus de 1'eau, etc.

Malheureusement, la nature est impitoyable! Méme si 'insecte arrive a
toucher 'eau, son compte est bon : le poisson-archer est alors dans son
élément et, apres deux petits coups de nageoire, plus rien ne 'empéche de
happer I'innocente victime. Versons une larme. . .

Regardons enfin sur quelques exemples numériques, comment le destin
frappe. Supposons pour fixer les idées que § = 45° et d =5-10"2 m ou 5
cm, ce qui correspond approximativement a ce qu’illustre la figure 37.

e Si, par exemple, v;p;y = 1 m/s,

-2

— alors on obtient ¢+ = 7,07... 107“ s, c’est-a-dire un peu

moins d’un dixieme de seconde,

— et |[1(0)] (tmort)| = 2,45 ... 1072 m, c’est-a-dire environ la moi-
tié de la distance qui sépare initialement l'insecte de la surface
de l'eau.

e Autre exemple, si vip; = 2 m/s,
— alors tmere = 3,53... 1072 s, c’est-a-dire un peu moins d’un
trentieme de seconde,
— et |1(0)] (tmort)| = 0,6125... 1072 m, c’est-a-dire un peu plus
d’un dixieme de la distance qui sépare initialement I'insecte de
la surface de I'eau.

De manieére générale (mais toujours en supposant que 6 = 45°), on peut

établir la formule
gd?*
’I(O)I (tmm"t)’ = 5
init
qui précise comment le peu d’espace qu’arrive encore a parcourir l’insecte
avant le choc fatal dépend de la vitesse initiale de la goutte d’eau.

4 Lent ou rapide?

Cette section illustre la portée du point de vue vectoriel sur la vitesse, en
montrant comment une astuce (toute vectorielle) permet de définir et de
déterminer immédiatement 1’accélération d’un mobile animé d’un mouve-
ment circulaire uniforme.

Comparer les vitesses de différents mobiles animés d’un mouvement circu-
laire uniforme, au départ de simulations de ce type de mouvement.
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La caractérisation vectorielle de la vitesse (linéaire) d’un point animé d’un
mouvement circulaire uniforme. La notion d’hodographe du mouvement
de ce point. La définition et la caractérisation vectorielle de I'accélération
(linéaire) d’un point animé d’un mouvement circulaire uniforme

Quelques données astronomiques (reprises plus bas) concernant le mouve-
ment de rotation de la terre autour du soleil.

Un tableur (EXCEL, par exemple).

Prérequis
Les résultats élémentaires concernant

e la longueur de la circonférence : dépendance du rayon, approximation
par des polygones réguliers inscrits ;

e la mesure des angles en radians;
e l'aire d’un disque, d’un secteur circulaire.

Le cercle trigonométrique, la trigonométrie des angles orientés, les équa-
tions paramétriques d’un cercle (sous forme trigonométrique).

4.1 Vitesse angulaire et vitesse linéaire

En général, on dit qu'un mobile ponctuel est animé d’'un mouvement cir-
culaire lorsque sa trajectoire est un cercle.

Ceci dit, il faut certainement commencer par demander aux éleves de faire
une liste d’exemples de mouvements circulaires. Les objets tournants sont
tellement fréquents que ces exemples ne manquent pas, pourvu bien str
qu’on se concentre sur un point bien défini de 'objet en mouvement : une
essoreuse a salade, beaucoup d’objets électro-ménagers (centrifugeuse, .. .)
ou de bricolage (foreuse, scie circulaire, . ..), une platine de tourne-disque®?,
le virage d’une voiture dans un rond-point, certaines figures en skate-board,

un looping sur une montagne russe, le lancer du marteau, etc.

Question 12.
Parmi tous ces mouvements circulaires, lesquels mériteraient-ils d’étre
qualifiés d’uniformes ?

Une définition. ..

Les exemples ci-dessus et le modele de la définition du mouvement recti-
ligne uniforme permettent assez vite de dégager une définition en termes
d’angles ou d’arcs parcourus, telle que : un mouvement circulaire est uni-
forme lorsque les angles — ou les arcs — décrits par le point mobile sont
entre eux comme les intervalles de temps nécessaires a les parcourir; ou
encore : lorsque des arcs égaux sont parcourus en des temps égaux.

25 Gi, si! Cet objet antédiluvien est encore tres utilisé : par les disc-jockeys dans les
dancings par exemple.
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Le retour sur les exemples précédents permet alors de nuancer la définition
proposée au début : en fait, un mobile est animé d’un mouvement circulaire
lorsque sa trajectoire est un cercle ou un arc de cercle, comme dans le cas
du virage en voiture. Dans le cas d’une trajectoire qui n’est pas un cercle
complet, le mouvement est souvent mon uniforme : certaines figures de
skate-board et plus généralement les mouvements de type pendulaire sont
de ce type.

Fig. 44 : Le mouvement pendulaire est circulaire et non uniforme.

... et quelques caractéristiques

Ces observations élémentaires permettent de caractériser un mouvement
circulaire uniforme a partir de deux grandeurs, toutes deux scalaires : le
rayon R de la trajectoire, et I’angle w parcouru par unité de temps2® (et
mesuré en radians par seconde).

Question 13.

Des deux mouvements de rotation suivants, lequel est le plus lent et
lequel est le plus rapide : le mouvement de la terre autour du soleil ou
le mouvement d’une dent de scie circulaire (électrique) ?

Assez souvent, le mouvement d’'une dent de scie circulaire est ressenti par
les éleves comme le plus rapide. Et c’est... vrai, mais d’'une maniere qui
mérite d’étre découverte progressivement.

26 Au lieu de cet angle, on considére souvent la fréquence v du mouvement, c’est-a-
dire le nombre de tours parcourus par unité de temps; lorsque le temps est mesuré en
secondes, la fréquence est mesurée en Hertz (1 Hz = 1 s™!). Si on note T la période
du mouvement, c’est-a-dire le temps nécessaire a parcourir un tour complet, les diverses
relations : w-T =27, v = % et 27 - v = w sont parfois utiles.
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La vitesse angulaire

Dans un mouvement circulaire uniforme, 'angle w parcouru par unité de
temps est appelé la vitesse angulaire. Si on considere, de maniere assez na-
turelle, que le mouvement d’une dent d’une scie circulaire est effectivement
un mouvement circulaire uniforme, et si pour fixer les idées, on suppose
que la scie tourne a 1500 tours/minute, on obtient

1500 x 27

50 = 157,079... (rad/s).

Wscie =
On peut légitimement considérer que c’est un mouvement circulaire (tres)
rapide.

Le mouvement de la terre autour du soletl

Le mouvement de la terre autour du soleil est-il un mouvement circulaire,
et si oui, est-il uniforme ?

Cela demande d’abord une petite recherche de la part des éleves quant
aux propriétés du mouvement des planetes. Il n’est pas bien difficile d’ob-
tenir dans des encyclopédies, ou sur Internet, les informations suivantes
qui suivent.

e Chaque planéte se meut sur une orbite elliptique?” dont le soleil est
un des foyers (premiere loi de Kepler).

e Le rayon reliant le soleil a la planete balaye des aires égales en des
temps égaux (deuxieme loi de Kepler).

o L’excentricité?® de I'orbite de la terre autour du soleil est égale &
0,017.

La tres faible excentricité de 'orbite de la terre autour du soleil signifie
que les deux foyers sont quasiment confondus, et qu’il est donc tout a
fait raisonnable de supposer que 'orbite en question est circulaire, avec
le soleil au centre. Dés que cette hypothese est faite, la deuxieme loi de
Kepler implique alors que le mouvement est uniforme, puisque l'aire d’'un
secteur circulaire est proportionnelle & ’angle au centre qui le définit. On
calcule alors sans difficulté la vitesse angulaire du mouvement de la terre
autour du soleil

. - 2m
terre/soleil — 365 x 24 x 3600

=1,9923...107" (rad/s).

Par comparaison avec le cas de la scie, il s’agit ici d’'un mouvement circu-
laire uniforme dont la vitesse angulaire est dérisoire.

Ainsi, pour les deux mouvements circulaires uniformes considérés dans la
question, la vitesse angulaire de I'un est tres importante, alors que celle

2T Une ellipse peut étre définie comme une courbe allongée, apparentée au cercle, qui
s’obtient en coupant un coéne circulaire droit par un plan sécant a toutes ses génératrices.
On peut établir que la somme des distances d’un point quelconque d’une ellipse & deux
points fixes — appelés foyers — est constante, et égale a la plus grande corde, ou grand axe,
de Dellipse. Cette propriété permet de tracer facilement des ellipses suivant le procédé
dit « du jardinier ».

28 Iexcentricité d’une ellipse est, par définition, le rapport entre la distance des foyers
et la longueur du grand axe.
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de l'autre semble dérisoire. Mais la vitesse angulaire mise ainsi en scene
ne semble pas étre de la méme nature que la vitesse du nageur ou de la
balle dans les situations précédentes : elle ne semble pas attachée matériel-
lement au point mobile et ne possede pas les particularités d’une grandeur
vectorielle. . .

Question 14.
A quelle vitesse (instantanée) la terre se déplace-t-elle autour du soleil ?

Quelques stroboscopies. .. virtuelles

La définition méme de mouvement circulaire uniforme permet immédiate-
ment de simuler le résultat d’une expérience de stroboscopie pour ce genre
de mouvement, au départ de la description trigonométrique du cercle. Si
le mouvement considéré est de rayon R et de vitesse angulaire w, alors
'angle parcouru apres ¢ unités de temps égale wt, et la position?? du point
mobile a l'instant ¢ est donc décrite par ses équations paramétriques, ou
équations du mouvement :

x = x(t) = Rcoswt,
y =y(t) = Rsinwt.

Suivant les dimensions en jeu dans le probleme, la simulation meéne a bien
choisir les unités a utiliser. Par exemple, dans le mouvement de la terre
autour du soleil, la distance moyenne terre/soleil étant de 'ordre de 149-10°
km, il sera préférable de prendre comme unité de longueur le million de
kilometres. Dans ce cas, si une premiere simulation est réalisée mois par
mois, on posera
Winois = 2F = ™ —0.5235... (rad /mois)
126

et les positions de la terre seront les 12 sommets d’un dodécagone régulier.
Chaque nouvelle simulation peut alors amener les éleves a devoir adapter
leurs unités ; par exemple, pour une simulation au jour pres,

2
Wiour = % =0,01721... (rad/jours)
ou & I’heure pres,
T 0,0007172... (rad/heures)
Wheure = gee——o7 =0, oo (r ures).

Pour une simulation au jour pres, les positions correspondantes de la terre
dessinent un cercle presque continu (le point représenté en gras dans la
figure ci-dessous est la position de la terre au 46°™¢ jour de I'année).

29 Le repere dans lequel le mouvement est étudié est conforme & la représentation
trigonométrique ou cartésienne usuelle; dans le cas particulier du mouvement de la
terre autour du soleil, on ne tient donc pas compte ici d’éventuelles conventions utilisées
en astronomie.
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Fig. 45 : La trajectoire de la terre autour du soleil, sur 365 jours.

Cette continuité n’est qu’apparente, comme le montre un agrandissement
de la figure, centré sur ce 46°™€ jour (cf. la partie gauche de la figure 46).
N il . . 2 bi .
Le caracteére curviligne de la trajectoire reste encore assez bien marqué
als si on réalise une simulation & I’heure pres, toujours centrée au méme
M | lat I’'h b t
point, ce caractére curviligne n’est plus perceptible (cf. la partie droite de
ur : ¢’est bien un mouvement rectiligne et uniforme qui commen
la figure 46) : c’est bie ouvement rectil et forme co ence
a apparaitre !
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Fig. 46 : La trajectoire de la terre autour du soleil, sur 20 jours, et sur 20 heures.
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Comme on I’a mis en évidence dans la section précédente, la vitesse du
mouvement rectiligne idéal sous-jacent a une telle simulation est une gran-
deur vectorielle de méme nature que la vitesse du nageur, ou de la balle
lancée horizontalement, et associée au déplacement réellement effectué par
le mobile.

Une approximation de la vitesse (instantanée)

Le tableau de valeurs qui a servi a représenter la trajectoire de la terre
autour du soleil a ’heure pres, contient tout ce qu’il faut pour calculer
la mesure ou l'intensité de la vitesse de ce mouvement rectiligne presque
uniforme. Par exemple, puisque le 4peme jour correspond a la 46 x 24 =
1104%™€ heure d’observation, le tableau

t (en h) || z(t) (en 10° km) | y(¢) (en 10° km)
1104 104,676594 106,036837
1105 104,600511 106,11189

permet de calculer 'intensité de la vitesse du mouvement rectiligne cor-
respondant. On a

Upa (1104) = \/(—0,076083)2+(0,075053)2
= 0,10687153... (10% km/h) = 106871,53... (km/h).

C’est une vitesse extraordinaire! Y a-t-il (néanmoins) moyen d’étre encore
plus précis ?

Question 15.

Quelles sont les caractéristiques géométriques, ou vectorielles, de la vi-
tesse (instantanée) d’un point animé d’un mouvement circulaire uni-
forme?

La symétrie du cercle a ’ccuvre

On devine assez vite que, si un point mobile est animé d’un mouvement cir-
culaire uniforme, alors sa vitesse en n’importe quel point de la trajectoire
doit toujours d’une certaine maniere « étre la méme ». Plus précisément,
cela signifie que si le sens, la direction et I'intensité du vecteur vitesse
sont déterminés en un (seul) point de la trajectoire, ils sont alors déter-
minés en n’importe quel autre point de celle-ci : une rotation appropriée
fait ’affaire. En effet, n’importe quelle chronophotographie d’un point est
toujours équivalente a une chronophotographie d’un autre point (réalisée
a la méme fréquence d’éclairs) par une rotation qui amene 'un sur autre.

Pour déterminer les caractéristiques géométriques, ou vectorielles, de la vi-
tesse (instantanée) d’un point animé d’un mouvement circulaire uniforme,
il suffit donc de le faire en un seul point de sa trajectoire!

De plus, le calcul de la fin de la question précédente a montré qu’'une vitesse
trés importante n’est pas pour autant tres facile a visualiser. Comme de
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plus tous les cercles sont homothétiques, revenons-en un moment au bon
vieux cercle trigonométrique.

Une limite visuelle

On peut encore faire découvrir la plupart des caractéristiques géométriques
de la vitesse en tant que grandeur vectorielle, a ’aide d’une simulation.

Pour fixer les idées, on considére un mouvement circulaire uniforme de
rayon R = 1 et de vitesse angulaire w = 7 (rad/s). La position a un
instant t est donc décrite par les équations du mouvement

x(t) = cost,
y(t) = sint.

Un tableur tel que EXCEL permet de faire varier tres simplement un para-
metre a I’aide d’une « barre de défilement », et de visualiser directement le
résultat sur une figure associée a I’ensemble des données. Dans les figures

1

ci-dessous, on a fait varier le temps ¢, en I’écrivant sous la forme ¢ = -, ot

n est une valeur entiere attachée a la barre de défilement, et variant de 1 a
1000. L’extrémité du vecteur décrivant la vitesse du mouvement rectiligne
uniforme correspondant est donné par

{vm.xm) = 2(0) + 20720 = 2(0) + (2(2) — 2(0)) - m,
Uray(0) = y(0) + L0720 — y(0) 4 (y(1) — y(0)) - n

Dans la figure ci-dessous, n = 3 dans la cellule C20.
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Fig. 47 : Le début du calcul de la vitesse comme grandeur vectorielle.
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Et dans la suivante, n = 1000 dans la cellule C20.
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Fig. 48 : La vitesse, a moins d’un milliéme de seconde.

On observe déja que la vitesse est quasiment perpendiculaire a 1’horizon-
tale, et que son intensité est tres proche de m = 3,141592654 ... On peut
reprendre ce genre de simulation en faisant varier les parametres R, w et t.
A chaque fois, les résultats sont analogues : plus la discrétisation est fine,
et plus le vecteur vitesse se redresse. Et il finit par devenir perpendiculaire
au rayon horizontal, tandis que son intensité tend a se rapprocher de Rw.

La vitesse d’un mouvement circulaire uniforme

En fait, toutes ces observations fournissent aussi les idées principales des
démonstrations qui restent & faire.

Considérons un mouvement circulaire uniforme de rayon R et de vitesse
angulaire w. Représentons
e par M(t) ou M, la position du point mobile a I'instant ¢;
e par M(t+ At) ou M, la position du point mobile & I'instant ¢ + At,
At est donc I'intervalle de temps nécessaire a parcourir l’arc de cercle
MM’
e et par ©'(t), la vitesse instantanée du point mobile M (t), considérée
comme grandeur vectorielle.
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Fig. 49 : Une approximation de la direction de la vitesse
instantanée.

L’examen du triangle isocele OM M’ livre la relation

M:ﬂ—w-At:Z_w'At’
2 2 2

qui montre que 'angle M se rapproche de 7 lorsque I'intervalle de temps

At se rapproche de 0. Cela signifie qu’en termes de leurs représentants
géométriques, les vecteurs v (t) et OM (t) sont perpendiculaires.

Ainsi, la vitesse d’'un mouvement circulaire uniforme est tangente a la
trajectoire de ce mouvement. C’est une propriété facile a observer : par
exemple, lorsqu’on lance une bille le long du bord d’un cerceau et qu’on
releve ce dernier d’un coup, la bille « prend la tangente », de méme lors-
qu’on présente une lame d’outil & une meule, les étincelles s’échappent
tangentiellement, etc.

M(1)

Fig. 50 : La direction de la vitesse instantanée.

Mais il ne faut pas perdre de vue que la justification physique de ce type
de comportement fait appel au principe d’inertie, qui est un principe dy-
namique et qu’on abandonne alors le contexte de la seule cinématique. Par
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ailleurs, méme lorsque le mouvement circulaire n’est pas uniforme, sa vi-
tesse est encore tangente a la trajectoire du mouvement. Cela résulte d’un
raisonnement analogue a celui décrit ci-dessus, pourvu que ’angle par-
couru w(t), considéré comme fonction du temps ¢ nécessaire a le parcourir,
devienne proche de 0 lorsque ce temps lui-méme est proche de 0, ou plus
précisément, pourvu que cette angle soit une fonction continue du temps ¢
au voisinage de 0; c’est la une hypothese physiquement tres raisonnable !

Un changement de point de vue

Fixons maintenant un repere au centre de la trajectoire circulaire. Nous
pouvons alors écrire

OM (t) = R (coswt - & + sinwt - €3)

Effectuons une translation du vecteur @’ (t) au centre de la trajectoire du
mouvement circulaire. Cela revient & changer (littéralement) de point de
vue sur la vitesse, et mérite donc qu’on l'interprete physiquement, ce qui
sera l'objet de la question 16 ci-apres. Mais comme cette translation n’a
rien d’étonnant en mathématiques, et qu’elle a déja été utilisée et justifiée
physiquement dans 1’étude des mouvements du nageur et de la goutte
d’eau, elle ne doit pas trop nous inquiéter pour le moment. Ceci dit, le
fait que la vitesse soit perpendiculaire au rayon d’extrémité M (t) implique
qu’il existe une constante k telle que

v(t)

k:(cos(wt—l—%) -e_f+sin(wt+g) -e_f)
= k(—sinwt-ef +coswt-e3).

Fig. 51 : La vitesse instantanée, ramenée au centre de la
trajectoire.
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Par identification des modules dans les deux membres de la derniere égalité,
cette constante k ne peut étre que l'intensité v(t) de la vitesse instantanée.
Mais I'expérience gagnée lors des simulations, ou — plus mathématique-
ment — la méthode classique de calcul de la longueur de la circonférence
(par polygones inscrits) entraine alors

2tR
v(t) = T

ou 1 est le temps nécessaire a parcourir un tour complet.

Une justification un peu plus détaillée peut étre présentée de la maniere
suivante. Il s’agit de calculer

" M
= lm .
VO e T A

Or, la méthode de calcul de la longueur de la circonférence par

« bissection » de polygones inscrits établit que, si MM’ est la corde

. o
qui sous-tend un angle au centre de 326—2

lim 2" - [MM'| = 2rR.

n—oo

En posant alors At = Q—Tn, on calcule

|MM'| 1 1
T =T lim 2 |MM/|:f~27rR.

_ n—0oo
2n

v = lim
n—oo

Comme 27 = w7, on peut aussi écrire

ce qui confirme les résultats des simulations. La vitesse instantanée d’un
mouvement circulaire uniforme, considérée comme grandeur vectorielle,
s’écrit donc finalement

U (t) = Rw (—sinwt - €1 + coswt - €3).
On la qualifie souvent de wvitesse linéaire, afin de la distinguer de la vitesse
angulaire.
A un niveau plus avancé, on remarquera que le calcul précédent a établi
de maniere géométrico-physique deux formules de dérivation,

(sinwt) = wcoswt,

et
(coswt) = —w sinwt.

Quelques valeurs numériques a comparer

Revenons-en enfin aux exemples de la question 13, pour achever de quan-
tifier les deux notions de vitesse sous-jacentes. Dans le cas du mouvement
de la terre autour du soleil, on a déja calculé

21

= =1,9923...10°7
Wierre/soleil 365 x 24 x 3600 ;9923 0 (rad/s),
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et comme on sait que R = 149 x 10° (m), on obtient pour I'intensité de la
vitesse linéaire

v = Rw = 29686, 53 ... (m/s) =106871,53... (km/h).

C’est presque exactement la valeur calculée lors de la simulation a 'heure
pres! Pour ce qui concerne le mouvement d’une dent de scie circulaire
tournant a 1500 tours/minute, on a obtenu

1500 x 27
60

si on suppose que le rayon de cette scie égale 20 cm, on trouve pour l'in-
tensité de la vitesse linéaire :

=157,079... (rad/s);

Wscie =

v=Rw=31,415... (m/s) = 113,097... (km/h).

Lequel de ces deux mobiles est le plus rapide? Cela dépend de la notion
de vitesse que l'on sous-entend, mais en termes de déplacement, il n’y a
pas de doute : la terre 'emporte, haut la main !

4.2 Le mouvement de la vitesse

Les propriétés géométriques de la vitesse linéaire d’'un mouvement circu-
laire uniforme sont d’une richesse quasiment inépuisable. On va s’en rendre
compte en revenant a un point qui restait a éclaircir dans le déroulement
de la question précédente.

Question 16.
Lorsqu’on observe du centre de sa trajectoire un point animé d’un mou-
vement circulaire uniforme, comment voit-on sa vitesse varier 7

Quel est le mouvement de la vitesse ?

Effectuer une translation de la vitesse au centre de la trajectoire d’un
mouvement circulaire uniforme a-t-il un sens physique ? En fait, oui : cela
revient a reconstituer le mouvement la ot on 'observe. C’est par exemple
ce que réalise (partiellement) un dresseur de chevaux lorqu’il fait travailler
un cheval & la longe autour de lui. Et il est relativement fréquent en astro-
nomie, d’observer du centre de la trajectoire un point animé d’un mouve-
ment assimilé & un mouvement circulaire uniforme, certaines planetes ou
une étoile proche par exemple. En fait, on reconstitue ainsi a ’endroit ou
on réalise les observations, une portion du mouvement rectiligne uniforme
idéal de 'objet observé, en effectuant une translation vers le centre de la
trajectoire de cette portion de mouvement rectiligne. Dans le cas du dres-
seur de chevaux, la longe figure bien le rayon (mobile) le long duquel la
translation peut s’imaginer.

On obtient ainsi une grandeur vectorielle ov (t) physiquement équivalente
a la vitesse du point mobile M (¢),

(t) = OV (t).
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Or, — et c’est 1a une observation majeure! — comme le point mobile tourne,
le vecteur OV (t) tourne donc lui aussi ! On appelle hodographe” I’ensemble
des extrémités V(t) des vitesses, aprés translation au centre de la trajec-
toire.

La caractérisation géométrique du vecteur vitesse implique immédiatement
que ’hodographe d’'un mouvement circulaire uniforme est un cercle.

\
\
\

Fig. 52 : Le mouvement de la vitesse, rapporté au centre de la trajectoire.

Plus précisément, si le point mobile M () est animé d’un mouvement cir-
culaire uniforme de rayon R et de vitesse angulaire w, le point (imaginaire,
et néanmoins) mobile V' (¢) sera lui aussi animé d’un mouvement circulaire
uniforme

e de rayon Ruw,
e de la méme vitesse angulaire w,

e mais en avance (ou déphasé, comme disent les physiciens) de 7 ra-

dians sur le mouvement du point M (t),

puisqu’on sait que le vecteur vitesse @’ (t) est perpendiculaire au vecteur

OM (t), et d’intensité égale & Ruw.

L’accélération d’un mouvement circulaire uniforme

Ce qui a si parfaitement fonctionné une premiere fois suggere bien vite
qu’on le répete, méme si l'idée peut paraitre bizarre : puisque la vitesse
d’un mouvement circulaire uniforme peut étre considérée comme étant
elle-méme soumise & un mouvement circulaire uniforme, quelle en est. .. la
vitesse 7

Bien sur, il n’est pas tres facile d’imaginer ce que représente physique-
ment cette vitesse-1a, surtout lorsqu’on se situe au centre de la trajectoire

30 Sous cette forme, la notion semble due & W. R. Hamilton (1805-1865). L’hodographe
correspond, en géométrie, a ce qu’on appelle parfois I’application de Gauss.
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du mouvement circulaire... Par contre, son interprétation dynamique (a
un facteur pres, en terme de force centripete) est assez immédiate mais
échappe encore une fois au contexte cinématique privilégié ici.

En tout cas, si cette « vitesse de la vitesse » semble a premiere vue in-
congrue, c’est qu’il faut peut-étre d’abord revenir un peu sur la notion
d’accélération moyenne, comme mesure de la variation de la vitesse par
unité de temps ou mieux encore, sur la notion d’accélération instantanée,
qu’on peut effectivement définir comme la vitesse instantanée de la vitesse
instantanée. Un retour sur la signification de la constante g dans le mou-
vement de la goutte d’eau étudié plus haut, peut aussi illustrer ce point de
vue.

Ceci rappelé, I'accélération d’un mouvement circulaire uniforme peut donc
bien se définir comme la vitesse (appliquée au point mobile) de la vitesse du
mouvement. En vertu de tout ce qui précede, c’est une (nouvelle) grandeur
vectorielle, caractérisée par :

e son point d’application, c’est-a-dire le point mobile M (t);

e sa direction, qui est celle du rayon OM (t), puisqu’elle doit étre per-
pendiculaire & la direction de la vitesse @’(t), qui est elle-méme per-
pendiculaire a ce rayon;

e son sens, opposé a celui de OM (t), puisque I’angle correspondant est
déphasé deux fois de 7§ ;

e son intensité, encore obtenue comme produit du rayon de la trajec-
toire, ici égal & Rw par la vitesse angulaire w, et qui vaut donc Rw?.

Un exemple rassurant

Pour ne donner qu’un exemple de calcul de cette accélération, considérons
le mouvement de la terre autour de son axe de rotation (pole nord — pole
sud), pour une ville située & 50° de latitude nord, le centre de la terre étant
supposé fixe. La vitesse angulaire de rotation vaut

2

= = ...1 =5 .
W= 5 3600 7,2722 077 (rad/s)

Comme le rayon moyen de la terre égale R = 6378 (km), le rayon de I’orbite
circulaire de la ville en question s’obtient par : r = Rsin50° = 4885,83. ..
(km). On calcule ensuite

v =rw=2355,307... (m/s) =1279,1... (km/h),

a=rw?=0,0258... (m/s%).

A titre de comparaison, on vérifie facilement que cette accélération, due a
la rotation de la terre sur elle-méme, est négligeable par rapport a 1’accé-
lération de la pesanteur
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Vers une autre histoire. .. ?

Ce dernier résultat permet de donner une explication géométrique — termes
d’une généralisation de ce transport paralléle mis en évidence dans le pro-
bleme du nageur — du résultat de la célebre expérience de L. Foucault sous
le dome du Panthéon en 1851. Ce n’est pas ’endroit ici de détailler cette
explication, aussi belle soit-elle, mais on peut savoir qu’elle est due au ma-
thématicien autrichien J. Radon, dont I'article original est reproduit dans
F. Klein, Vorlesungen tiber Hohere Geometrie, J. Springer Verlag, Berlin,
1926.

Mais tout cela, c’est déja une autre histoire. . .
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Fiche 47 : Lezique
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Fiche 48 : Les problémes 25 et 27 du papyrus Rhind

Probléme 25
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472 Fiche 49 : Extrait du texte attribué a Abraham ibn Ezra (en latin)

Liber augmenti et diminutionis vocatus numeratio divinationis, ex eo quod sapientes
Indi posuerunt, quem Abraham compilavit et secundum librum qui Indorum dictus
est composuit.

Hic post laudem Dei inquit. Compilavi hunc librum secundum quod sapientes Indorum adinve-
nerunt de numeratione divinationis, utilem in ipso consideranti et studenti, et perseveranti in
eo, et intelligenti ejus intentionem. Ex eo igitur est : est census de quo ejus tertia dempta, et
quarta, fuit octo quod remansit. Quantus est census ¢ Capitulum numerationis ejus est ut ex
duodecim assumas lancem ; et tertia et quarta ex eo consurgunt, et demas ejus tertia et quarta,
que sunt septem, et remanebit quinque. Per ipsum igitur oppone octo, residuum scilicet census et
apparebit te jam errasse per tria diminuta : serva ea, deinde assume lancem secundam a prima
divisam, que sit ex viginti quattuor, et deme ejus tertiam et quartam que sunt quattuordecim,
et remanebit decem. Oppone ergo per eum octo residuum scilicet census. Apparet itaque te jam
errasse per duo addita. Multiplica igitur errorem lancis postreme qui est duo in lancem primam,
que est duodecim, et perveniet 24. Et multiplica errorem lancis prime, qui est tria, in lancem
postremam, que est 24, et erit 72. Aggrega ergo 24 et 72, eo quod unus error est diminutus et
alter additus. Si enim utrique essent diminuti aut additi demeres minus ex magjore. Postquam
ergo aggregasti viginti quattuor et septuaginta duo, fuerit quod aggregatum est nonaginta ser,
deinde aggrega duos errores qui sunt tria et duo, et perveniet quinque; deinde igitur nonaginta
sex per quinque qui est ille ex quo pervenit, et perveniet tibi decem et novem dragme et quinta
dragme.

Hec propterea regula est ut ponas duodecim rem ignotam et demas ejus tertiam et quartam, et
remanebit quingue donec redeat duodecim ? Ipse enim est res ignota. Illud autem est duo et due
quinte : multiplica igitur duo et duas quintas in octo et erit decem et novem et quinta.
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Livre sur ’agrandissement et la diminution nommé le calcul de la conjecture d’apres
ce que les sages de 1’Inde ont établi et qu’Abraham a rassemblé et composé selon le
livre appelé indien.

Apres la louange a Dieu, voici ce qu'il est dit. J’ai écrit ce livre selon ce que les sages de I'Inde
ont découvert a propos du calcul de la conjecture, en examinant attentivement et en étudiant ce
qui est utile en soi, en persévérant dans cette direction et en en saisissant I’application pratique.
De cela donc, voici ce qu’il vient : soit un census®! duquel on dte un tiers et un quart et il reste
huit. Que vaut le census? Pour aborder son calcul, suppose un plateau de balance de douze
dont on considere un tiers et un quart; tu otes ce tiers et ce quart qui font sept, il restera cing.
Compare alors a huit, a savoir le reste du census et il t’apparaitra clairement que tu as fait une
erreur de trois en déficit : mets cela de coté et suppose ensuite que tu places sur le plateau de
la balance une seconde quantité, qui est divisée parremiere, que ce soit vingt-quatre, et 6te le
tiers et le quart qui font quatorze, il restera dix. Compare alors cela a huit, a savoir le reste du
census. Et c’est ainsi qu’il t’apparaitra clairement que tu as commis une erreur de deux en plus.
Multiplie donc l'erreur du dernier plateau de la balance qui vaut deux par le premier plateau
qui vaut douze et il viendra 24. Et multiplie ’erreur du premier plateau, erreur qui vaut trois,
par le dernier plateau, qui vaut 24, et on obtiendra 72. Additionne donc 24 et 72, et cela car
I'une des erreurs est par défaut et 'autre par exces. Mais si les deux étaient par défaut ou par
exces, tu soustrairais la plus petite de la plus grande. Donc apres avoir ajouté vingt-quatre et
septante-deux, le résultat sera nonante-six; ensuite ajoute les deux erreurs qui valent trois et
deux, il viendra cinq; ensuite donc nonante-six par cing qui est ce & quoi on est arrivé, il te
viendra dix-neuf drachmes et un cinquieme de drachme.

Par cette regle, il s’ensuit que tu poses douze pour la chose inconnue et tu otes son tiers et son
quart et il restera cing; comment récupérer douze ? La chose effectivement inconnue. Il faut en
fait deux et deux cinquiemes : multiplie donc deux et deux cinquiemes par huit et il viendra
dix-neuf et un cinquieme.

31 Terme désignant le carré de 'inconnue recherchée.
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De homine qui emit aves triginta trium generum pro denariis 30

Quidam emit aves 30 pro denariis 30. In quibus fuerunt perdices, columbe et passeres. Perdices
vero emit denariis 3 ; columba denariis 2 et passeres 2 pro denario 1, scilicet passer 1 pro denariis
%. Queritur quot aves emit de unoquoque genere. Divide denarios 30 per aves 30 exibit denarius
1. Dic ergo habeo monetam ad %, et ad 2, et ad 3; et volo facere monetam ad 1. In similibus
enim questionibus procedendum est per modum consolationum, ut habeamus integros numeros
avium. Quare ut species viliorum avium equetur spetiebus cariorum multitudinem dicas : habeo
monetam ad %, et ad 2 et ad 3 et volo facere monetam ad 1, hoc est. Habeo monetam ad 1 et ad
4 et ad 6 et volo facere monetam ad 2. Fac ex passeribus et perdicibus primam consolationem ;
et erunt aves 5 pro denariis 5 scilicet passeres j et perdiz 1; et de passeribus cum columbis fac
secundam ; et habebis 3 aves pro denariis 3, scilicet passeres 2 et columbam 1. Deinde ut habeas
aves 30 consolatas mittes primam consolationem ter in quibus erunt passeres 12 et perdices 3. Et
remanebunt aves 15 consolate. Pro quibus mittes secundam consolationem quinquies et habebis
passeres 10 et columbas 5. Et sic in predictis avibus 30 erunt passeres 22 et columbe 5 et perdices
3 ut in questione ostenditur. Et scias quia de suprascriptis potes habere aves sanas quantas
voluerit pro totidem denariis ultra 15 sed infra 15 non possunt haberi aves nisi 13 et 11 et 8.
Nam in avibus 13 cadit prima consolatio bis et secunda semel. Et in avibus 11 cadit secunda
consolatio bis et prima semel. Et in avibus 8 cadit unaqueque consolatio semel.
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De I’homme qui a acheté trente oiseaux de trois especes pour 30 deniers.

Quelqu’un a acheté 30 oiseaux pour 30 deniers, parmi lesquels il y a des perdrix, des colombes et
des moineaux. En fait, il a acheté les perdrix pour 3 deniers, les colombes pour 2 et 2 moineaux
pour 1 denier, a savoir 1 moineau pour % denier. On demande combien d’oiseaux de chaque
espece il a achetés. Divise 30 deniers par 30 oiseaux, il viendra 1 denier. Je dis donc que j’ai
de ’argent-monnaie a % et a 2 et a 3; et je veux faire de 'argent-monnaie a 1. En effet, dans
de semblables questions, nous devons procéder par la méthode des compensations, puisque nous
avons un nombre entier d’oiseaux. C’est pourquoi, pour que 'espéce des oiseaux les moins chers
soit compensée en nombre par les especes plus cheres, tu dois dire : j'ai de 'argent-monnaie a %
et a 2 et a 3 et je veux faire de 'argent-monnaie a 1, c’est-a-dire j’ai de 'argent-monnaie a 1 et
a4 et a6 etje veux faire de 'argent-monnaie a 2. Fais des moineaux et perdrix une premiere
compensation et il y aura 5 oiseaux pour 5 deniers, a savoir 4 moineaux et 1 perdrix; et, des
moineaux avec les colombes, fais-en une seconde; et tu auras 3 oiseaux pour 3 deniers, a savoir
2 moineaux et 1 colombe. Ensuite, pour avoir 30 oiseaux compensés, tu prendras trois fois la
premiere compensation dans laquelle il y aura 12 moineaux et 3 perdrix. Et il restera 15 oiseaux
compensés, pour lesquels tu prendras cing fois la seconde compensation et tu auras 10 moineaux
et 5 colombes. Et ainsi, en ce qui concerne les 30 oiseaux dont il a été question auparavant, il y
aura 22 moineaux et 5 colombes et 3 perdrix, comme il est montré en marge. Et tu dois savoir
que, de ce qui est suscrit, tu peux avoir autant d’oiseaux qu’on voudra pour la méme quantité
de deniers au-dela de 15, mais en dega, ce n’est pas possible, si ce n’est pour 13 et 11 et 8. En
vérité, dans le cas des 13 oiseaux, la premiere compensation appraitra deux fois et la seconde,
une fois. Et pour 11 oiseaux, la seconde compensation apparaitra deux fois et la premiere, une

fois. Et pour 8 oiseaux, chacune des compensations apparaitra une fois.
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482 Fiche 59 : Trois points sur un réseau triangulaire
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484 Fiche 61 : Multiplication d’un déplacement par un scalaire
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Construire la section du cube de la figure ci-dessous par le plan PQR, ou P est situé sur I’aréte
[AB] au tiers a partir de A, @ est situé au milieu de l'aréte [BC], et R est situé au milieu
de l'aréte [C'C']. On demande ensuite de déterminer les coordonnées de tous les sommets de
cette section, apres avoir choisi un repere approprié.
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490 Fiche 67 : Point de percée d’une droite dans une face d’un tétraédre

On considere le tétraedre ABC'D, R le point situé sur 'aréte [AD] au tiers a partir de D et E
le point du plan ABC tel que BACE forme un parallélogramme. On demande de déterminer
le point de percée P de la droite RE dans la face BC'D, de situer ce point avec précision sur
la droite RE et dans la face BC'D en utilisant un repere approprié.
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<II.12> In his triangulis qui obtusum habent angulum tanto ea que obtusum subtendit angulum
ambobus lateribus amplius potest que obtusum continent angulum, quantum est quod tenetur
bis sub uno eorum atque ea que sibi directe iuncta ad obtusum angulum a perpendiculari extra

deprehenditur.

D A C

Ex IIII? secundi atque penultima I' huius argumentum elicies.

<II.13> Omnis oxigonii tanto ea que acutum respicit angulum ambobus lateribus angulum
acutum continentibus minus potest, quantum est quod bis continetur sub uno eorum cui per-
pendicularis intra superstat eaque sui parte que perpendiculari anguloque acuto interiacet.

A

B D C

Ex VII? secundi atque penultima I' argumentare ducta perpendiculari ab angulo supremo ad

basim.



492 Fiche 69 : Proposition 12 des Eléments d’EUCLIDE, traduction de VITRAC

Euclide - Les Eléments - Livre II, proposition 12.
12

Dans les triangles obtusangles, le carré sur le coté sous-tendant l’angle obtus est plus grand que
les carrés sur les cotés contenant 'angle obtus de deux fois le rectangle contenu par celui des
cotés de l'angle obtus sur lequel tombe la perpendiculaire et par la droite découpée a l’extérieur
par la perpendiculaire au-dela de [’angle obtus.

B

D A C

Soit le triangle obtusangle ABC ayant ’angle sous BAC' obtus, et, qu’a partir du point B soit
menée BD, perpendiculaire sur C'A, prolongée. Je dis que le carré sur BC est plus grand que
les carrés sur BA, AC de deux fois le rectangle contenu par C'A, AD.

En effet, puisque la droite C'D a été coupée au hasard au point A, le carré sur DC' est donc
égal aux carrés sur CA, AD et deux fois le rectangle contenu par C A, AD (II. 4). Que celui sur
DB soit ajouté de part et d’autre. Les carrés sur C'D, DB sont donc égaux aux carrés sur C'A,
AD, DB, et a deux fois le rectangle contenu par C A, AD. Mais d’une part ceui sur C'B est égal
a ceux sur CD, DB en effet 'angle en D est droit (I. 47). Et d’autre part celui sur AB est
égal a ceux sur AD, DB. Donc le carré sur C'B est égal aux carrés sur CA, AB et deux fois le
rectangle contenu par CA, AD. De sorte que le carré sur C'B est plus grand que les carrés sur
CA, AB de deux fois le rectangle contenu par C'A, AD.

Donc dans les triangles obtusangles, le carré sur le coté sous-tendant I’angle obtus est plus grand
que les carrés sur les cotés contenant I’angle obtus de deux fois le rectangle contenu par celui des
coOtés de I'angle obtus sur lequel tombe la perpendiculaire et par la droite découpée a l'extérieur
par la perpendiculaire au-dela de I’angle obtus. Ce qu’il fallait démontrer.
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Euclide - Les Eléments - Livre II, proposition 13.
13

Dans les triangles acutangles, le carré sur le coté sous-tendant ’angle aigu est plus petit que les
carrés sur les cotés contenant l’angle aigu de deux fois le rectangle contenu par celui des cotés

de l'angle aigu sur lequel tombe la perpendiculaire et par la droite découpée a l'intérieur par la
perpendiculaire en-deca de l’angle aigu.
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Fiche 76 : Un mouvement circulaire non uniforme







ANNEXE IV

CE QU’IL FAUT SAVOIR DU POSTSCRIPT

1 Calculer

1.1 L’ordre des opérations

L’ordre dans lequel on écrit les opérations n’est pas le méme en PostScript
que dans I’écriture mathématique courante. Ceci peut paraitre un inconvé-
nient dans la mesure ol il est nécessaire de modifier des habitudes ancrées
depuis ’école primaire. Mais cet inconvénient peut, en fait, étre vu comme
un avantage. De la méme maniere que pratiquer une langue étrangere aide
a relativiser sa propre culture, pratiquer une autre formalisation du lan-
gage mathématique de base permet de relativiser la formalisation usuelle
et de faire I'expérience de ’aspect purement conventionnel de ce type de
notation.

Le PostScript, de méme que d’autres langages informatiques, travaille avec
ce qu’on appelle une pile. Il s’agit par exemple d’une pile de papiers (et
non d’une pile électrique). On ne dépose des papiers qu’au-dessus de la
pile. On ne prend en général — il y a des exceptions dans la réalité et aussi
dans le PostScript — que ce qui est au-dessus. Lorsque l'on veut faire le
calcul
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en PostScript, on place 3 dans la pile, on place 4 et on additionne les deux
derniers éléments de la pile
3 4 add

Lors de cette opération, le 3 et le 4 sont supprimés de la pile, et le résultat
du calcul est placé dans la pile. Ce principe reste le méme pour toutes les
opérations. On place le nombre d’arguments nécessaires dans la pile. On
écrit 'opération a faire. Les arguments sont effacés et le résultat est placé
dans la pile.

Voici quelques exemples de calcul
(a) 3+4+5:3 4 add 5 addou 3 4 5 add add
La premiere maniere correspond a (3+4)+5, la deuxieme a 3+ (4+5).
(b) 6(5—9):6 59 sub mul
(c) =% :5 6 add 8 div neg

—3 9 8 sub 5 3 sub div

—
ISH
S—
cn’@

X %
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add

sub

neg

mul

div

Ce qu’il faut savoir du PostScript

Chaque opérateur PostScript possede un nombre fixe d’arguments. L’opé-
rateur en avale autant qu’il en a besoin. Ces arguments sont donc retirés
de la pile I'un apres 'autre, toujours en commencant par le dernier.

1.2 Les opérateurs arithmétiques

Voici les principaux opérateurs arithmétiques®?.

Additionne les deux éléments supérieurs de la pile en les avalant et place
le résultat au sommet de la pile.

FEtat de la pile avant | Etat de la pile aprés

1] 2] 3 il

Effectue la soustraction des deux éléments supérieurs de la pile en les
avalant et place le résultat au sommet de la pile.

Etat de la pile avant

2]

Etat de la pile aprés

1]

Change le signe de 1’élément supérieur de la pile.

FEtat de la pile avant

1] 2] 3

FEtat de la pile aprés

=

Multiplie les deux éléments supérieurs de la pile en les avalant et place le
résultat au sommet de la pile.

Etat de la pile avant

2]

Etat de la pile aprés

:

Effectue la division des deux éléments supérieurs de la pile en les avalant
et place le résultat au sommet de la pile.

Etat de la pile avant

T 2]

Etat de la pile aprés
1] 0.66...

1.3 Gestion de la pile

Certains opérateurs sont destinés a la gestion de la pile. Il y a, par exemple,
lopérateur exch qui échange les deux derniers éléments de la pile et 'opé-
rateur dup qui duplique le dernier élément de la pile.

32 Concernant la représentation des piles, voir la note 4 & la page 358.
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exch

dup

newpath

moveto

lineto

closepath

arc

stroke

£ill

Echange les deux derniers éléments de la pile.

Etat de la pile avant | Etat de la pile apreés

2] 3 B

Duplique le dernier élément de la pile.

FEtat de la pile avant | Etat de la pile apreés

2[5 | [i[ 2] 3]3

2 Opérateurs pour le dessin

2.1 Définir des chemins

Un dessin est délimité par un chemin, en anglais path. Un chemin est
constitué d’un point de départ et d’une suite de lignes, droites ou courbes.
Une fois le chemin décrit, on peut le tracer (stroke) ou le remplir (£i11).
L’endroit du chemin ou 'on est arrivé est appelé point courant.

Définit un nouveau chemin. Apres cet opérateur, le point courant n’est
plus défini.

Détermine le point de départ d’'un chemin. Il prend deux arguments dans
la pile : ce sont les coordonnées du point ou commence le chemin.

Ajoute un segment de droite au chemin. Le point de départ est le point
courant. Il prend deux arguments dans la pile : ce sont les coordonnées de
Iextrémité de ce segment.

Termine le chemin en ajoutant un segment entre le point courant et le
point de départ du chemin. Il ne prend pas d’arguments dans la pile.

Ajoute au chemin courant un arc de cercle. Il prend cinq arguments dans
la pile : les deux coordonnées du centre, le rayon, I’angle de départ (par
rapport a I’horizontale) et I’angle de fin.

2.2 Dessiner

Trace un chemin dans la couleur courante. Il ne prend pas d’arguments
dans la pile. Par défaut, la couleur est noire.

Remplit un chemin avec la couleur courante. Il ne prend pas d’arguments
dans la pile. Par défaut, la couleur est noire.
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setgray

translate

rotate

scale

Ce qu’il faut savoir du PostScript

Définit un niveau de gris comme couleur courante a utiliser pour le tracé
des chemins ou leur remplissage. Il prend un argument numérique dans la
pile. Le noir est donné par le niveau 0, le blanc par 1, et les niveaux de gris
intermédiaires par une valeur entre 0 et 1. On peut considérer le niveau de
gris comme le rapport entre le nombre de pixels blancs et le nombre total
de pixels d’une surface. Par défaut, le niveau de gris est mis a 0.

2.3 Modifier le systeme d’axes

Au départ, I'origine du systeme de coordonnées est toujours le coin inférieur
gauche de la feuille et les deux axes sont les bords de la feuille. L’unité sur
les deux axes vaut 7—12 pouce. Tout cela peut étre modifié. Les modifications
successives s’enchainent les unes aux autres.

Déplace I'origine du systeme de coordonnées. Il prend deux arguments dans
la pile : le déplacement horizontal et le déplacement vertical.

Fait tourner les axes. Il prend un argument dans la pile : I’angle de rota-
tion en degrés. Lorsque 'angle est positif, le sens de rotation est le sens
trigonométrique.

Met a I’échelle les unités sur chacun des axes du systeme de coordonnées.
Il prend deux arguments dans la pile : les facteurs d’échelle sur chacun des
deux axes (ces facteurs peuvent étre différents).

3 Définir des variables et de nouveaux opérateurs

3.1 Définir des variables

Le contenu de chaque niveau de la pile peut non seulement étre une valeur
numérique mais aussi un nom, ce qui permet de définir des variables.

Pour mettre un nom dans la pile il faut écrire le nom précédé de /. Par
exemple, /Nom met Nom au dessus de la pile. Par contre, lorsque 1’on écrit
simplement Nom, c’est exactement la méme chose que d’écrire le contenu
de Nom.

Si 'on souhaite attribuer la valeur 3 a la variable a, il faut introduire :
/a 3 def.

Regardons les différentes étapes :

Etats successifs de la pile

L

/a E
s | EIE
L

def
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Apres cela, c’est la variable a qui contient la valeur 3, et écrire a, c’est
écrire 3, c’est-a-dire mettre 3 dans la pile :

Etat de la pile avant | Etat de la pile apreés

L EN

On peut bien str définir une variable comme résultat d’un calcul :
/b a dup mul def

met le carré de a dans b. Regardons cela en détail :

Etats successifs de la pile
L

/b (b

- | e

-

mul \IIZ

def [

Il est tres utile de pouvoir mettre dans une variable une valeur qui est déja
dans la pile. On peut le faire en utilisant I'opérateur exch qui permet de
mettre les arguments dans le bon ordre pour 'utilisation de I'opérateur
def. Par exemple :

a dup mul /b exch def :

Etats successifs de la pile
L

. | =

dup 3

mul E

| [a]n

exch \I'Z

def \:

3.2 Définir de nouveaux opérateurs

Lorsque 'on écrit une suite d’instructions (nombres, opérateurs ou noms
de variables) entre des accolades, ce n’est pas le résultat de cette suite
d’instructions qui est placé dans la pile, mais bien la suite d’instructions
elle-méme. De cette maniere il est possible de définir de nouveaux opéra-
teurs. Il suffit de mémoriser une telle suite d’opérations dans un nom de
variable. Lorsque 'on introduira par la suite le nom de cette variable, ce
sera exactement comme si l'on écrivait cette suite d’instructions, qui sera
donc exécutée a ce moment.

Voici par exemple une fonction permettant de définir le carré d’un nombre :
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length

get

array

astore

Ce qu’il faut savoir du PostScript

/carre {dup mul} def.

Le détail donne :

Etats successifs de la pile

L

/carre carre

{dup mul} ’ carre | {dup mul}

def \:

Lorsque par la suite on introduit par exemple

5 carre,

cela revient a introduire

5 dup mul.

4 Les listes

Voici quelques opérateurs qui sont utilisés soit directement, soit dans les

macros permettant de travailler avec des vecteurs.

Donne le nombre d’éléments d’une liste.

Met dans la pile un élément d’une liste (array). Il prend deux arguments
dans la pile : une liste et un indice. Le premier indice est donné par 0.

Crée une liste vide. Cet opérateur prend un argument : la longueur de la

liste a créer.

Etat de la pile avant

[1 2 3 4]

Etat de la pile aprés

(4

FEtat de la pile avant
(12341 2

Etat de la pile aprés

(3

FEtat de la pile avant

(2

FEtat de la pile aprés

[C1

Place des éléments de la pile dans une liste.

Par exemple,

4 321 4 array astore:
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FEtats successifs de la pile

-6 | 8

43214 (| 6]8[4]3[2]1]4

array |6[8[4]3]2]1][ -]
astore ’—6’8’ [4 3 2 1]
aload Place les éléments d’une liste dans la pile et recopie la liste dans la pile.

Par exemple,

[1 2 3] aload:

Etats successifs de la pile
(-5
[123]|[-5][123]

aload |[[-5[1[2[3][123]

5 Opérateurs de controle

repeat Permet de répéter un certain nombre de fois des instructions. Elle demande
deux arguments. Le premier est un nombre entier; ¢’est le nombre de fois
qu’il faut exécuter les instructions. Le deuxieme est la suite des instructions
a répéter. Ils doivent étre mis entre accolades :

n{ ... } repeat

forall Permet d’appliquer une suite d’instructions a tous les éléments d’une liste.
. .. .1{...7 forall






ANNEXE V

MACROS POSTSCRIPT POUR LES VECTEURS

/Add {/@a2 exch def dup /@al exch def
length /@1 exch def /@i O def
@1 {0al @i get Qa2 Q@i get add /@i @i 1 add def} repeat
@1 array astore} def

/Sub {/@a2 exch def dup /@al exch def
length /@1 exch def /@i O def
@1 {@al @i get @a2 @i get sub /@i @i 1 add def} repeat
@1 array astore} def

/Mul {/Qa exch def
dup length /@1 exch def
{0a mul} forall
@1 array astore} def

/Div {/@a exch def
dup length /@1 exch def
{0a div} forall
@1 array astore} def

/Neg {-1 exch Mul} def

/el [1 0] def
/e2 [30 cos 30 sin] 0.5 Mul def
/e3 [0 1] def

/Perspective {/Qv exch def
el @v 0 get Mul
e2 @v 1 get Mul Add
e3 @v 2 get Mul Add} def

/Coordonnees {dup length 3 eq {Perspective} if aload pop} def
/Moveto {Coordonnees moveto} def
/RMoveto {Coordonnees rmovetol} def

/Lineto {Coordonnees lineto} def
/RLineto {Coordonnees rlineto} def
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/RayonPoint 5 def

/Point {gsave
newpath
Coordonnees RayonPoint 0 360 arc fill
grestore} def



ANNEXE VI

POINT DE PERCEE D’UNE DROITE DANS UN PLAN

La macro PPDP (Point de Percée d'une Droite dans un Plan) est donnée ici
sans commentaires. Ceux-ci seront ajoutés dans une version ultérieure.

/PPDP {/E@ppdp exch def /D@ppdp exch def /C@ppdp exch def

/Beppdp exch def /A@ppdp exch def

/AB@ppdp B@ppdp A@ppdp Sub def

/AC@ppdp C@ppdp ACppdp Sub def

/fX {ACppdp Sub /AX@ppdp exch def
AXQ@ppdp O get ABQppdp ACQ@ppdp detyz mul
AXQppdp 1 get ABQppdp ACQ@ppdp detzx mul add
AXQ@ppdp 2 get ABQ@ppdp ACQ@ppdp detxy mul add
} def

/£D@ppdp D@ppdp fX def

/fE@ppdp E@ppdp fX def

D@ppdp fEQ@ppdp Mul E@ppdp fD@ppdp Mul Sub

fE@ppdp fD@ppdp sub Div

} def
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LA NAISSANCE DES VECTEURS :
UN SURVOL HISTORIQUE

Il n’est pas toujours facile d’avoir acces aux textes originaux qui témoignent de ’émergence d’un
concept mathématique. Plutot que d’écrire une introduction historique, nous avons préféré laisser la
parole a quelques auteurs qui ont collaboré aux débuts du calcul vectoriel : Caspar WESSEL, Jean-
Robert ARGAND, Giusto BELLAVITIS, Peter-Guthrie TAIT et Charles-Ange LAISANT. Le lecteur
dispose ainsi d’un début d’anthologie sur le sujet. Le choix des textes met en évidence la préoccu-
pation majeure de chaque auteur a son époque : décrire simplement un déplacement c’est-a-dire
une grandeur d’une autre espece qu'un nombre réel, en fait quelque chose qui possede a la fois une
direction, un sens et une longueur. ARGAND les appelle lignes en direction ou lignes dirigées, TAIT
les nomme vecteurs et BELLAVITIS les désigne par le terme droites.

Ce recueil de textes éclaire de maniére significative les options qui ont dicté notre démarche dans les
activités de mise en place du calcul vectoriel. La corrélation tres étroite qui, des le départ, allie les
concepts de nombre complexe et de vecteur, nous a incité a montrer, dans ’esprit de BELLAVITIS,
comment faire facilement et simplement de la géométrie avec les nombres complexes.

En effet, lorsque 'on tente de remonter aux origines des vecteurs, on se heurte inévitablement
au souci qu’avaient les mathématiciens de I’époque de donner un sens aux quantités imaginaires.
Cela débouche sur la représentation géométrique des complexes et sur leur généralisation a quatre
dimensions, les quaternions.

Peter Guthrie TAIT (1831-1901) fut, durant quarante ans, professeur de philosophie naturelle &
luniversité d’Edimbourg. 11 était I'ami de William THOMSON (Lord KELVIN) et de William Ha-
MILTON, inventeur des quaternions. TAIT lui-méme a écrit un Traité élémentaire des quaternions
qui parut en 1867. Dans sa préface, il témoigne :

Sir W. Hamilton, peu de jours avant sa mort, m’engagea vivement a hater la rédaction de mon
travail et a le publier dans le plus bref délai.

Le sien était a la veille de paraitre. ..

L’intérét de cet ouvrage réside dans le fait qu’en plus de 'exposé de la théorie, il retrace brievement
I’historique du concept de vecteur.

Ainsi, au chapitre premier — Des vecteurs et de leur composition — nous trouvons :

515
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1. Durant plus d’un siecle et demi, la représentation géométrique des quantités algebrlques soit
négatives, soit imaginaires, —1 et /—1 (ou, selon la maniere d’écrire, — et —3 , préférée par
d’autres), a formé un sujet favori de spéculation parmi les mathématiciens. L’ essentlel de tous
les procédés proposés consiste dans I’emploi des symboles ci-dessus pour désigner la direction et
non la longueur d’une ligne droite.

2. A ce sujet, on s’est depuis longtemps mis en possession du principe d’apres lequel, en mesurant
les quantités positives le long d’une droite fixe dans un certain sens de sa direction, on devra
mesurer les quantités négatives dans le sens de direction opposée de la méme droite. Cette
convention, en elle-méme légitime et utile, forme la base de la méthode géométrique de Descartes,
et elle est constamment mise en pratique dans les questions de la Géométrie analytique et dans
les Mathématiques appliquées a la Physique.

3. Wallis, vers la fin du XVII® siecle, proposa de représenter les racines impossibles d’une équation
quadratique en allant au dehors de la droite, sur laquelle on aurait porté les valeurs des racines
si elles avaient été réelles. Sa construction revient & donner au symbole v/—1 la signification de
I'unité de longueur menée perpendiculairement a la droite sur laquelle sont portées les quantités
réelles.

Nous avons reproduit, en annexe aux pages 555 a 558, un extrait du texte de WALLIS [1685] auquel
TAIT fait allusion. TAIT poursuit alors en ces termes :

4. En faisant usage des notations ordinaires de la Géométrie analytique a deux dimensions et en
employant deux axes rectangulaires, nous pourrons définir le principe en question de la maniere
suivante : sur Oy I'unité de longueur sera représentée par v/—1, sur Oy’ par —/—1; par contre,
sur Oz elle le sera par +1 et sur Ox’ par —1.

Si nous disposons ces quatre quantités dans un ordre circulaire, savoir dans I'ordre dans lequel
elles se succéderont lorsqu’on les parcourt a 'aide d’une rotation dans le sens positif (et nous
adopterons pour cela le sens opposé a celui du mouvement des aiguilles d’une montre), nous

aurons la série
+1, v—1, —1, —/—1.

Dans cette série, chacun des termes se déduit du précédent par la multiplication de ce dernier
par le facteur /—1. Nous sommes ainsi en droit de conclure que v/—1 est un opérateur, dont
I’application agit d’une maniere analogue a celle d’'une manivelle qui ferait tourner d’un angle
de 90°, et dans le sens positif, toute ligne droite passant par ’origine et assujettie a se mouvoir
dans le plan des zy.

5. D’apres cette maniere de voir, la position d’un point dans le plan se trouve déterminée par
la donnée d'une seule expression imaginaire. C’est ainsi que a + by/—1 pourra étre considéré
comme la simple représentation d’un point dont les coordonnées sont a et b. Mais on pourra
tout aussi bien se servir de I’expression en question pour la représentation de la droite menée de
lorigine au point dont il s’agit. Sous ce dernier aspect, I’expression a + by/—1 désigne a la fois
et la direction et la longueur de la droite que nous venons de définir ; il est évident, en effet, que
la droite forme avec ’axe des x un angle dont la tangente est g et que la longueur de la droite

est Va2 4 b2.

Cet extrait atteste clairement le lien existant entre les nombres complexes et les vecteurs du plan.
TAIT démontre ensuite que la multiplication de a + bv/—1 par le facteur /—1 produit une rotation
de 90° sans changement de longueur. Plus généralement, la multiplication par le facteur cosa +
v/—1 sina aura pour effet une rotation d’angle o dans le sens positif (la multiplication par /—1
étant le cas particulier correspondant & a = 7). Cette démonstration est fournie en annexe a la
page 559. L’auteur explique ensuite que ce qui précede donne du sens a la formule de MOIVRE

(cosa+ v —1 sina)™ = cosma + v —1 sinma.

En effet, le premier membre représente un opérateur qui produit m rotations successives d’angle «
chacune et le second membre exprime 1’opérateur d’une rotation unique d’un angle ma.
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Il fait remarquer que I’expression qui entre dans la formule de MOIVRE présente une ressemblance
frappante avec la forme N(cos @ + wsin @) sous laquelle on peut mettre tout quaternion (voir ci-
dessous), ott N est un réel, # un angle réel et @ tel que w? = —1. « La différence essentielle réside
dans le fait que @ n’est pas I’équivalent de 1’élément algébrique v/—1, mais qu’il représente 1'unité
de longueur dirigée dans une direction DONNEE quelconque dans l’espace ». TAIT présente alors
diverses tentatives qui ont précédé I'invention des quaternions par HAMILTON :

10. Dans le siecle actuel, Argand', Warren et d’autres ont étendu les résultats auxquels Wallis
et Moivre étaient arrivés. Leurs efforts tendaient vers le but de représenter par une droite le
produit de deux droites dont chacune était donnée par un symbole de la forme a+by/—1. Jusqu’a
un certain point ces tentatives ne furent pas vaines, mais le succes en était obtenu aux dépens
de la simplicité; la formidable rangée de radicaux dans le traité de Warren en fait foi.

11. Une recherche tres remarquable a été publiée par Servois dans les Annales de Gergonne pour
I’année 1813, et, autant qu’on a pu s’en assurer, elle est la seule, pour ce genre de recherches,
dans laquelle on puisse découvrir la trace d’une anticipation de 'idée de quaternion. Servois, en
cherchant & étendre & I'espace ce que Iexpression a + by/—1 représente relativement & un plan,
se trouve conduit par analogie a écrire

pcosa + qcos B+ rcosy

pour représenter une droite dans l'espace et d’une longueur égale a l'unité, «, 3, v étant les
angles que la droite ferait avec les trois axes. Il s’assure facilement que p, ¢, r ne peuvent pas
étre des quantités réelles, et il se demande : « Seraient-elles imaginaires réductibles a la forme
générale A+N+/—17 » C'est & cette question qu’il n’a pas de réponse. Nous verrons (au Chapitre
suivant) que ces symboles ne sont autre chose que les i, j, k du Calcul des quaternions.

TAIT conclut en signalant que seul le traité de HAMILTON conduit a une méthode pratique douée
de simplicité ; toutes les autres méthodes proposées, quelque ingénieuses qu’elles soient, conduisent
constamment a des calculs d’une prolixité rebutante. Il donne alors une idée générale de ce a quoi
HAMILTON a abouti.

L’idée de BELLAVITIS [1854], que l'on retrouve dans LAISANT [1887] (voir le texte en annexe a la
page 562) était de définir un produit de vecteurs dont le résultat soit un vecteur. Cette opération
correspondait a ce que nous identifions aujourd’hui comme le produit de deux nombres complexes,
I'un des complexes jouant le role d’un opérateur qui agit sur I'autre en faisant subir & son point
représentatif une similitude directe.

HAMILTON veut généraliser a ’espace ce produit de vecteurs qui n’est ni un produit scalaire, ni un
produit vectoriel. Il considere deux vecteurs OA et OB et se demande par quel opérateur il faut
multiplier OA pour obtenir OB.

Dans le cas simple ou ces deux vecteurs ont méme direction, il suffit de multiplier OA par un
« facteur numérique » dont le signe dépend du fait que les vecteurs ont le méme sens ou non.

Si les vecteurs ne sont pas paralleles, il essaie d’abord de déterminer « le nombre des éléments
numériques dont doit dépendre » I'opérateur en question.

TAIT poursuit en ces termes :

Nous pouvons concevoir que la transformation de OA en OB s’opére successivement de la
maniere suivante :

D’abord on augmente ou I'on diminue la longueur de O A, jusqu’a ce qu’elle devienne égale & celle
de OB. Un seul nombre suffira pour effectuer cette opération : c’est le quotient des longueurs

! Le lecteur trouvera un extrait du texte de J.-R. ARGAND & la page 521.



518 Chapitre 14. La naissance des vecteurs

des deux vecteurs. Ce nombre, comme Hamilton ’a fait remarquer, sera positif, ou, si 'on veut,
privé de signe.

Ensuite on tourne OA autour de O jusqu’a ce que sa direction soit la méme que celle de OB, et,
concurremment avec la premiere opération, les deux vecteurs se trouvent ainsi en coincidence
parfaite et sont devenus identiques I'un avec I'autre. Pour exprimer cette seconde opération, il
faudra connaitre trois éléments numériques, qui sont les deur angles déterminant le plan dans
lequel s’effectue la rotation de OA (dans le cas d’une planéte, ce seraient la longitude du nceud
et l'inclinaison), et 'angle déterminant la valeur méme de la rotation.

On voit ainsi que le rapport de deux vecteurs, c’est-a-dire le multiplicateur nécessaire pour
opérer le changement de I'un des vecteurs dans 'autre, dépend en général de quatre nombres
distincts : c¢’est de la que vient le nom de quaternions donné a ce multiplicateur.

HAMILTON se heurte ainsi a deux difficultés lors de la généralisation a l’espace.

Dans le plan, a deuxr dimensions, le multiplicateur était déterminé par deux éléments numériques
(en fait un nombre complexe) ; tandis que dans 1’espace, a trois dimensions, il en faut quatre.

L’opérateur est ainsi un quaternion, qu’on représente d’ordinaire au moyen des unités imaginaires
indépendantes 1, j, k sous la forme

gq=a+bi+cj+dk, a,b,c,deR
avec i2 = j2 = k? = ijk = —1.

La deuxieme difficulté qu’il devra surmonter est que, si le produit de deux complexes est commutatif,
le produit de deux quaternions ne peut 1’étre. Ceci n’est guere étonnant si I’on reste bien conscient
que nombres complexes et quaternions sont les opérateurs d’une similitude directe. Or, dans le
plan, la composition de rotations de méme centre est commutative ; tandis que dans l’espace, la
composition de rotations d’axes concourants ne I’est pas de maniere générale.

Dans l'extrait qui suit, TAIT décrit les vecteurs de l’espace et la base de ce que nous appelons
aujourd’hui le calcul vectoriel. Les passages intercalés dans le texte et mis entre accolades sont
ajoutés par le traducteur.

Entamons donc le sujet en posant quelques notions géométriques tres simples.

15. Considérons deux points A et B dans l’espace, et, supposant que A soit donné, demandons-
nous quel est le nombre de données nécessaires pour fixer la position de B relativement a celle
de A. Il faudra donc trois données numériques.

Si nous faisons emploi de coordonnées polaires, et qu’il s’agisse par exemple de définir la position
de la Lune relativement a celle de la Terre, nous devrons connaitre soit la longitude et la latitude
géocentriques du satellite, soit son ascension droite et sa déclinaison, et, de plus, nous devrons
connaitre la distance ou rayon vecteur de cet astre. Les données seront donc encore au nombre
de trois.

16. Remarquons de suite qu’aucune mention n’a été faite des coordonnées elles-mémes soit de
A et B, ni de celles de la Terre et de la Lune; il ne s’est agi que des coordonnées relatives.

En conséquence, une expression telle que AB, en tant qu’elle représente une droite ayant une
certaine longueur et une certaine direction, est implicitement dépendante de trois nombres ; toute
autre droite parallele a AB et dirigée dans le méme sens, dépendra des mémes trois nombres en
question.

Nous pouvons donc établir en principe que toutes les droites égales et paralléles {et dirigées dans
le méme sens} sont susceptibles d’étre représentées par un méme symbole, et ce symbole dépendra
de trois éléments numériques. C’est sous ce rapport qu’une droite sera appelée un VECTEUR :
a l'aide d’un vecteur nous voyageons, pour ainsi dire, a partir de 1'origine A du vecteur pour



arriver a son extrémité B, ou, si I'on veut, ce vecteur sera un véhicule qui transporte un certain
point mobile & partir de A jusqu’en B {mais représentant d’ailleurs la ligne droite qui relie ces
deux points}. On pourra donc se servir d’un vecteur pour représenter un déplacement défini et
dans ’espace.

17. Nous ferons ici, une fois pour toutes, la remarque suivante, qu’en établissant les principes d’un
nouveau Calcul nous sommes parfaitement libres d’introduire telle définition de nos symboles
qu’il nous sera convenable de poser, pourvu que nous évitions les définitions qui seraient en
contradiction les unes avec les autres. L’inventeur des quaternions, en se donnant cette liberté
d’action, n’avait en vue que de donner a sa méthode la plus grande simplicité possible, la plus
grande conformité, si I'on peut s’exprimer ainsi, aux lois naturelles.

18. Représentons AB par a; d’aprés ce qui précede, cela nous dira que o dépendra de trois
nombres. Supposons que C'D soit égal en longueur & AB, et de plus parallele & AB et dirigé
dans le méme sens; alors nous pouvons a juste titre poser

CD = AB = q,

en employant le signe d’égalité, =, pour dénoter que les vecteurs reliés entre eux par ce signe
sont & la fois égaux en longueur et paralléles dirigés dans le méme sens. Nous avons ainsi donné
une plus grande extension a la signification du symbole algébrique de 1’égalité.

De plus, nous observons qu’une égalité telle que
a=0

entre vecteurs contient implicitement trois égalités entre des nombres.

19. Nous arrivons & l'introduction de la définition du signe + dans le nouveau calcul (et a
celle du signe —, qui s’en déduira). Soient A, B, C trois points quelconques, et (en vertu de la
signification que nous venons de donner au signe de I’égalité =) posons

AB =a, BC =3, AC = .

En conformité avec ce que nous avons établi au n° 16 (relativement a la signification d’un vecteur
comme pouvant dénoter une translation), nous établirons maintenant qu’entre «, 3, v tels que
nous venons de les définir, la relation

atfB=rvy

devra avoir lieu; en un mot, nous posons
AB+ BC = AC.

La signification du signe + de 'addition des vecteurs, introduite de cette maniere avec un
élargissement de la signification purement algébrique de ce signe n’est en contradiction avec
aucun des principes précédemment introduits. Il y a plus : la nouvelle signification nous met en
possession d’une regle qui régit la composition des vitesses simultanées tant pour la valeur que
pour la direction de la vitesse résultante.

On trouvera cette regle a ’égard des vecteurs justifiée par une autre considération : c’est qu’en
ajoutant ensemble algébriquement des différences de coordonnées rectilignes de méme nom de
A et de B a celles de B et de C, on devra obtenir les différences de coordonnées correspondantes
de A et de C. Cela montre en outre que ces coordonnées devront entrer linéairement dans
I’expression d’un vecteur.

20. Dans le cas spécial ou le point C' (dont la position & I'égard de A est tout a fait arbitraire)
vient & coincider avec A il sera évident que nous aurons

AC =0,

puisqu’il n’y aura pas de chemin, par suite pas de vecteur, a parcourir entre A et C'. Dans ce
cas, la relation ci-dessus nous donnera

AB+BA=0.
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Si donc nous définissons la signification du signe — de la soustraction par la relation suivante,
BA=—AB,

nous verrons que le signe —, appliqué a un vecteur, produit l’effet d’intervertir le sens de direction
du vecteur.

Ce principe s’accorde en tout point avec ceux que nous avons déja introduits. Par exemple, ayant

AB+ BC = AC,
nous en déduisons

AB = AC — BC,
c’est-a-dire S

AC+CB = AB,

relation qui ne differe de celle du point de départ que par la permutation de B avec C, et, par
la suite, elle ne fait que reproduire le principe primitivement introduit.

21. Pour un triangle ABC' quelconque nous avons évidemment
AB+BC+CA=0,
et pour un polygone fermé plan ou gauche, de méme,
AB+BC+---+YZ+ZA=0.

Nous aurons aussi

AB+BC+---+YZ=AZ.

Ces relations expriment les régles connues de la composition des vitesses et, par la suite, en vertu
de la seconde loi de mouvement {suivant les Principes de Newton}, elles expriment également
les regles de la composition des forces.

L’interprétation de I'expression d’une somme de vecteurs gagnera en clarté, si 'on effectue la
construction de la somme en appliquant la regle pratique suivante : placer I'origine de chacun des
termes au point occupé par l'extrémité du terme immédiatement précédent dans I'expression de
la somme, lorigine du premier terme étant arbitrairement donnée. De cette maniere, le vecteur
qui représente la somme aura pour origine celle du premier terme et pour extrémité le point
occupé par l'extrémité du dernier terme en vertu de la construction. Dans cette opération, le
signe 4+ aura regu la signification de la liaison d’une nature définie qu’il s’agit d’établir entre
deux termes consécutifs.

22. Si nous composons ensemble un nombre quelconque de vecteurs paralléles entre eux, le
résultat sera évidemment un multiple de I'un d’entre eux par un nombre abstrait.

Soient A, B, C des points situés sur une méme droite ; nous aurons, par exemple,
BC = zAB,

2 étant un nombre positif lorsque B est situé entre A et C'; dans tous les autres cas, x sera
négatif : la valeur absolue de x sera dans tous les cas égale au rapport de longueur entre BC' et
AB. Cette proposition est évidente d’elle-méme lorsque ce rapport est commensurable, et par
un mode de raisonnement bien connu on I’étendra facilement au cas cas d’un rapport incom-
mensurable.

23. Une proposition importante et presque évidente par elle-méme consiste en ce qu’un vecteur
quelconque peut étre décomposé en trois composantes paralléles a trois vecteurs donnés, non
paralléles entre eux deux a deux ni paralléles a un méme plan, et que, de plus, cette décomposition
ne peut se faire que d’une seule maniére.
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Nous présentons ci-apres quelques autres témoignages. D’abord, celui du Norvégien Caspar WES-
SEL. Son étude, qui avait été présentée a 1’Académie des Sciences du Danemark en 1797 a été publiée
dans les Mémoires de cette Académie. On trouvera en annexe, a la page 560 une version anglaise
de cet extrait ou il définit la maniere d’additionner deux « droites ».

On ajoute deux lignes droites en les unissant de telle maniere que la seconde ligne commence la
ou finit la premiere, il passe alors une ligne droite du premier au dernier point des lignes jointes.
Cette ligne est la somme des lignes jointes.

Par exemple, si un point avance de trois pieds et recule de deux pieds, la somme de ces deux
chemins n’est pas les premiers trois pieds joints aux derniers deux pieds; la somme est un pied
en avant. Car ce chemin, parcouru par le méme point, produit le méme effet que les deux autres
chemins.

Quelques années plus tard, ARGAND écrivait son Essai sur une maniére de représenter les quantités
imaginaires dans les constructions géométriques [1806]. On y trouve notamment ceci :

... 5. Observons maintenant que, pour l'existence des relations qui viennent d’étre établies entre
les quantités KA, KB, KC, ..., il n’est pas nécessaire que le départ de la direction, qui constitue
une partie de l'essence de ces quantités, soit fixé & un point unique K ; mais que ces relations
ont également lieu, si 'on suppose que chaque expression, comme K A, désigne en général une
grandeur égale & KA, et prise dans la méme direction, comme K'A’, K"A" K" A" BK,

...(fig. 3).
Fig. 3.
K’ A
K v
s aa— T

En effet, en suivant, a ’égard de cette nouvelle espece de grandeurs, les raisonnements qui ont
été faits plus haut, on verra que, si KA, K'A’, K""A”, ... sont des unités positives, AK, A’K’,
A"K", ... seront des unités négatives; ...

... 6. En conséquence de ces réflexions, on pourra généraliser le sens des expressions de la forme
AB, CD, KP, ..., et toute expression pareille désignera, par la suite, une ligne d’une certaine
longueur, parallele a une certaine direction, prise dans un sens déterminé entre les deux sens
opposés que présente cette direction, et dont 'origine est & un point quelconque, ces lignes
pouvant elles-mémes étre 'expression de grandeurs d’une autre espéce.

Comme elles doivent étre le sujet des recherches qui vont suivre, il est & propos de leur appliquer
une dénomination particuliere. On les appellera lignes en direction ou, plus simplement, lignes
dirigées. Elles seront ainsi distinguées des lignes absolues, dans lesquelles on ne considere que la
longueur, sans aucun égard a la direction. ..

En 1854, Giusto BELLAVITIS signait un texte intitulé Sposizione del metodo delle equipollenze dans
le tome XXV, 2° partie des Memorie di matematica e di fisica della societa italiana delle scienze
residente in Modena. Nous donnons en annexe (page 561) un extrait du texte original en italien
dont voici la traduction. Nous renvoyons également au texte de LAISANT [1887] (page 562).
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Cette méthode satisfait a un désir de Carnot de trouver un algorithme, qui représente en méme
temps et la grandeur et la position des différentes parties d’une figure; il en résulte, par voie
directe, des solutions graphiques simples et élégantes de problemes géométriques. La méthode
des équipollences comprend comme cas particuliers les méthodes de coordonnées paralleles ou
polaires, le calcul barycentrique, etc. : les problemes sur les courbes s’y résolvent en général
sans privilégier une maniére de représentation plutot qu’une autre; le plus souvent les calculs y
sont plus rapides qu’en géométrie analytique et les résultats sont exprimés sous une forme plus
simple.

Une chose essentielle dans la méthode des équipollences est la distinction entre les quantités
positives et négatives, de sorte que la corrélation des figures est une conséquence nécessaire de
I’algorithme sans nul besoin d’aucune attention spéciale, qui ne peut étre que source d’erreur.
Celui qui est habitué aux principes de la Géométrie de Position trouvera aisé de me suivre dans
les quelques conventions sur lesquelles s’appuie la méthode ; peut-étre pourrait-on étre encore
plus proche des usages habituels; mais je ne trouve pas convenable de donner la préférence &
une facilité poussée a I'extréme plutot qu’a la concision des formules. Les conventions seront
faciles a retenir par coeur, parce que certaines sont conformes aux regles habituelles relatives
aux quantités positives et négatives, d’autres conformes a la trés connue composition des forces.
Les équipollences expriment des relations entre droites considérées non seulement comme ayant
une grandeur, mais également une direction (ou ce qu’on peut exprimer par inclinaison) ; si bien
qu’elles sont essentiellement différentes des équations, qui expriment des relations entre seules
quantités réelles; néanmoins le calcul des équipollences suit exactement les mémes regles, qui
sont utilisées dans les équations, ce qui lui confere pas mal d’avantages.

BELLAVITIS expose alors sa méthode qui est en fait notre calcul vectoriel et va jusqu’a définir le
produit de deux vecteurs, qui n’est rien d’autre que le produit de deux nombres complexes.
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DE LA GEOMETRIE ANALYTIQUE AUX VECTEURS :
ESSAI D’ANALYSE EPISTEMOLOGIQUE

Si donc il n’y avait pas de corps solide dans la nature, il n’y aurait pas de géométrie.
H. POINCARE

Faire progresser la pensée ne signifie pas nécessairement refuser le passé : c’est parfois le
revisiter pour comprendre non seulement ce qui a été effectivement dit, mais aussi ce qui
aurait pu étre dit, ou du moins ce que I'on peut dire aujourd’hui (et peut-étre aujourd’hui
seulement) & partir de ce qui a été dit auparavant.

U. Eco!

1 Pourquoi les vecteurs a la base de la géométrie 7

La géométrie analytique, inventée dans les années 1630 par DESCARTES et FERMAT, a pour objectif
de soumettre les problemes géométriques au calcul, de les ramener a l’algebre. Elle y arrrive, mais
avec deux inconvénients. Tout d’abord le repere choisi pour passer d’une figure aux nombres (c.-a-d.
aux coordonnées) est arbitraire. Bien entendu, dans chaque probléme, on le situe au mieux pour
simplifier les calculs, ce qui se fait en observant les symétries de la figure. Néanmoins, il est toujours
quelque chose d’extérieur, ajouté a la figure. On exprime aussi cela en disant que le repere est un
élément extrinseque a la situation géométrique a I’étude.

Le second inconvénient de la géométrie analytique, ¢’est qu'une fois le probleme mis en coordonnées,
on cherche la solution par calcul et que bien souvent, en appliquant les regles de ’algebre, on oublie
la situation géométrique, on s’en écarte en imagination. Certes on n’applique pas n’importe quelles
regles de calcul dans n’importe quel ordre. On cherche bien a aller vers le but proposé. Mais en
cours de route, il est souvent impossible pratiquement de saisir le sens géométrique des expressions
algébriques par lesquelles on passe. Le retour a la figure, évidemment nécessaire, se fait a la fin.

En 1679 déja, LEIBNIZ cherchait a établir un calcul opérant directement sur les figures, et qui par
conséquent éviterait les deux inconvénients en question. Mais l'entreprise devait s’avérer longue
et difficile, puisque elle n’a aboutit que vers la fin du XIX® siecle, avec I'apparition des vecteurs
tels que nous les connaissons aujourd’hui en géométrie élémentaire et en physique. Curieusement
d’ailleurs, les vecteurs ne sont pas nés du seul souci de créer un calcul efficace en géométrie. En

1 Cité par J. BIDEAUD.
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effet, leur élaboration historique a été mélée a des questions de nombres complexes, de rotations
dans l’espace, d’aires et de volumes, de mécanique, d’électromagnétisme, ... Dans ce chapitre, nous
ne nous occuperons que des vecteurs géométriques.

Les vecteurs constituent, en géométrie, un moyen de calcul différent du calcul en coordonnées. Ils
évitent le plus souvent les deux inconvénients de ce dernier. En effet, pour traiter un probleme de
géométrie vectoriellement, on commence par choisir les vecteurs de départ sur la figure a 1’étude
(éventuellement en orientant certains segments). En ce sens les vecteurs sont intrinseques, indépen-
dants de tout cadre arbitraire tel qu’'un repere.

Ensuite on calcule, mais comme les symboles que I'on combine ont un sens visible sur la figure et
qu’en outre les formules sont compactes (une équation au lieu de deux ou trois, selon qu’on est
dans le plan ou I’espace), on arrive souvent a reconnaitre sur la figure les intermédiaires du calcul.

Bien entendu, des que 'on veut soumettre la situation géométrique en cause au calcul numérique —
ce qui n’est pas toujours nécessaire —, on doit revenir des vecteurs aux coordonnées et donc choisir
un repere. Mais on peut ne le faire que tout a la fin.

Reprenons le fil de I’histoire. Une fois les vecteurs mis au point comme instruments de calcul
commodes, ils ont dépassé ce role assez modeste et ont contribué a transformer profondément les
mathématiques. Vers la fin du XIX® siecle et au début du XX, ils ont engendré les espaces vectoriels
et I'algebre linéaire. Celle-ci s’est développée surtout pour les besoins des équations différentielles
et de I’analyse fonctionnelle, et non pour ceux de la géométrie élémentaire. Mais par un retour des
choses, les espaces vectoriels ont fini par se retrouver aux fondements de la géométrie élémentaire.
On peut aujourd’hui commencer I'exposé de la géométrie élémentaire en disant : « Soit un espace
vectoriel sur le corps des réels. » Dans cette perspective, les notions de départ ne sont plus les
points, les droites et les plans, mais les vecteurs et les nombres réels. Les droites et les plans sont
alors des notions construites.

Ainsi, il a fallu quasiment trois siecles et de multiples recherches sur des questions dont beaucoup
n’étaient pas géométriques, pour aboutir a ce renversement majeur : la possibilité de fonder la
géométrie sur une toute autre base que les notions traditionnelles de point, droite et plan. D’ou la
question : peut-on expliquer simplement pourquoi les vecteurs ont fini par s’imposer avec une telle
force ?

La réponse est nécessairement dans I’histoire. Mais comme nous ’avons vu, celle-ci est longue et
touffue et nous n’essaierons pas ici de la suivre en détail. D’ou la question : y a-t-il moyen, en
demeurant sur le terrain de la géométrie élémentaire, de montrer en peu de pages les arguments
forts qui poussent a créer les vecteurs et a les mettre a la base de la géométrie ?

Notre objectif dans ce chapitre est d’organiser un passage, le plus direct et le mieux motivé possible,
entre la géométrie analytique et les vecteurs. Ce sera de I'histoire refaite et simplifiée, schématisée,
une sorte d’accouchement provoqué, mais que 1’on espere éclairant. Ce ne sera en tout cas pas un
exposé purement déductif, mais bien ’élaboration argumentée d’une structure nouvelle a partir
de la critique d’une structure familiere. Nous supposons donc le lecteur familier de la géométrie
analytique en axes orthonormés et de l'algebre des premier et deuxieme degrés telle qu’on ’enseigne
dans les lycées. Et nous lui demandons de faire comme s’il ignorait les vecteurs.

Terminons cette introduction par deux indications pratiques. Tout notre exposé se situera dans le
plan, mais uniquement par raison de simplicité : tout ce que nous ferons s’étend de maniere naturelle
a l'espace, moyennant des calculs un peu plus longs. Cet exposé devrait étre accessible aux éleves
motivés des sections scientifiques de la fin du secondaire et pourrait leur faciliter la transition vers
des études supérieures. Il leve un petit coin du voile vers les géométries emboitées du Programme
d’Erlangen de F. KLEIN. A ce titre, il peut servir d’introduction a une lecture de ce programme.
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Nos deux sources principales sont le volume consacré a la géométrie par F. KLEIN [1908] dans
ses Mathématiques élémentaires d’un point de vue avancé, et le chapitre intitulé « Géométries
abstraites » (rédigé par E. LEHMAN) dans Pouvrage de B. SENECHAL [1979] intitulé Groupes et
géométries. Nous renvoyons a celui-ci le lecteur qui souhaiterait situer notre exposé dans un contexte
plus abstrait, ou les groupes précedent les vecteurs.

2 De la géométrie a I’algebre et vice-versa

Dans un premier temps, demandons-nous quel est le principe méme de la géométrie analytique.
Autrement dit, comment passe-t-on sans ambiguité des figures aux relations algébriques qui les
représentent et inversement ? Voyons d’abord cela sur quelques exemples.

XQN XQN

[\)

[y

[y

X1 X1

Fig. 1 Fig. 2

Soit tout d’abord un repere orthonormé Ozz9, comme celui de la figure 1. Et soient un point P de
coordonnées (p1, p2) et un point @ de coordonnées (g1, q2). Imposons a ces deux points la propriété
que la droite P(@) soit parallele a 'axe des xo. Cette condition a pour expression algébrique

P1L=q1- (1)

La figure formée des deux points P et () satisfait a (1). Mais il y a une infinité de figures analogues
qui satisfont a cette relation. En fait, toute figure formée de deux points situés sur une parallele
a laxe des zy satisfait a (1), et toute figure formée de deux points satisfaisant a (1) est sur une
parallele & I’axe des x9. Il revient exactement au méme de se donner la relation (1) et de se donner
I’ensemble de toutes les figures formées de deux points situés sur une parallele a 'axe des xy. Si
on dessinait toutes ces figures, le plan serait noir de points et méme chaque point appartiendrait a
une infinité de figures. Le principe de la géométrie analytique est 1a : au lieu d’étudier une infinité
de figures en regardant 'une d’elles (considérée comme typique), on étudie la relation algébrique
qui représente fidelement cet ensemble infini.

Ainsi d’un c6té il y a une infinité de figures, et de 'autre seulement une égalité entre des symboles
algébriques. Mais cette simplicité de 1’algebre ne doit pas faire illusion : en fait la relation (1) est
équivalente a la donnée de I’ensemble infini de tous les quadruplets

(p17p27 q1, Q2)

satisfaisant a (1). La relation algébrique, dans sa concision, ne nous délivre pas entierement de
I'infinité de situations qu’elle recouvre.
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Considérons un autre exemple ou la correspondance entre figures et expression algébrique s’avérera
un peu plus difficile a établir. Soit, comme sur la figure 2, trois points P, @) et U alignés, de
coordonnées respectives (p1,p2), (q1,q2) et (u1,u2). Pour exprimer que ces points sont alignés,
appliquons le théoreme de Thales, qui nous donne
qa —p1 up —p1
= (2)

q2 — P2 U2_p2.

Mais une telle relation ne représente pas toutes les figures constituées de trois points alignés. Elle ne
s’applique en effet pas aux cas ot P et @) seraient confondus, aux cas ot P et U seraient confondus,
aux cas ou les trois points seraient confondus, et non plus aux cas ou les points se trouveraient sur
une parallele a 'axe des abscisses.

Toutefois, il n’est pas difficile de remplacer la relation (2) par une autre qui prenne en compte tous
ces cas particuliers. C’est la relation

(@1 — p1)(u2 — p2) — (g2 — p2)(u1 — p1) = 0. (3)

Tout triplet de points alignés a des coordonnées qui satisfont a (3), et si les coordonnées de trois
points satisfont & (3), les points correspondants sont alignés. Nous avons ainsi une bonne correspon-
dance entre la propriété géométrique d’alignement et son expression algébrique. Nous sommes donc
sur une base saine pour commencer a étudier algébriquement la propriété géométrique d’alignement.

Les figures constituées de trois points alignés sont en nombre infini, et si on voulait les dessiner
toutes, le plan serait ici aussi couvert de points. La relation (3) correspond a I’ensemble infini des
sextuplets

(1, P2, q1, 42, U1, U2)
de nombres réels qui satisfont a (3).

Voici un autre exemple de relation entre trois points :
(1 —p1)* + (@2 — p2)? = (w1 — 1)? + (u2 — 2)* = (1 — w1)? + (P2 — u2)?. (4)

Cette relation représente toutes les figures constituées par trois points occupant les sommets d’'un
triangle équilatéral.

Il serait peu utile de multiplier les exemples. Nous voyons en effet maintenant comment transposer
en algebre les situations que nous rencontrons en géométrie, et comment revenir de ’algebre a la
géométrie. En géométrie, on n’étudie pas les figures mais, dans chaque cas, ’ensemble des figures
qui ont telles ou telles propriétés (il revient au méme de dire que l'on étudie ces propriétés).
Nous appellerons de tels ensembles de figures des configurations. Se donner une configuration, c’est
comme de se donner un ensemble de propriétés, ou aussi de se donner une relation algébrique?,
et une relation algébrique c’est aussi un ensemble de n-uples de nombres réels, chaque n-uple
correspondant a une figure.

La différence entre les deux points de vue, c’est qu’on ne sait pas calculer avec des figures, tandis
qu’on sait le faire avec des relations algébriques. Celles-ci ont hérité des regles de calcul sur les
nombres réels.

Puisque notre intention est de faire de la géométrie par calcul, installons-nous donc, au moins
provisoirement, dans I'univers des relations algébriques. Mais alors nous devons tout de suite nous
souvenir que chacune de ces relations s’établit relativement a un repere donné. Et pourtant nous
almerions faire une géométrie générale, indépendante du choix d’'un repere. Notre expérience de la

2 Une relation peut étre donnée par plusieurs équations, des inéquations, . ..
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géométrie analytique nous apprend qu’une relation algébrique peut completement changer de visage
dans un changement de repeére. Par exemple une parabole qui s’écrit y = 22 dans un repere donné
s’écrira de fagon plus compliquée dans un autre. Si nous découvrons des propriétés en raisonnant
sur I’équation y = z2, comment seront nous sdrs que ces propriétés seront celles de la configuration
géométrique elle-méme ?

Avant d’étudier cette question, rappelons comment on fait pour changer de repere. C’est 'objet de
la section suivante.

3 Changer de repere

x2
N
x!' ‘\
|
| 1
;U ) A/T
B (i X' 0.6
T | &
by g 0.8 =~
v 1 1
Fig. 3

La figure 3 montre deux reperes orthonormés, 'un Ozyz4 et 'autre Sz 2, muni des mémes unités
que le premier. Soit X un point quelconque de coordonnées (x1,xz2) dans le premier repeére et
(2}, 2%) dans le second.

Considérons d’abord la ligne brisée OSAX que la figure suffit & définir, les points A et S ayant
respectivement pour coordonnées dans le premier repere (a1, as) et (s1,s2). Projetée sur axe des
abscisses du premier repere, cette ligne brisée nous donne

r1 =81+ (a1 — 81) + (1'1 — al). (5)

Dans le cas de la figure 3, on a :
S1 = 2. (6)

D’autre part, en exprimant que deux triangles appropriés sont semblables, nous obtenons

/
e al — 81

108 )

Et de méme
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En transformant le second membre de (5) grace a (6), (7) et (8), nous obtenons que
x1 =2+ 0,82) — 0,6}, (9)
En partant ensuite de la ligne brisée OSBX, nous obtenons par des considérations analogues que
19 = 0,8+ 0,62 + 0, 8. (10)

Les formules (9) et (10) nous permettent de passer d’un repeére a l'autre. D’autre part, le retour
du second repére au premier est possible, puisque les équations (9) et (10) sont solubles pour
et 5. En effet, le déterminant formé par les coefficients de 2 et xf est différent de 0. Il vaut
(0,8)2 + (0,6)% = 1.

Dans le cas général, et en nous aidant de la figure 4, nous voyons que les formules sont de la forme

/ /
r1 = r11r] + 11275 + S1,

Ty = o1 + To2xh + So. (11)
X2
N
x'9 N
|
\ 1
!
' A/T
1 22 X712
1 | i -
D
- 3] ryy
v 1 1
Fig. 4

Dans celles-ci (711,721) sont les projections dans le premier repere du segment orienté unitaire
porté par Sz et (ri2, re2) sont les projections dans ce repére du segment orienté unitaire porté par
Szh. Dans ces formules nous avons, selon 1'usage, placé en dernier lieu les termes indépendants des
coordonnées. Ici aussi, le déterminant des coefficients de 2} et 24, est différent de 0. En d’autres
termes, nous avons

r11r22 — T12721 7 0. (12)

En effet, en examinant les signes de 711, 712, 721 et 792 pour toutes les directions possibles du repere,
nous réalisons que les deux produits 711792 et 712721 ne sont jamais tous les deux nuls, et s’ils sont
tous deux non nuls, ils sont de signes opposés.

Bien que nous ne nous en servirons pas dans I'immédiat, exprimons algébriquement ’orthogonalité
des axes. La figure 4 fait voir deux triangles rectangles isométriques qui nous permettent d’écrire

que
711 722

)
21 12
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ou encore que
711712 + 121722 = 0. (13)

On vérifie que, sous cette derniere forme, cette équation exprime encore I'orthogonalité des axes
O’z et O'z)y, méme si ceux-ci sont paralléles aux axes du premier repére.

Exprimons enfin, quitte & ne nous en servir que plus tard, le fait que les unités sont les mémes sur
les nouveaux axes que sur les anciens. Nous obtenons

ity =1 (14)

et iy iy = 1. (15)

4 Des relations intrinseques

Maintenant que nous disposons de la formule de changement de repere, revenons a notre propos
qui était de voir comment les relations algébriques se comportent dans un tel changement. Et donc,
pendant un bref moment, concentrons-nous davantage sur la forme algébrique des relations que sur
leur signification géométrique.

Commencons par des exemples tres simples. Et d’abord la relation (1), a savoir
p1=q. (1)
En lui appliquant la formule (11) de changement de repére, nous obtenons
rph + riepy = r11qy + ri2gs. (16)

Cette relation est d’une toute autre forme que (1). Nous n’en tirerons sans doute pas grand chose.

Essayons
p1 = p2. (17)
Nous obtenons de la méme facon
T1P) + T12Py + S1 = T21py + T22ph + 52,
ce qui s’écrit encore
(r11 — r21)p) + (r12 — ro2)ph = s2 — s1. (18)

Cette relation ne ressemble pas & (17) et ne nous inspire pas beaucoup. Essayons la relation (3), a
savoir

(@1 — p1)(u2 — p2) — (g2 — p2)(u1 — p1) = 0. (3)

Pour y remplacer les anciennes coordonnées par les nouvelles, commencgons par calculer

g1 —p1 = (7”11(1’1 + 7"12% +51) — (7“1117/1 + r12p/2 + 51)
r11(qy — p1) +r12(gs — pa),

ainsi que les expressions analogues pour us—p2, g2 —p2 et w3 —p1. Substituons ensuite ces expressions
dans (3), ce qui donne

/

[r11(q) — ph) + m12(gh — po)|ran (wy — py) + raa(uhy — py)] —
[ro1(q) — ph) + r22(dh — py)[rin (uy — p) + r12(uy — py)] = 0.
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Cette équation devient apres calcul

(riaree — riara)[(q) — p1)(uh — py) — (g5 — ph)(u) — p1)] =0,

et ensuite, grace a (12),
(@1 — p1)(uy — ph) — (g — pa)(uy — py) = 0. (19)

La relation (19) a la méme forme que (3). Elle s’exprime de la méme fagon dans tous les reperes.
D’une relation qui possede cette propriété, on dit qu’elle est intrinseque.

Cette définition est de nature algébrique. Examinons-la maintenant d’un point de vue géométrique,
en considérant a nouveau ’exemple de la relation (3).

Plagons-nous dans le premier repere et pensons a tous les triplets satisfaisant a cette relation, c’est-
a~dire a tous les triplets de points alignés. Bien sir ils remplissent tout le plan, et méme chaque
point du plan appartient a une infinité de triplets. N’empéche, par un effort d’imagination, nous
voyons que le plan est rempli de triplets de maniere homogene et isotrope®. Aucune région du plan
n’est privilégiée. On comprend alors pourquoi, si on recommence a construire les triplets a partir
du second repere, on retombe sur les mémes. C’est 1a ce qui caractérise une relation intrinseque.

Eclairons encore davantage la définition en regardant comme contre-exemple la relation (1). Géo-
métriquement, elle exprime que les couples de points P et () sont sur une parallele a 'axe des
2. Ces couples en nombre infini noircissent aussi tout le plan, dans lequel ils sont répartis de
maniere homogene. Ceci explique qu’une translation du repere n’affecterait pas cette relation. On
ne retrouve d’ailleurs ni s; ni s9 dans (16). Mais les couples de points ne sont pas disposés dans le
plan de maniere isotrope. Ils appartiennent tous a la méme direction. Ceci explique qu’'une rotation
des axes affecte la relation (1). Et de fait, dans (16) on retrouve les coefficients 11, r12, 721 €t roo.

La relation (17) est instructive aussi. Quand on la transforme, on trouve dans la relation transformée
aussi bien 711, 712, 721 €t re2 que s1 et so. Cest que les points qui satisfont & (17) sont sur une
bissectrice du premier repere, et que, dans la plupart des changements de repere que 'on peut
envisager, cette droite n’est plus bissectrice du repere a ’arrivée.

Exercice. Imaginer une nouvelle relation qui ne change pas dans une rotation des axes autour de
lorigine. Interpréter géométriquement le résultat. Réponse possible : piga — p2q1 = 0.

D’un certain point de vue, on peut considérer un repére comme un poste d’observation. Les relations
intrinseques sont celles qui définissent des configurations (des ensembles de n-uples de points) que
I’on voit de la méme facon — que I'on ne peut pas discerner —, quel que soit le poste d’observation
que l'on choisisse. Ces configurations sont proprement géométriques, au sens ou la géométrie est
la méme dans tous les patelins du monde. Les relations non intrinseques par contre définissent
des configurations qui sont liées a un lieu donné, que 'on voit différemment lorsqu’on change de
poste d’observation. On pourrait dire que ces configurations relevent plutot de la géographie que
de la géométrie. Le mot est de F. KLEIN, mais il s’agit bien entendu d’une géographie quelque peu
théorique, ou les accidents de terrain ne sont ni des montagnes, ni des villes.

Pour en finir avec I'idée des relations intrinseques, notons que le recours aux relations en géométrie
nous a amenés a changer profondément notre perception des figures. En géométrie synthétique, on
raisonne sur une figure typique, c’est-a-dire sur une figure qui représente toutes les figures répondant
aux hypotheses que 'on s’est fixées. Mais souvent ces autres figures, dont ’ensemble constitue ce
que nous avons appelé une configuration, se trouvent quelque peu reléguées dans notre subconscient.

3 Isotrope veut dire qu’aucune direction du plan n’est privilégiée.
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Au contraire, en regardant une configuration comme définie par une relation algébrique, nous
sommes poussés a donner aux variables toutes les valeurs possibles, ne serait-ce qu’en imagination
(c’est un infini potentiel) et a imaginer de ce fait toutes les figures possibles, quelle que soit leur
situation dans le plan. Notre analyse des changements de coordonnées et des relations intrinseques a
amené dans le champ de la géométrie une chose qui ne s’y trouvait auparavant que de maniere plus
implicite : par dela les propriétés données, I’ensemble de toutes les figures possédant ces propriétés.
On a souvent observé que la notion d’espace n’apparaissait pas dans EUCLIDE. Au point ot nous
en sommes, ’espace (en l'occurrence le plan) est bien la et il est bien occupé.

5 Naissance des vecteurs

Nous savons maintenant qu’il est équivalent de se donner une relation algébrique intrinseque ou une
configuration possédant les propriétés géométriques correspondantes. Une différence importante
demeure pourtant : avec la relation algébrique, on peut calculer, avec la figure non. Mais notre
propos est toujours d’introduire un calcul sur les figures, pas sur les coordonnées.

Nous ne pouvons pas espérer calculer avec toutes especes de figures. Pour trouver celles qui nous
permettront de fonder un calcul commode et de portée générale, cherchons des relations algébriques
simples et intrinseques.

5.1 Deux segments orientés équipollents

Prenons par exemple quatre points P, Q, U et V, tels que le segment orienté [PQ] soit parallele?
au segment orienté [UV] et de méme sens et de méme longueur que lui (figure 5). Cette propriété
est exprimée par les deux équations

g1 —p1 = U1 — Uy,

g2 — P2 = Vo — Uy. (20)

Celles-ci ne contiennent que des différences de coordonnées, ce qui nous laisse espérer que dans le
changement de repere, au moins s; et so disparaitront.

X2

[y

X1

Fig. 5

4 Abus de langage : ce sont les droites portant les deux segments qui sont paralléles.
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De fait si on applique a (20) le changement de repére (11), on obtient

/ / / /
q1 — P = U1 — Uy,

g — v = v —ul (21)

Par conséquent la relation est intrinseque. Elle porte un nom : on dit que le segment orienté [PQ)]
est équipollent au segment orienté [UV].

5.2 Allonger ou raccourcir un segment orienté
Soient maintenant trois points P, Q) et U tels que

u —p1 = Mg —p1),

22
uz — p2 = Ag2 — p2), (22)
ol A est un nombre réel quelconque (égal & 4/3 sur la figure 6).
.x2” x2”
2 0
» » U
il
1 >X1 1 >)C1
Fig. 6 Fig. 7
Apres changement de repére, on obtient
uy =i = Mg —py),
(23)

uy — py = Mgy — py).

Donc ici aussi, la relation est intrinseque. C’est en fait une relation du premier degré qui exprime
I’alignement des points P, Q et U.

5.3 Trois points

Soient P, @ et U trois points situés de facon quelconque (figure 7). Leurs coordonnées satisfont aux
deux équations

(@1 —p1) + (w1 —q1) + (p1 —u1) = 0,
= 0.

(g2 — p2) + (u2 — q2) + (p2 — u2) (24)

Ce sont des identités. La relation qu’elles déterminent est RS tout entier. Il n’est pas besoin de leur
appliquer explicitement le changement de repere pour savoir que ’on a aussi

/

(g1 — p1) + (uy —qy) + (p —uy) = 0,

(gh — ph) + (uh — gb) + (ph — uh) = 0. (25)
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La relation correspondante dans II? n’est autre que II? tout entier. Elle comprend tous les triplets
de points possibles et imaginables.

On pensera peut-étre qu’autant vaudrait ne pas parler d’une relation aussi triviale. Quoiqu’il en
soit, nous verrons sous peu — chose étonnante — que les équations (24) récrites sous la forme

(u1 —p1) = (@1 —p1) + (u1 — q1),

(u2 —p2) = (g2 — p2) + (u2 — q2), (26)

nous seront fort utiles.

5.4 Se débarrasser des reperes

Arrivés a ce stade de notre étude, nous savons qu’il existe des relations géométriques élémentaires
qui, étant intrinseques, s’écrivent de la méme maniere dans tous les reperes orthonormés. D’ou la
question : pourquoi continuer a particulariser les notations, a écrire p; et po si on est dans un
premier repere, pj et pl si on est dans un autre, etc. ?

Par ailleurs, ce sont les points qui sont intéressants, pas les coordonnées. Celles-ci ne sont qu'un
instrument pour accéder aux points, puisque ce que nous voulons, c’est faire de la géométrie.
Essayons donc de privilégier les points par rapport aux coordonnées.

Récrivons nos trois relations (22), (24) et (26) dans la premiere colonne d’un tableau.

g1 —P1=V1 —Uul

q2 — P2 = V2 — U2 Q-P=V-U
up —p1 = A(q1 — p1)
uy — p2 = AMq2 — p2) U—-P=XQ—-P)

up —p1 = (g1 —p1) + (u1 — q1)
ug —pa = (g2 —p2) +(u2—q) | U-P=(Q—-P)+ (U -Q)

FEn nous laissant guider par 'analogie des formes, tentons dans la deuxieme colonne une écriture en
termes de points. Il s’agit d’une transposition d’écritures, sans aucune justification mathématique
a priori. Pour nous rassurer, observons que les regles de passage sont bien définies et claires et
que, par convention, ce que nous avons écrit dans la deuxiéme colonne ne veut rien dire d’autre
que ce qui est écrit dans la premiere. Il ne s’agit dans ces conditions que d’une sténographie, une
abréviation d’écriture.

Mais ce n’est pas la se débarrasser franchement des coordonnées, puisque 1’on ne donne ainsi un sens
a la colonne de droite qu’en retournant a celle de gauche. Essayons donc maintenant de donner aux
formules exprimées en termes de points un sens mathématique autonome, c’est-a-dire qui s’exprime
en termes de points. Pour cela, il faut accepter que les symboles

« =», « - » (ou absence de symbole) et « + »

changent de sens lorsque 'on passe d’une colonne & l'autre. Nous devrons redéfinir ces symboles
pour 'usage que nous voulons en faire lorsque nous parlons non plus de coordonnées mais de points.

Revenons a la relation d’équipollence. Elle nous a suggéré d’écrire
Q-P=V-U.

Bien entendu, nous voulons maintenir au signe « = » sa valeur universelle en mathématiques, qui
est de désigner deux écritures distinctes pour un méme objet. Il faut donc que @Q — P soit la méme
chose que V — U. Et méme que ) — P soit la méme chose que Y — X, ou X et Y sont des points
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quelconques tels que le segment orienté Y — X soit équipollent & Q — P. Une solution audacieuse (y
en a-t-il d’autres ?) consiste a dire que les écritures Q — P, V — U et Y — X renvoient toutes trois
a l’ensemble de tous les segments équipollents a () — P. Solution audacieuse, peu naturelle, car elle
consiste a remplacer ’objet géométrique élémentaire que constitue le segment orienté par un objet
multiple, infini, aussi peu quotidien que possible. ..

On appelle vecteur libre ’'ensemble de tous les segments orientés équipollents a un segment orienté
donné. Si un segment appartient a un vecteur libre, on dit qu’il le représente, qu’il en est un
représentant. Ainsi la définition de vecteur nous permet d’évoquer la figure 5 dans des termes
nouveaux : au lieu de dire qu’elle représente deux segments orientés équipollents, nous pouvons
dire qu’elle montre deux représentants d’un méme vecteur libre. Et effectivement, pour connaitre
un vecteur libre, il suffit de connaitre un quelconque de ses représentants. Par abus de langage,
nous dirons le plus souvent vecteur au lieu de vecteur libre.

XQW

&)

[y

X1
Fig. 8

La figure 8 montre quelques représentants d’un vecteur libre. Pour la facilité, nous avons dessiné
une pointe de fleche a I'extrémité de chacun des segments orientés. Il va de soi que nous ne pouvons
pas dessiner tous les représentants du vecteur, car alors le plan serait tout noir.

Comme nous 'avons vu, les notations Q— P, Q' — P’, ... désignent toutes le méme vecteur. Chacune
de ces notations a l'avantage de désigner un représentant du vecteur, mais elle a I'inconvénient de
lier fortement celui-ci & I'un de ses représentants. Lorsqu’on rencontre une expression telle que
Q@ — P, il faut donc bien se souvenir que le vecteur @Q — P n’est lié & aucun point du plan, et qu’en
particulier il n’a aucune relation privilégiée avec ), non plus qu’avec P.

Un vecteur étant par ailleurs un objet mathématique a part entiere, rien n’empéche de le désigner

par un symbole qui ne rappelle aucun point ni aucun segment particulier. La convention est d’utiliser
7 N - . ’ .

une lettre surmontée d’une fleche, comme par exemple @', b, ... Notons aussi que 1’on écrit souvent

m au lieu de @ — P.

Passons ensuite a la deuxieme ligne du tableau et a la figure 6. Sur cette derniére nous discernons
—
maintenant les vecteurs Q — P et U — P, que nous pouvons appeler @ et b. L’égalité

U—-P=X\Q—-P) ouencore b =\a,

définit ce que nous appellerons le produit d’un vecteur par un réel (on dit aussi par un scalaire). La
définition de cette opération s’obtient, en termes de coordonnées, en retournant a la partie gauche
du tableau. Et puisque nous savons que ce que nous y lisons, & savoir

ur —p1 = Mg —p1),
uz —p2 = Mgz — p2),
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est indépendant du repere choisi, nous sommes assurés que notre définition n’est pas ambigué.

Mais nous pouvons aussi définir géométriquement le produit d’un vecteur par un réel. Soit le vecteur
@ = @ — P. Multiplions la longueur du segment [PQ)] par X et considérons le segment [PU] ayant
cette nouvelle longueur, et ayant le sens de [PQ] ou le sens opposé selon que A est > 0 ou < 0.
Alors le segment [PU] est un représentant de A@ = A\(Q — P).

Enfin considérons la derniere ligne du tableau et la figure 7. Sur celle-ci nous voyons maintenant
les trois vecteurs Q — P, U — Q et U — P, que nous pouvons aussi appeler @, b et . L’égalité

U—-P=(Q—-P)+(U-Q) ouencore T=a+0b

nous conduit a ce que nous appellerons naturellement la somme de deux vecteurs.

La définition de cette opération s’obtient, en termes de coordonnées, en retournant a la partie
gauche du tableau. Et puisque nous savons que ce que nous y lisons, a savoir

ur —p1 = (@1 —p1) + (w1 — q1),
ug —p2 = (g2 — p2) + (u2 — q2),

est indépendant du repere choisi, nous sommes assurés que notre définition n’est pas ambigué.
Mais nous pouvons aussi définir géométriquement la somme de deux vecteurs. Supposons que @
—
et b aient des représentants [AA’] et [BB'] situés n’importe ot dans le plan. Considérons alors un
—
représentant [A’B] de b qui s’enchaine avec [AA’]. Alors le segment [AB] est un représentant de

la somme @ + b (voir figure 9).
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Pour obtenir la somme @+ b & partir des deux représentants [AA’] et [BB'], nous aurions pu aussi
considérer un représentant [AB] de b issu de l'origine de [AA'], et ensuite construire la somme
selon la diagonale du parallélogramme dont trois sommets consécutifs sont A, A’ et B (voir figure
10). Cette fagon d’engendrer la somme de deux vecteurs s’appelle régle du parallélogramme.

5.5 Des regles de calcul

Nous venons de définir les vecteurs et les deux premiéres opérations qu’on leur applique. On aura
compris qu’il ne s’agit pas la d’un épisode banal de notre étude, mais bien d’un véritable accouche-
ment. Toutefois nous ne sommes pas au bout de nos peines, car maintenant que nous avons deux
opérations nouvelles, nous devons encore nous assurer qu’elles obéissent a des regles de calcul qui
nous conviennent.

Nous n’avons plus vraiment le choix de ces régles, car elles découlent des définitions du vecteur et
des deux opérations®. Ce sont celles qui constituent les axiomes d'un espace vectoriel. Rappelons-les.

I) L’addition des vecteurs est commutative : @ + D=1+ @ ;

IT) l’addition est associative : @ + (7 +7)=(a )+ 7

c ;

III) 4l existe un unique vecteur 0 tel que @ + 0 =

+ b
@ pour tout @
a

thuea+( @)= 0
V) la multzplwatzon par un scalaire est associative : a(fa’) = (afB)@ ;

(
(
(
(IV) a tout vecteur @ correspond un unique vecteur —
(
(VI) 1@’ = @ pour tout @ ;

(

VII) la multzplzcatzon par un scalazre est distributive par rapport a l'addition des vec-
teurs : (@ + b) =a@ +a D

(VIII) la multiplication par un scalaire est distributive par rapport a 'addition des vec-
teurs : (a+ )@ =aa@ +07a.

On trouve les démonstrations de ces propriétés, par la voie des coordonnées ou par raisonnement
géométrique direct, dans beaucoup d’introductions au calcul vectoriel : voir par exemple le chapitre
8 du présent ouvrage.

Ces regles de calcul sont satisfaisantes dans la mesure ou elles ne nous obligent pas, lorsque nous
en arrivons aux vecteurs, a changer trop les habitudes de calcul que nous avons acquises dans le
champ des nombres.

Montrons maintenant a contrario que ces regles commodes, qui découlent du tableau ci-dessus (voir
section 5.4), n’étaient pas acquises d’avance. Reprenons en effet notre projet a son début. Nous
souhaitions introduire en géométrie un calcul intrinseque, c’est-a-dire indépendant de tout systeme
de coordonnées. Une idée qui aurait pu s’imposer a nous aurait été d’adopter directement les
segments orientés comme objets géométriques élémentaires a soumettre au calcul. Ils sont des
figures simples et commodes, moins compliquées que les classes d’équivalence de tels segments.
Un regard sur les vitesses et les forces nous aurait aussi quelque peu poussés dans cette voie. Et
nous aurions alors pu définir leur addition de deux fagons. Soit deux segments [AB] et [BC] sont
enchainés et nous convenons que leur somme sera [AC]|, mais alors la somme ne sera définie que
pour des segments enchainés; soit deux segments [AB] et [AC] sont issus d’'un méme point A, et

5 Dans le présent exposé, nous constatons que les régles de calcul se maintiennent pour 'essentiel. D’autres exposés
aboutissent aux vecteurs en partant de I’objectif que les régles de calcul soient conservées. Un tel objectif correspond
a ce que FREUDENTHAL appelle le principe de permanence algébrique (voir par exemple FREUDENTHAL [1973]).
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nous définissons leur somme par la regle du parallélogramme, mais alors la somme n’est définie que
pour les segments ayant méme origine. Nous voyons que, dans ['un et 'autre cas, I'addition n’est
pas définie sur 'ensemble des segments, ce qui est un désavantage évident.

X2
I
A
>
1 X1
Fig. 11
X2
R!
Dis
¢
A
S
J 1 X1
Fig. 12

D’autre part, si nous adoptons ’addition par enchainement, nous observons que certaines des regles
(I) & (VIII) ci-dessus ne sont pas satisfaites.

Par exemple, partons des deux segments [AB] et [BC] et de leur somme [AB] + [BC| = [AC] (voir
figure 11). Nous voudrions commuter cette somme et donc la remplacer par [BC| + [AB]. Mais ce
n’est pas possible, parce que [BC] et [AB] (pris dans cet ordre bien entendu) n’étant pas enchainés,
leur somme n’est pas définie.

Autre exemple : soit comme sur la figure 12, les segments enchainés [AB] et [BC] et leur somme
[AC]. Multiplions les deux premiers par un scalaire ), par exemple A = 1,5. Nous obtenons ainsi
MAB] = [AB'] et \|[BC] = [BC']. Nous voudrions pouvoir appliquer la régle de la distributivité
sous la forme

M([AB] + [BC)) = A[AB] + \[BC].

Mais malheureusement [AB’] et [BC'] ne sont plus enchainés, et nous ne pouvons par conséquent
pas les additionner.

Peut-étre alors aurions nous plus de chance en considérant la somme tirée de la regle du parallé-
logramme. Dans cette hypothese, considérons tous les segments orientés issus d’un seul point, de
maniere que la somme soit définie pour tout couple d’entre eux. On vérifie alors facilement que
toutes les regles (I) a (VIII) sont satisfaites.
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C’est un résultat intéressant. Ce qui est dommage par contre, c’est qu’au passage nous avons
privilégié un point, a savoir 'origine commune de tous les segments. Nous nous interdisons de
considérer a priori un segment situé n’importe ou dans le plan, ce qui est une décision désagréable
pour celui qui cherche a faire de la géométrie en un sens ordinaire, c’est-a-dire dans un espace
homogene.

Exercice. Etablir quelles sont les régles de calcul (I) & (VIII) que 'on peut transposer aux segments
orientés additionnés par enchainement, et quelles sont celles que ’on ne peut pas transposer.

Exercice. Vérifier explicitement que tous les segments orientés issus d’un point donné et addi-
tionnés par la regle du parallélogramme vérifient les regles (I) a (VIII).

6 Les géométries affine, euclidienne et métrique

6.1 La perpendicularité

Dans cette étude, nous n’avons pas encore abordé la propriété de perpendicularité. Rappelons donc
d’abord comment elle s’exprime dans un systeme de coordonnées, et voyons ensuite comment elle se
comporte dans un changement de repére. Soit donc, comme toujours jusqu’ici, un repére orthogonal
muni de la méme unité sur chacun des deux axes. Et soient deux segments orthogonaux [PQ)] et
[PU] (voir figure 13). A cause de la perpendicularité, les deux triangles rectangles PAQ et PBU
sont semblables.

A
N
=

[y

Fig. 13

Cette propriété s’exprime comme ceci

qr —Pp1 _ U2 — P2

@ —p2  pL—ur

Cette relation n’est évidemment valable que si les segments ne sont pas paralleles aux axes. Pour
obtenir une expression générale de la perpendicularité, nous la remplacerons par

(@1 —p1)(u1 — p1) = —(g2 — p2)(u2 — p2),
que nous écrirons plus volontiers sous la forme

(@1 —p1)(u1 —p1) + (g2 — p2)(u2 — p2) = 0. (27)
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Par définition, nous comprendrons méme, dans la propriété en question, les cas extrémes ot deux
des points P,  ou U sont confondus, et aussi le cas ou les trois points sont confondus.

Il nous reste a voir maintenant ce que devient cette relation dans un changement de repere du type
(11). Apres calcul, nous obtenons

(dy — 1) (W) = p) () +731) + (g5 — Py ) (us — 1) (s + 735)
+(dh = Pi)(uy — ph) + (6 — Pa)(uy — Py ) J(riarie + r21r2) = 0.
Souvenons-nous alors que nos axes sont orthogonaux et sont tous munis de la méme unité. Nous

pouvons donc appliquer les formules (13) & (15), ce qui nous donne au lieu de (28) la formule
simplifiée

(28)

(g1 — P1)(ui — ph) + (g3 — ph) (uy — ph) = 0. (29)
Ainsi, la relation de perpendicularité est intrinseque.

Remarquons toutefois que, par comparaison avec les autres relations étudiées jusqu’a présent, pour
établir que la relation de perpendicularité est intrinseque, nous nous sommes appuyés sur la condi-
tion (13) d’orthogonalité des axes et sur les conditions (14) et (15) exprimant que l'unité choisie
est la méme sur tous les axes.

Mais regardons d’un peu plus pres le passage de (28) a (29). En fait, au lieu de (14) et (15), nous
aurions pu dans le calcul utiliser la condition moins restrictive qui s’écrit

i+ 3 =iy + 3o (30)

Celle-ci exprime que l'unité est la méme sur les deux axes Sz} et Sz), mais pas forcément égale
a celle choisie sur Oz et Oxo. Nous pourrions donc, en ce qui concerne la perpendicularité, re-
commencer la théorie en vérifiant que, lorsqu’on passe d’un repere orthonormé a un autre avec un
éventuel changement d’unité, on a encore les relations (11), (12) et (13), et que I'on a en outre (30).

Ceci fait, on aurait montré que la relation de perpendicularité (17) est intrinseque pour une classe
de reperes plus grande que celle considérée jusqu'’ici, a savoir la classe de tous les reperes ayant des
unités identiques sur les deux axes, méme si cette unité varie d’un repere a l’autre.

Notons enfin que, la relation d’orthogonalité ne dépendant que des projections des segments orientés,
elle s’étend naturellement de ces derniers aux vecteurs. Et donc, si nous considérons que [PQ)] et
[PU] représentent respectivement deux vecteurs @ et 7, nous pouvons dire que @ et B sont
orthogonaux si et seulement si on a la condition (27).

6.2 La distance

Soient P et () deux points. Grace au théoréme de Pythagore, nous pouvons écrire pour le carré de
la distance qui les sépare

P*(P,Q) = (1 —p1)* + (g2 — p2)*. (31)
Vient ensuite bien entendu la question de savoir comment cette expression se transforme dans le
changement de repere. Apres calcul, nous obtenons

d(P,Q) = (¢ — p1)*(riy +7131) + (d — pb)* (o + 132) + 2(q1 — P1) (g5 — Po)(ruiriz + r172).
Mais en vertu de (13) a (15), nous obtenons aussi
d*(P,Q) = () —1)* + (¢ — 1h)*. (32)
Ce que nous observons ici est non plus seulement une relation intrinseque, mais une fonction

intrinséque. Nous pouvons la qualifier d’intrinseque, car elle a la méme expression dans tous les
repeéres (orthogonaux et munis cette fois d’unités identiques sur tous les axes).
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6.3 Trois ensembles de reperes

Jetons un regard en arriére sur les reperes que nous avons envisagés jusqu’ici. A la section 3, nous
sommes partis avec des reperes orthonormés et la méme unité dans tous les reperes. Comme nous
venons de le voir, c’est par rapport a cette classe de reperes que la distance est intrinseque.

Nous avons montré par ailleurs que la perpendicularité était intrinseque par rapport a la classe des
reperes orthonormés munis d’unités éventuellement différentes d’un repere a l'autre.

Mais tous comptes faits, pour prouver le caractere intrinseque des relations (20), (22) et (24) qui
fondent le calcul vectoriel, nous ne nous sommes appuyés sur aucune des conditions (13) a (15).
D’ou l'idée que, sans doute, les vecteurs et le calcul vectoriel sont intrinseques par rapport a la
classe de tous les reperes, sans condition d’orthogonalité et sans qu’on exige rien des unités.

Pour s’assurer de cela, il suffit de vérifier que les formules (11) et (12) de changement de repere
sont applicables dans cette classe de reperes beaucoup plus générale. Nous laissons cette preuve en
exercice.

Nous aboutissons ainsi a une conclusion importante : toutes les propriétés géométriques qui ne
dépendent que de la somme des vecteurs et du produit d’un vecteur par un nombre sont intrinseques
dans la classe des reperes les plus généraux. Ces propriétés sont regroupées sous la dénomination
de géométrie affine.

Les propriétés qui sont intrinseques pour la classe des reperes satisfaisant a la condition (13) d’or-
thogonalité et a la condition (30) d’égalité des unités dans un méme repere, sont connues comme
formant la géométrie euclidienne ou géométrie de la similitude.

Enfin les propriétés qui sont intrinseques pour la classe de repéres la plus restreinte, celle qui exige
les conditions (13) & (15), forment la géométrie métrique.

On dit que ces trois géométries sont emboitées, car tout ce qui est affine est vérifié dans les géométries
euclidienne et métrique, et tout ce qui est affine et euclidien est vérifié dans la géométrie métrique.

6.4 Des axes obliques

Pour illustrer ces résultats, donnons-nous deux reperes non orthogonaux avec des unités différentes
sur chaque axe. Une maniére simple pour obtenir cela consiste a modifier la figure 3 pour remplacer
le réseau de carrés par un réseau de parallélogrammes, ce qui est simple a faire a 'ordinateur. A
ceci pres, aucune des notations de la figure ne doit étre changée.

Fig. 1/
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Mais ceci nous amene une surprise. Aucun des points de la figure n’a changé de coordonnées. Les
formules (11)

/ /
Tl = T11T] + ri22y + S,

Ty = To1x) + 12wy + so. (11)
sont bien entendu toujours valables. Elles se particularisent en
z1 =2+ 0,82) — 0,62}, (9)

x9 = 0,8+ 0,62 + 0,87}, (10)

Mais les formules (13) & (15), & savoir

T11712 + 121722 = 0, (13)
r%l + T%l = 17 (14)
T%l + T%Q = 17 (15)

sont, elles aussi, encore satisfaites !

Que se passe-t-il 7 Nous voulions des reperes non orthonormés et voila que la relation d’orthogonalité
et celle qui exprime ’égalité des unités sur tous les axes sont encore vérifiées. C’est choquant !

Il ne faut pas chercher I'explication trop loin. Ce qui differe principalement d’'un cas a l'autre,
c’est qu’aux figures 3 et 4 le repere de départ était orthonormé. C’est donc dans un tel repere que
les conditions (13) a (15) expriment 'orthogonalité des axes et I’égalité des unités dans les deux
reperes.

Dés que I'on passe a des axes obliques munis d’unités quelconques, les conditions (13) a (15) peuvent
étre satisfaites, mais peuvent aussi ne pas 1’étre, comme le montre la figure 15.

Fig. 15

Que conclure de cette situation intrigante ? Devant la difficulté que nous avons mise en évidence,
nous pouvons prendre deux positions tres différentes.

Premiére position. — Les axes des figures 3 et 4 sont perpendiculaires et portent tous les quatre
la méme unité. Mais d’abord, de quelle perpendicularité s’agit-il? En regardant nos figures, nous
voyons tout de suite qu’il s’agit de ’angle droit physique : c’est celui que 'on trouve en un lieu
donné entre une verticale et une horizontale qui la coupe. C’est aussi celui que I'on obtient en pliant
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soigneusement une feuille de papier en quatre. Nous avons des raisons de souhaiter que les angles
droits soient ceux-la et seulement ceux-la.

Il en va de méme pour I’égalité des unités portées sur les différents axes. Ces unités sont égales au
sens o, si on porte physiquement le segment qui représente I'une d’elles sur chacune des autres,
on arrive dans chaque cas a les faire coincider.

Si nous décidons que, pour nous, la perpendicularité et 'isométrie des segments c’est cela, alors
forcément, les conditions (13) & (15) n’expriment ces deux propriétés que si on les applique dans
des axes de départ déja orthonormés (au sens physique). Et si nos axes de départ sont autres, les
conditions (13) & (15) expriment d’autres propriétés, qui resteraient a interpréter.

Deuzxieme position. — Mais nous pourrions prendre une autre décision : celle que, quel que soit le
systeme d’axes de départ, les conditions (13) & (15) définissent la premiere la perpendicularité des
nouveaux axes et les deux autres ’égalité des unités sur tous les axes. Dans cette perspective, on
ne peut plus dire qu’'un repere est orthonormé absolument parlant. Il faut dire au contraire qu’un
repere est orthonormé par rapport a un autre. L’orthonormalité devient une propriété des couples
de reperes. Et en particulier alors, tout repére est orthonormé par rapport a lui-méme, puisque les
équations de passage sont du type

!
Il —_— 561,

/
:L’Q = x27

et qu’elles satisfont aux conditions d’orthonormalité (13) a (15).

Nous venons de voir que la relation « un repere est orthonormé par rapport a un autre » est
réflexive. Elle est aussi symétrique et transitive. Donc c¢’est une équivalence.

Par conséquent, I’ensemble de tous les reperes se répartit en classes d’équivalence, et au départ
d’un repere quelconque, quelle que soit I'inclinaison (physique) de ses axes et les unités portées par
ceux-ci, on peut définir une géométrie qui conserve entre autres les perpendiculaires et les distances.
Bien entendu, il ne faut pas entendre par la les perpendiculaires et les distances au sens familier (ou
physique), mais bien les perpendiculaires et les distances définies respectivement par les relations
(27) et (30).

Eclairons ces constatations d’une autre maniere. Ne parlons plus pendant un moment ni de plan, ni
de droites, ni de points, et ne considérons plus que I’ensemble R? des couples (x1,z2) de nombres
réels. Installons-nous donc dans l'univers (I’espace?) des nombres. Considérons ensuite tous les
changements de variables définis par des équations du type (11), a savoir

/ /
1 = r1a; +rigxy + S,
/ / 11
To = T91Ty + 722Xy + Sa. ( )
avec la condition rir92 — riarar # 0.

Les relations intrinseques pour ces changements seront dites affines. Nous avons ainsi défini une
géométrie affine sans sortir du domaine des nombres.

Considérons maintenant 1’ensemble des changements du méme type, mais qui satisfont en outre
aux conditions (13) a (15), & savoir

r11712 + 121722 = 0, (13)

T%l + r%l =1, (14>
7’%2 + T%Z =1. (15)
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Ces changements de variables ne se mélangent pas aux autres : si on en compose deux, on obtient
encore un changement du méme type. Les relations et fonctions intrinseques par ces changements
moins généraux seront dites métriques. Nous avons ainsi défini une géométrie métrique sans sortir
du domaine des nombres, et cette géométrie résulte d’une particularisation de la géométrie affine.

Le fond de I’histoire — mais nous ne développerons pas cette considération ici —, c’est que les
changements de variables affines forment un groupe pour l'opération de composition, et que les
changements de variables métriques forment un sous-groupe de ce groupe.

La ou les choses se compliquent, c’est lorsqu’on veut mettre ces changements de variables et ces
relations en correspondance avec le plan II de la géométrie ordinaire, celle ou1 on parle de points et
non plus de couples de nombres réels. Le fait est, comme nous 'avons vu, que la correspondance
peut s’établir au moyen d’un repere de départ quelconque, et que tous les reperes sont équivalents
a cet égard. Il s’agit-la d’'un authentique principe de relativité.

Il existe une infinité de géométries métriques, chacune définie par une classe de reperes orthonormés
les uns par rapport aux autres et tous munis de la méme unité. Si on revient a 'univers physique,
on retrouve les reperes orthonormés au sens familier.

Une géométrie métrique construite au départ d’un repere non orthonormé au sens familier fournit
des résultats assez étonnants pour le sens commun. C’est ainsi que la figure 16 montre deux triangles
isométriques. Quant a la figure 17, elle exprime graphiquement le théoreme de Pythagore.

Fig. 17

Ces conclusions étonnantes s’éclairent si on se souvient de ce qui se passe a une dimension. Pour
fixer un repere sur une droite, on peut choisir une unité arbitraire. Une fois ce choix fait, tout
autre repéere sera réputé normé s’il est construit sur la méme unité. Bien entendu, & une dimension,
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les angles n’interviennent pas. Ce que nous avons découvert ci-dessus, c¢’est qu’a deux dimensions
comme & une, les reperes sont relatifs. Mais a deux dimensions, les angles interviennent. Et la grande
différence, c’est que la nature ne nous a pas donné une unité de longueur naturelle, qui s’impose
plutét que tout autre, tandis qu’elle nous a donné ’angle droit physique auquel notre imagination
est tres attachée.

Exercices.

1) Considérons quatre points P, @, U, V disposés en parallélogramme comme & la figure 18,
autrement dit les points P, @), U, V vérifient la relation algébrique

(1 —p1)+ (ui—p1) = vi—pi,
(g2 —p2) + (ug —p2) = wv2—po.

Fig. 18

Montrer que cette relation est intrinseque pour n’importe quel changement de repére, autrement
dit qu’elle releve de la géométrie affine.

2) Soient trois points P, @, U vérifiant la relation algébrique

p1+q = u,
p2+q = us.

Pour quel type de changement de repeére cette relation est-elle intrinseque ? Donner une interpré-
tation géométrique du résultat.

7 Commentaires

7.1 Regard en arriere sur notre parcours

Pour apprendre ou enseigner les vecteurs, on peut songer a en parcourir la geneése historique.
Mais on sait que celle-ci, a laquelle sont associés les noms d’ARGAND, GRASSMANN, HAMILTON,
HEAVISIDE et beaucoup d’autres, a été extraordinairement longue et tortueuse. Les pionniers des
vecteurs ont avancé sur un terrain accidenté, et I’historien ne peut qu’essayer de comprendre leur
difficile progression, en s’interdisant tous les raccourcis que pourrait suggérer la théorie actuellement
connue, mais inexistante alors. Ceci fait qu’en l'occurence I'histoire fidelement relatée n’est pas
appropriée a un premier enseignement.

Les exposés axiomatiques d’autre part, en s’accrochant a un petit nombre de propriétés de départ
et en procédant par la seule déduction, occultent les questions qui ont engendré la théorie et les
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difficultés essentielles qu’elle permet de vaincre. La pureté d’'une théorie radicalement déductive est
souvent aveuglante. Elle appelle un discours interprétatif laborieux.

Dans notre introduction aux vecteurs, nous n’avons suivi ni la voie de I’histoire fidele, ni celle de
I'axiomatique pure. Nous avons cherché une voie concise qui réponde au besoin de sens, qui montre
a chaque étape, a chaque carrefour, les raisons qui 'ont fait choisir. S’agissant des vecteurs, on
peut dire en schématisant quelque peu, que I’histoire est obscure mais pleine de sens, et que les
exposés axiomatiques sont clairs mais souffrent d’une insuffisance de sens. Nous avons cherché ici a
construire un exposé qui soit a la fois pourvu de sens et clair. Pourvu de sens parce qu’il évoque les
questions motivantes et mobilise les démarches heuristiques autant que les preuves et les calculs, —
et sur ce point il ressemble a I'histoire —, clair parce qu’il emprunte les chemins raccourcis qu’on
peut aujourd’hui discerner dans I’histoire décantée.

Avons-nous réussi cette entreprise 7 Le lecteur en jugera. Quoiqu’il en soit, pour approfondir notre
réflexion sur les vecteurs tout en réfléchissant sur notre type de démarche, rappelons les épisodes
principaux du parcours, en en soulignant au passage les significations heuristiques et théoriques.

Notre point de départ a été la géométrie analytique naive en axes orthonormés. Cette géométrie
répond au besoin d’étudier les figures par calcul. Mais elle impose 1'usage d’un repere, en principe
arbitraire.

Les figures géométriques que 'on veut étudier sont la avant qu’on introduise le repére. Pour les
étudier analytiquement, on les représente par des relations algébriques. Mais une fois qu’elles sont
ainsi représentées en coordonnées, a quoi voit-on encore qu’elles sont indépendantes du repere ?
C’est 1a une premiére question.

Ensuite, apres avoir représenté algébriquement des figures familiéres, connues au préalable, on
peut partir de relations algébriques quelconques (et c’est bien une curiosité qui est apparue dans
I’histoire). Chacune représente une figure. Mais parmi cette foule de figures, n’y en a-t-il pas qui
changent quand le repere change ? C’est une deuriéme question.

A ces questions répond la distinction entre relations intrinseques ou non. Il existe des relations non
intrinseques (et c’est sans doute une surprise). Nous avons dit qu’elles étaient plutot géographiques
que géométriques. Elles sont attachées a un repere, a un lieu donné.

On compare volontiers le repere a un observateur, ou plus modestement a un instrument d’observa-
tion (muni de deux échelles de mesure). Il est naturel de chercher, comme nous venons de ’évoquer,
quelles sont les propriétés géométriques qui ne dépendent pas du repere, celles qui ont de ce fait
une valeur universelle®.

Nous avons testé quelques figures élémentaires — quelques relations algébriques simples —, pour leur
caractere intrinseque. C’étaient les couples de points équipollents, puis un segment et un autre
de méme origine et méme direction mais de longueur différente, et troisiemement la configuration
triangulaire.

Ceci fait, la reconnaissance du caractere intrinseque nous poussait a échapper aux coordonnées pour
ne plus calculer qu’avec des points, éléments géométriques indépendants du repere. Pour y arriver,
nous avons introduit un calcul purement formel, en nous réservant la possibilité de le justifier
pleinement plus tard. C’est 1la une démarche heuristique, injustifiée sur le plan déductif, mais qu’on
trouve plusieurs fois dans I’histoire des mathématiques”.

La seule exigence de maintenir le sens du signe égal nous a alors conduits aux vecteurs libres.
Nous avons été forcés d’accepter cet objet insolite. Ceci fait, le symbole pour le produit d’un

6 Par raison de simplicité, nous n’avons pas évoqué la question de 'orientation des repéres.
" Par exemple lors de 'introduction des nombres négatifs, des nombres complexes, du calcul symbolique de HEA-
VISIDE.
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vecteur par un nombre (en l'occurrence I’absence de symbole) et le symbole pour la somme, non
seulement prenaient d’office une signification nouvelle parce qu’ils étaient appliqués a des objets
nouveaux, mais cette signification nous était imposée, et nous arrivions a décrire ces opérations
géométriquement (c’est-a-dire sans plus retourner aux reperes). Et pour la somme, nous avions
méme deux constructions équivalentes. Nous tenions donc les éléments d’un calcul intrinseque
appliqué aux vecteurs libres.

Le pas suivant a consisté a nous libérer, dans la notation adoptée pour les vecteurs, de toute
référence a un couple de points représentant celui-ci. Le vecteur, ensemble infini de couples de
points équipollents, se voyait ainsi attribuer un symbole simple, reconnaissant son existence d’objet
mathématique indépendant.

Bien entendu, nous devions alors nous poser la question des regles de ce nouveau calcul. Heureuse
surprise, toutes les régles que nous espérions (parce qu’elles nous étaient familieres dans le cas des
nombres) se trouvent d’office vérifiées. Elle sont démontrables par retour aux coordonnées, mais
aussi directement par la géométrie élémentaire. Pour ceux qui le connaissaient déja, un espace
vectoriel était ainsi reconstruit.

Tout cela par la vertu du seul signe « = ». Mais le vecteur libre avec son infinité de segments est un
monstre. D’ou la question : pourquoi ne pas chercher a construire un calcul géométrique au départ
des seuls segments ? Cette idée nous a conduits a une premiere déconvenue : avec la somme des
segments par enchainement, on n’obtient pas de regles de calcul commodes, car la somme n’est pas
définie assez souvent. Par contre une bonne surprise avec la somme par la regle du parallélogramme :
si on ne considere que les segments issus d’un seul point, toutes les regles de calcul sont réalisées.
On retrouve un autre espace vectoriel. Malheureusement, pour faire de la géométrie, le lien obligé
a un point est une contrainte génante.

Ceci fait, nous voyions comment se comportent quelques relations simples dans des changements
de repere. Mais certaines propriétés géométriques, par exemple la perpendicularité et la distance,
s’expriment par des relations ou des fonctions que nous n’avions pas encore examinées. D’ou la
question du caractere intrinseque de ces dernieres.

Or nous nous sommes apercus que la perpendicularité et la distance étaient bien intrinseques pour
la catégorie de reperes que nous avions choisie, a savoir celle des reperes orthonormés munis d’une
méme unité de longueur. Mais notre attention était attirée sur le fait que, pour établir ce caractere
intrinseque, nous devions nous appuyer sur les conditions d’orthonormalité. Observation curieuse,
car pour les relations étudiées jusque-la, il n’en avait rien été.

D’ou une nouvelle question : ne pouvions-nous pas nous attendre a ce que I’équipollence des seg-
ments, la multiplication des segments par un nombre et la configuration triangulaire, soient intrin-
seques pour des changements de reperes non orthonormés? Et supposons méme que nous n’ayons
pas fait cette observation sur le role des conditions d’orthonormalité. Apres tout, pour donner des
coordonnées aux points, un repere oblique muni d’unités quelconques fait aussi bien 'affaire qu’un
repere orthonormé. Et donc il est assez naturel de se demander jusqu’ou on peut fonder la géométrie
si on considere d’emblée tous ces reperes.

La réponse a cette question ne nous demandait pour commencer quun simple travail de vérifica-
tion. Et nous avons eu la satisfaction de constater que tout ce que nous avions démontré et défini
pour des relations du premier degré pouvait étre conservé sans changement.

Mais une grosse surprise nous attendait. En effet, pour le premier exemple que nous avions choisi
montrant le passage d’un repere oblique & un autre, celui de la figure 14, nous constations que
les conditions d’orthonormalité étaient vérifiées. Dot une véritable (re)découverte, a savoir que
I’orthonormalité n’est la propriété d’aucun repere particulier, mais bien qu’elle est une relation



7. Commentaires 547

entre deux reperes. L’angle droit n’était-il donc pas ce que nous pensions? C’était une nouvelle
question.

Enfin, voyant que certaines relations algébriques (certaines propriétés) résistaient & certains change-
ments de repere, mais non a tous, nous avons cherché pour chacune des propriétés de base étudiées
jusque-la, a quelle classe de changements de repere elle résistait. Cela nous a permis de définir la
géométrie affine, la géométrie des similitudes et la géométrie métrique.

Nous pouvons certes conclure qu’aller a la recherche des vecteurs n’était ni un cheminement déductif,
ni une démarche de routine.

7.2 Le vecteur : un monstre commode!

Lorsque nous pensons a la géométrie au sens le plus ordinaire, nous voyons au départ des points, des
droites (et des plans si nous considérons la troisieme dimension). Or dans notre exposé, il y avait
bien des points au départ, mais nous n’avons pas évoqué les droites. Méme la condition d’alignement
concernait une relation entre trois points et ne s’appuyait pas sur la connaissance des droites. Ce
n’est pas un mal car on peut considérer, du point de vue du bon sens, que la droite est un monstre
tellement grand qu’il est difficile & imaginer. Qui plus est, au fur et & mesure de notre exposé, les
points sont passés au deuxieme plan, et ont cédé la place aux vecteurs libres®.

D’un certain point de vue, les vecteurs libres sont moins monstrueux que les droites, car on les
construit avec des segments, qui sont des figures bornées. Encore qu’il existe des segments aussi
grands que 'on veut... Mais si le vecteur échappe jusqu’a un certain point au handicap de la
longueur infinie, par contre il est monstrueux parce qu’il est infini du c6té des nombres : chaque
vecteur libre est un ensemble infini de segments. Que gagne-t-on a passer ainsi d’une monstruosité
a une autre?

Un élément de réponse est assez clair : avec les vecteurs on peut calculer, avec les droites non.
Avec les points représentés par des coordonnées on peut aussi calculer, mais les coordonnées ne
sont pas intrinseques, et la géométrie analytique conduit souvent a calculer en aveugle. Le vecteur
est libre d’abord parce qu’en le créant, on I’a libéré des coordonnées. Mais il est doublement libre,
parce qu’on l’a aussi libéré des couples de points. En fait — nous ’avons dit a suffisance —, si on
devait le voir strictement comme ’ensemble de tous les couples de points équipollents & un couple
donné, un seul vecteur noircirait tout le plan et on n’y verrait rien du tout. Mais I'imagination de
I’étre humain a des ressources indispensables a la pensée mathématique. On peut voir le vecteur
comme une infinité seulement potentielle de couples de points, se dire qu’on peut représenter un
tel couple n’importe ot, mais qu’on n’est pas obligé de le faire. Le vecteur libre est partout, il a le
don d’ubiquité, mais on le manifeste ot on veut. Le plus intéressant est de le voir au bon endroit
dans la figure que l'on étudie. Il y apparait comme un segment orienté, une fleche que ’'on combine
a d’autres fleches, en général sans perdre de vue ce que l'on fait, ni ce que l'on veut faire. Et on
conserve par devers soi la certitude que ces pseudo-fleches ont un statut théorique qui légitime ce
que 'on fait. Mais on sait que dans beaucoup de cas, a la fin il va falloir revenir aux nombres.
Face & une situation géométrique donnée, et comme l’écrivent G. NOEL et al. [1998], on réalise
un véritable plan de calcul en allant placer les vecteurs la ou ils manifestent le plus clairement les
propriétés données, en les combinant par calcul pour arriver au résultat escompté, et finalement
en les projetant dans un repere choisi de fagcon a minimiser les calculs lors du nécessaire retour au
numérique.

8 Les vecteurs ont la vocation de se substituer totalement aux points comme termes de base de la géométrie. En
effet, les exposés modernes de la géométrie commencent souvent comme ceci : soit un espace vectoriel sur un corps. Et
a partir de 1a, on construit la notion d’espace affine, ce qui rameéne 'imagination vers les points. Pour un bel exemple
de cela, proposé pour les classes avancées du secondaire, voir E. ARTIN [1960].
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Tant qu’a parler du vecteur tel que nous le percevons maintenant, notons enfin qu’il n’est pas
un concept isolé, et c’est la sans doute une observation d’'une grande portée pour l’enseignement.
Nous l'avons vu : le vecteur est né dans le champ des coordonnées, des changements de repere,
de la recherche du caractere intrinseque, des géométries affine, euclidienne et métrique. Il est vrai
que face a un probleme géométrique, on peut choisir de le traiter, selon 'avantage que l'on y
voit, analytiquement, vectoriellement, par transformations... Mais d’aprés ce que nous avons vu,
il y aurait une perte de sens a décider que, dans l'apprentissage de la géométrie, on privilégiera
I’analytique, ou les transformations, ou les vecteurs.

7.3 Et sur le plan philosophique ?

Notre étude a abouti a des conclusions mathématiques précises. Mais elle provoque aussi au passage
plusieurs questions de nature philosophique. En voici deux, parmi les plus visibles. Le lecteur que
la philosophie ennuie peut sauter cette section.

Premiérement, nous avons importé un calcul formel dans l'univers des différences de points : ¢’était
un parachutage de symboles sur des choses dont nous ne savions pas a priori si elles pouvaient
accepter cette violence. Or elles ne 'acceptaient pas. Le signe « = » était immédiatement mis en
cause. Ou bien nous maintenions que notre calcul portait sur des différences de points, mais alors le
signe « = » tel que nous 'avions introduit était absurde; ou bien nous maintenions le sens habituel
du signe « = », mais alors il nous fallait redéfinir ce sur quoi portait notre calcul. C’est ce que nous
avons fait. Un étre nouveau est né la. Lorsque le signe « = » est en cause, on touche a une question
ontologique.

Et quelle est la nature de cet étre nouveau? C’est un étre collectif, une collection infinie des choses
de départ (les couples de points). Pourquoi? C’est étrange, mais cela s’explique sans doute. Un
couple de points est une chose particuliere, trop particuliere. On voudrait qu’il demeure lui-méme
quand on le déplace (par équipollence), comme une chaise ne cesse pas d’étre elle-méme lorsqu’on la
déplace. Mais un couple de points déplacé est un autre couple de points. Notre géométrie familiere
ne nous permet pas de telles identifications. Des points distincts sont des points distincts. Quelle est
la solution ? C’est de dire que notre nouvel objet sera, non pas un couple de points déplacable a gré,
puisque nous ne pouvons pas faire cela, mais ’ensemble de tous les couples de points équipollents
a un couple donné. L’objectivation, la fabrication du nouvel objet est une collectivisation. Le sens

commun en prend un coup. Tant pis sil s’y trouve assez d’avantages par ailleurs?.

Un autre point intrigant de notre étude concerne les reperes orthonormés, et plus généralement la
géométrie métrique. Nous vivons dans un monde ol les angles droits sont aisément reconnaissables
et ou nous pouvons aller mesurer des longueurs n’importe ot et dans n’importe quelle direction,
a l'aide d’une regle graduée indéformable. Mais réfléchissons un moment : comment savons-nous
que notre regle est indéformable 7 Est-ce parce que nous pouvons vérifier qu’elle ne change pas de
longueur, en nous servant d’une autre regle ? Mais alors, comment vérifier cette derniere? Nous
sommes dans I'impasse. De deux choses I'une : ou bien notre regle change de longueur, mais nous
ne pourrons jamais le vérifier, ou bien la question n’a pas de sens.

9 Ce procédé de collectivisation n’est pas propre aux mathématiques. Par exemple, M. MERLEAU-PONTY [1945]
observe que notre perception visuelle ou tactile d’un objet quelconque est essentiellement variable, instable, et qu’elle
dépend des situations de ’objet par rapport a nous. Il se demande alors ce qui en fonde le caractere objectif, quelle est
cette chose stable, invariable, a laquelle nous identifions I'objet. Et sa réponse est qu’il s’agit de [’ensemble structuré
de ses apparences possibles. En passant des apparences particulieres et fortuites a ’ensemble des apparences connues
par expérience, il échappe au caracteére particulier et fortuit. Cet ensemble d’apparences est partagé (ou au moins
partageable) par tous les étres humains. Il est objectif. Il s’agit bien ici aussi d’un procédé de collectivisation. Pour
échapper au particulier, on regroupe adéquatement assez de choses particuliéres.
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Examinons les choses un peu autrement. Dans le plan qui nous est familier, & chaque repere méme
oblique et muni d’unités quelconques, nous pouvons faire correspondre un modele de la géométrie
métrique. Dans un tel modele, tous les reperes sont orthogonaux les uns par rapport aux autres,
bien que nous ne leur trouvions, par rapport a nos critéres familiers, ni angles droits, ni mémes
unités sur les axes. Mais supposons que débarque chez nous un arpenteur venu d’ailleurs avec ses
instruments. Et supposons que son équerre — vue par nous —, change son angle principal de sorte
qu’il déclare droits certains angles que nous ne voyons pas tels. Et supposons que sa regle graduée
— vue par nous —, change de longueur lorsqu’il la tourne, de sorte en particulier qu’il vérifie I’égalité
des unités sur ses deux axes. Cet arpenteur estimera que nos reperes orthonormés ne le sont pas.
Aura-t-il raison? Une commission d’enquéte de 1’Académie des Sciences pourra-t-elle trancher ?
Qui nous dit qu’il existe bien dans la nature un prototype d’angle droit différent de tous les autres ?
Un angle qui serait droit par essence ? Et non pas par rapport a d’autres 7 Nous croyons volontiers
que les choses existent par elle-mémes avec leurs propriétés familieres, et que nous les percevons
objectivement. Le malheur veut que, des que nous voulons les penser, nous sommes obligés de les
penser par rapport a d’autres, de les expliquer en nous appuyant sur d’autres. Mais est-ce bien un
malheur ? Ou est-ce seulement la nature de 'esprit qui veut que I'on pense non les choses, mais
les relations 7 PLATON pensait que les choses existaient dans un paradis des idées, lieu de la réalité
éternelle. Mais au cours des siecles, les mathématiques ont dit de moins en moins ce qu’étaient
les choses, pour se concentrer sur leurs relations, pour étudier des structures. Elles ont en outre
contribué, au cours du XX€ siecle, a ’émergence d’un courant structuraliste dans des disciplines
aussi diverses que la linguistique, ’anthropologie et ’analyse de textes en littérature.

8 Appendice : les transformations

Nous avons introduit les géométries affine, euclidienne et métrique par le truchement des change-
ments de repere et des relations intrinseques. Or souvent on aborde ces mémes théories en parlant
de transformations du plan et de relations ou de propriétés invariantes pour des tranformations.
Montrons maintenant que les deux approches sont équivalentes. En fait, méme si changer de repere
et transformer le plan sont deux opérations tres différentes dans la pratique et pour I'intuition, elles
se correspondent parfaitement, comme nous allons le montrer.

Reprenons le changement de repere illustré par la figure 3 et exprimé par les équations (9) et (10).
Dans cette situation, il y a un plan (et un seul) et deux fagons d’en coder les points.

X*
N
\
YoX )¢
X9 P
1 2
X1
3 A
p 9 0.6,
1
0,65:0.8
G
C 1
1 X
Fig. 19

Regardons maintenant la figure autrement (cf. figure 19). Imaginons que nous fassions bouger le
premier repere et qu’il entraine avec lui tous les points du plan. Envoyons le sur le second repere.
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Ainsi tout le plan est déplacé. Et un point X de coordonnées (x1,z2) dans le premier repére est
envoyé sur le point X* de coordonnées également (x1,x2) dans le second (qui coincide avec le
premier déplacé). Nous venons de définir ce que l'on appelle techniquement un déplacement du
plan.

Exprimons maintenant, dans le premier repere, les coordonnées (x7, z5) de X* en fonction de celles
(z1,22) de X. En considérant tout d’abord les abscisses, nous voyons que

r] =51+ (a1 — s1) + (2] — a1). (34)

En remplacant s; ainsi que les différences (a; — s1) et (z7 — a1) par leurs valeurs calculées de la
méme facon qu’a la section 3, nous obtenons

x] =2+0,8z; — 0,6z,. (35)
Et nous obtenons de méme pour les ordonnées

x5 =0,84 0,6z + 0, 8x3. (36)

De maniere générale, les formules qui traduisent un tel déplacement s’écrivent
x] = rixy + riaxs + si,
Ty = T9171 + roaT2 + So. (37)
Ces égalités sont de la méme forme que (11), a ceci prés qu’on y trouve aux premiers membres les
coordonnées (dans le premier repeére) du point image X*, et aux seconds membres celles du point
X de départ.

Nous appellerons le déplacement du plan que nous venons de définir ainsi déplacement associé au
changement de repere.

Démontrons maintenant de maniere générale I'identité de forme des équations de changement de
repere et des équations du déplacement associé.

Pour cela considérons d’abord le changement de repere. On part d’un point quelconque P du
plan. Soient 7(P) ses coordonnées dans le premier repeére et r/(P) ses coordonnées dans le second.
Comment passe-t-on de r'(P) & r(P)? On a

r(P)=ror'lor'(P)

et donc la fonction qui envoie 7/(P) sur 7(P) est ror’~1. Nous savons par ailleurs que cette fonction
est décrite par les équations (6), mais en l'occurrence, cela n’a pas d’importance.

Regardons maintenant le déplacement. On part d’un point P. Ses coordonnées dans le premier
repere sont r(P). Mais, par définition méme du déplacement, 'image P* de P est le point qui a
r(P) pour coordonnées dans le deuxieme repere. Donc on a

P*=¢"1lor(P).

Prenons I'image de chacun des deux membres de cette équation par la fonction r ou, en d’autres
termes, passons aux coordonnées dans le premier repere. Il vient

r(P*)=ro r~lo r(P),

ou encore

r(P*) = (ror Yor(P).
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Ainsi, la fonction qui envoie 7(P) sur 7(P*) est bien également r o7/~ 1.

Pour expliquer la notion de relation invariante, partons de I’exemple de la relation (3), a savoir
(@1 — p1)(u2 — p2) — (g2 — p2)(u1 — p1) = 0. (3)

En nous placant dans le premier repere, nous avons construit les triplets de points satisfaisant a
cette relation (voir figure 2). En nous placant dans le second, nous pouvons construire les triplets
satisfaisant a (19). Mais comme (3) et (19) sont de la méme forme, ces triplets ne seront rien
d’autre que les triplets associés au premier repere, mais transportés un peu plus loin, entrainés
dans le déplacement qui a porté le premier repere sur le second (voir figure 20).

U*

X2 4 %l

A}

[y

" xg

[y

Fig. 20

D’autre part, nous savons aussi que les triplets de points satisfaisant a (19) sont les triplets construits
dans le premier repére, mais vus du second, c’est-a-dire exprimés au moyen des coordonnées dans
le second repere. Et par conséquent, I'ensemble des triplets transportés est identique a ’ensemble
des triplets de départ. Nous pouvons donc remplacer dans (3) les coordonnées de départ par les
coordonnées des points déplacés, ce qui nous donne

(@1 — p1)(u3 —p3) — (¢5 — p3)(uj —p1) = 0. (38)

Nous pouvons confirmer ce résultat de la maniere suivante. Passons dans (3) des coordonnées de
départ aux coordonnées des points déplacés, ce qui se fait grace aux équations (37). Nous retrouvons
I’égalité (38). Celle-ci montre donc bien que les points déplacés satisfont a la méme relation que les
points de départ. D’une telle relation, on dit qu’elle est invariante.

Le type de raisonnement que nous venons de faire peut étre appliqué a une relation quelconque. Et
donc nous avons montré qu’une relation est invariante si et seulement si elle est intrinséque.

A un changement de repere tout a fait général (avec des axes obliques) caractérisé par les équa-
tions (11), est associé une transformation du plan caractérisée par les mémes équations. Une telle
transformation est dite affine. Les relations intrinseques par les changements de repere quelconques
sont donc des invariants pour les transformations affines. Par exemple, on dira que les transforma-
tions affines conservent I'alignement de trois points, ’équipollence de deux segments orientés, ou le
rapport des longeurs de deux segments orientés paralleles.

Si par contre 'on passe d’un repere orthonormé a un autre en gardant la méme unité de longueur,
les déplacements associés sont des isométries. Nous avons donc vu que la distance entre deux points
est conservée par isométrie. A la section 6.4, nous avons également remarqué que la perpendicularité
occupait une position inermédiaire, puisqu’elle est intrinseque pour une classe de changements de
repere correspondant a la géométrie euclidienne. Les transformations associées a ces changements
de repere sont des similitudes, et la perpendicularité est donc un invariant des similitudes.
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CHAP. LXVIL

Of NECGATIVE SQUARES, and their IMAGINARY ROOTS in Algebra.

These Imaginary Quantities (as they are commonly called) arising from the Supposed Root of a
Negative Square, (when they happen,) are reputed to imply that the Case proposed is Impossible.
And so indeed it is, as to the first and strict notion of what is proposed. For it is not possible,
that any Number (Negative or Affirmative) Multiplied into itself, can produce, (for instance)
—4. Since that Like Signs (whether + or —) will produce +; and therefore not —4.
But it is also Impossible, that any Quantity (though not a Supposed Square) can be Negative.
Since that it is not possible that any Magnitude can be Less than Nothing, or any Number Fewer
than None.
Yet is not that Supposition (of Negative Quantities,) either Unuseful or Absurd; when rightly
understood. And though, as to the bare Algebraick Notation, it import a Quantity less than
nothing: Yet, when it comes to a Physical Application, it denotes as Real a Quantity as if the
Sign were +; but to be interpreted in a contrary sense.
As for instance: Supposing a man to have advanced or moved forward, (from A to B,) 5 Yards;
and than to retreat (from B to C) 2 Yards: If it be asked, how much he had Advanced (upon
the whole march) when at C? I find (by Subducting 2 from 5,) that he is Advanced 3 Yards.
(Because +5 — 2 = +3.)

D A C B
F-F-F -1

But if, having Advanced 5 Yards to B, he thence Retreat 8 Yards to D; and it be then asked
How much he is Advanced when at D, or how much Forwarder then when he was at A: I say —3
Yards. (Because +5 — 8 = —3.) That is to say, he is advanced 3 Yards less than nothing.
Which in propriety of Speech, cannot be, (thince there cannot be less than nothing.) And
therefore as to the Line AB Forward, the case is Impossible.

But if (contrary to the Supposition,) the Line from A, be continued Backward, we shall find D,
3 Yards Behind A. (Which was presumed to be Before it.)

And thus to say, he is Advanced —3 Yards; is but what we should say (in ordinary form of
Speech), he is Retreated 3 Yards; or he wants 3 Yards of being so Forward as he was at A.
Which doth not only answer Negatively to the Question asked. That he is not (as was supposed,)
Advanced at all: But tells moreover, he is so far from being advanced, (as was supposed) that
he is Retreated 3 Yards; or that he is at D, more Backward by 3 Yards, than he was at A.
And consequently —3, doth as truly design the Point D; as +3 designed the Point C. Not
Forward, as was supposed; But Backward from A.

So that +3, signifies 3 Yards Forward; and —3, signifies 3 Yards Backward: But still in the same
Streight Line. And each designs (at least in the same Infinite Line,) one Single Point: And but
one. And thus it is in all Lateral Equations; as having but one Single Root.
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Now what is admitted in Lines, must on the same Reason, be allowed in Plains also.

As for instance: Supposing that in one Place, we Gain from the Sea, 30 Acres, but Lose in
another Place, 20 Acres: If it be now asked, How many Acres we have gained upon the whole:
The Answer is, 10 Acres, or +10. (Because of 30 — 20 = 10.) Or, which is all one 1600 Square
Perches. (For the English Acre being Equal to a Plain of 40 Perches in length, and 4 in breadth,
whose Area is 160; 10 Acres will be 1600 Square Perches.) Which if it lye in a Square Form, the
Side of that Square will be 40 Perches in length; or (admitting of a Negative Root,) —40.

But if then in a third Place, we lose 20 Acres more; and the same Question be again asked, How
much we have gained in the whole; the Answer must be —10 Acres. (Because 30—20—20 = —10.)
That is to say, The Gain is 10 Acres less than nothing. Which is the same as to say, there is a
Loss of 10 Acres: or of 1600 Square Perches.

Anf hitherto, there is now new Difficulty arising, nor any other Impossibility than what we met
with before, (in supposing a Negative Quantity, or somewhat Less than nothing:) Save only that
V1600 is ambiguous; and may be +40, or —40. And from such Ambiguity it is, that Quadratick
Equations admit of Two Roots.

But now (supposing this Negative Plain, —1600 Perches, to be in the form of a Square;) must
not this Supposed Square be supposed to have a Side? Anf if so, What shall this Side be?

We cannot say it is 40, nor that it is —40. (Because either of these Multiplyed into itself, will
make +1600; not —1600).

But thus rather, that it is v/ — 1600, (the Supposed Root of a Negative Square;) or (which is
Equivalent thereunto) 10 V- 16, or 20 V- 4, or 40 Vv —1.

Where v/ implies a Mean Proportional between a Positive and a Negative Quantity. For like as
Vbe signifies a Mean Proportional between +b and +c; or between —b, and —c¢; either of which,
by Multiplication, makes +bc:) So doth v — b signify a Mean Proportional between +b and —e,
or between —b and +c; either of which being Multiplied, make —bc. And this as to Algebraick
consideration, is the true notion of such Imaginary Root, vV — be.
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Ces quantités, dites imaginaires, provenant des racines supposées de carrés négatifs, sont censées
impliquer que la situation est impossible. Et il en est effectivement ainsi si 'on s’en tient stricte-
ment a ce qui est communément admis. Car il est impossible qu’un nombre (négatif ou positif),
multiplié par lui-méme puisse produire (par exemple) —4, en vertu de la regle des signes. Mais
il est tout aussi impossible qu'une quantité quelconque, méme non supposée carrée, puisse étre
négative. En effet, il n’est pas possible qu’'une grandeur puisse étre moindre que rien, ou qu'un
nombre soit plus petit que zéro.
Mais cette supposition (de 'existence de quantités négatives) n’est ni inutile, ni absurde, lors-
qu’elle est bien comprise. Et si, du point de vue de la notation algébrique pure, cela amene une
quantité inférieure a zéro, lorsqu’on 'applique a la physique, elle représente une quantité tout
aussi réelle que si le signe était +, mais il faut I'interpréter en sens contraire.
Ainsi, par exemple : supposons qu'un homme ait avancé (de A vers B) de 5 yards, et qu’ensuite,
il ait reculé (de B vers C) de 2 yards. Si on demande de combien il a avancé (quand il est en
(), ou a combien de yards il est devant A, je trouve (en soustrayant 2 de 5) qu’il a avancé de 3
yards (parce que 5 — 2 = 3).

D A C B
F-F-F -1

Mais si, ayant avancé de 5 yards vers B, il recule ensuite de 8 yards vers D, et qu’on demande
de combien il a avancé quand il est en D, ou combien plus en avant il est de A, je dis —3 yards
(parce que 5 — 8 = —3). Cest-a-dire qu'’il a avancé de 3 yards de moins que rien.

Ce qui, du point de vue de la justesse de I’expression ne peut étre, puisqu’il ne peut exister
moins que rien. Ainsi, si on se limite & la ligne AB vers ’avant, la situation est impossible.
Mais si (contrairement a notre supposition) la ligne partant de A peut étre prolongée vers
Parriere, nous trouverons D 3 yards derriere A (ce qui est supposé étre avant lui).

Et donc, dire qu’il a avancé de —3 yards représente ce que nous exprimerions, en langage
ordinaire, par : il a reculé de 3 yards, ou il manque 3 yards pour étre aussi en avant qu’il I’était
en A.

Ceci ne répond pas seulement par un nombre négatif a la question posée, car il n’a pas (comme
on Pavait supposé) avancé du tout, mais au contraire, il est si loin d’avoir avancé, qu’il a reculé
de 3 yards, et qu’il est en D, 3 yards plus en arriere que lorsqu’il était en A.

Et, par conséquent, —3 désigne le point D aussi réellement que +3 désigne le point C'. Non pas
en avant, comme on l’avait supposé, mais en arriere de A. Ainsi, +3 signifie 3 yards en avant et
—3, 3 yards en arriére, mais toujours sur la méme ligne droite. Et chacun désigne (en tout cas
sur la méme ligne droite infinie) un et un seul point. Et il en va ainsi pour toute équation du
premier degré qui n’admet qu’une seule racine.
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Maintenant, ce qu’on admet sur les droites doit, pour la méme raison, étre admis dans les plans.
Et par exemple, supposons qu’en un endroit, nous gagnons 30 acres sur la mer, mais que nous
en perdons 20 en un autre lieu, et qu'on demande combien d’acres nous avons gagné en tout;
la réponse est 10 acres ou +10 (parce que 30 — 20 = 10). Ceci représente aussi 1600 perches
carrées (car I’acre anglais est une surface rectangulaire de 40 perches de longueur sur 4 perches
de largeur dont aire est 160; 10 acres valent donc 1600 perches carrées).

Si cette surface est un carré, son coté sera long de 40 perches ou (si on admet la racine négative)
—40. Mais si en un troisieme endroit, on perd 20 acres de plus, et qu’on pose la méme question :
combien avons nous gagné en tout ? La réponse doit étre —10 acres (car 30 — 20 — 20 = —10)
c’est-a-dire que le gain est de 10 acres moins que rien. Ce qui revient a dire qu’il y a une perte
de 10 acres ou de 1600 perches carrées.

Et de la nait une nouvelle difficulté, qui n’est pas plus une impossibilité que celle que nous
avons rencontrée précédemment (en supposant une quantité négative ou moindre que rien). Ne
considérer que /1600 est ambigu, cela peut étre 40 ou —40. Et de cette ambiguité, il ressort que
les équations quadratiques ont deux racines.

Maintenant (en supposant que cette surface négative —1600 perches a la forme d’un carré), ne
doit-on pas admettre que ce supposé carré possede un coté? Et si oui, que sera ce coté?

Nous ne pouvons pas dire qu’il vaut 40, ni —40 (parce que I'une ou l'autre de ces valeurs,
multipliée par elle-méme, donnera +1600, pas —1600). Mais plus vraisemblablement, sa valeur
est v/—1600 (la supposée racine d'un carré négatif) ou (ce qui est équivalent) 10,/—16 ou 20y/—4
ou 40y/—1. Le symbole v suggere une moyenne proportionnelle entre une quantité positive et
une quantité négative. Car, de la méme maniére que v/be représente une moyenne proportionnelle
entre +b et +c, ou entre —b et —c (dont le produit vaut be dans les deux cas), v/—bc indique une
moyenne proportionnelle entre +b et —c, ou entre —b et +c¢ (dont le produit vaut —bc). Et ceci,
sur le plan algébrique, fournit la véritable interprétation d’'une telle racine imaginaire v/—bc.
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6. Si I’on opere sur le symbole a4+ by/—1 par le moyen du facteur v/—1, on obtient —b+a+/—1; ce
résultat établit que les coordonnées x, y du point représenté sont respectivement —b et a ; mais,
d’apres la seconde maniere de voir, —b + ay/—1 représente la droite menée de ’origine au point
(—b,a). La longueur de cette droite est demeurée égale a va? + b?, mais la direction de la droite
fait avec I'axe des x un angle égal & tang ~* (—%), angle qui dépasse de 90° I’angle tang ~! (3),
comme il est facile de s’en assurer.

7. Le théoreme de Moivre nous aidera a avancer d’'un pas de plus en avant dans la voie. En effet,
si nous multiplions, non plus par /—1 mais par un facteur plus général égal & cos a+ /—1sin o,
ce facteur, opérant sur une droite quelconque dans le plan des xy, aura pour effet de la faire
tourner, dans le sens positif, d'un angle égal & a. [On s’apercoit du reste que le facteur /—1
employé en premier lieu ne représente qu’'un cas particulier de cos o + /—1 sin a, correspondant
da=in]

Nous aurons ainsi, en effectuant la multiplication d’apres les regles ordinaires,

(cosa+v—1sina)(a+bv—1) =acosa —bsina+ v—1(asina + beos a).

On s’apercoit, par la forme méme du résultat, que le produit indique 'effet de la rotation d’un
angle «, et 'on peut vérifier le fait en faisant tourner les axes de coordonnées d’un angle o (mais
dans le sens contraire), a 'aide des formules connues pour le changement d’axes. Nous pouvons
aussi vérifier le fait de la rotation de la maniere suivante : en premier lieu, la longueur sera

[(acosa — bsina)? + (asinoz+bcosa)2]% = (a® +b2)%,

ce qu’elle était auparavant ; en second lieu, 'inclinaison sur I’axe des Oz est égale a

i b tang o + b b
tang ~* asmat C(,jsa = tang _1—( % :) =a+tang (= ).
acosa — bsina (1 — Ltang a) a

8. Par ce qui précede nous pouvons maintenant nous rendre compte du sens de la formule
(cosa+ vV —1sina)™ = cosma + v —1sinma.

En effet, le premier membre représente un opérateur qui produit m rotations successives, d’un
angle a chacune; le second membre exprime l'opérateur d’une rotation unique d’'un angle ma
d’un seul trait.

Arrivés a ce point de la question, nous avons intérét & constater, par anticipation, qu'un qua-
ternion est généralement susceptible d’étre mis sous la forme

N(cos + wsinb),
N étant une quantité purement numérique, 6 un angle réel et w répondant a
w? = —1.

Cette forme de représentation d’un quaternion et les formes d’expression qui entrent dans la
formule de Moivre ont entre elles une grande ressemblance ; mais il y a entre elles une différence
essentielle (et c’est en elle que réside le point capital de 'invention de Hamilton), savoir que
@ n'est pas 1'équivalent de ’élément algébrique v/—1, mais qu’il représente I'unité de longueur
dirigée dans une direction DONNEE quelconque dans [’espace.
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Two right lines are added if we unite them in such a way that the second line begins where the
first one ends, and then pass a right line from the first to the last point of the united lines. This
line is the sum of the united lines.

For example, if a point moves forward three feet and backward two feet, the sum of these two
paths is not the first three and the last two feet combined ; the sum is one foot forward. For this
path, described by the same point, gives the same effect as both the other paths.
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Questo metodo soddisfa un desiderio del Carnot di trovare un algoritmo, che rappresenti nello
stesso tempo e la grandezza e la posizione delle varie parti di una figura ; ne risultano quindi, per
via diretta, eleganti e semplici soluzioni grafiche dei problemi geometrici. Il metodo delle equi-
pollenze comprende come casi particolari i metodi delle coordinate parallele o polari, il calcolo
baricentrico ecc. : i problemi sulle curve vi si risolvono in generale senza preferire una maniera
di rappresentazione ad un’altra; perloche i calcoli sono piu spediti di quelli della Geometria
analitica, ed i risultamenti sono espressi sotto forma piu semplice.

E essenziale nel metodo delle equipollenze la distinzione delle parti positive dalle negative, sicche
la correlazione delle figure € una conseguenza necessaria dell” algoritmo, senza che vi sia bisogno
di alcuna speciale osservazione, perloche viena tolta ogni tema di errore. Chi sia abituato ai
principj della Géometrie de Position trovera facile seguirmi nelle poche convenzioni su cui si
appogia il metodo ; forse si potrebbero rendere ancora piu conformi all’uso ordinario; ma non
trovo conveniente di posporre la brevita delle formule ad una leggerissima facilita. Le convenzioni
saranno facili da ritenersi a memoria, percheé alcune conformi alle solite regole relative alle quan-
tita positive e negative, altre conformi alla notissima composizione delle forze. Le equipollenze
esprimono relazioni di rette considerate non solo rispetto alla direzione (o inclinazione che voglia
dirsi) ; sicche esse sono essenzialmente differenti dalle equazioni, che esprimono relazioni di sole
quantita reali; nulladimeno il calcolo delle equipollenze segue precisamente le stesse regole, che
valgono nel calcolo delle equazioni, il che torna non poco vantaggioso.
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CHAPITRE II

Multiplication et division des droites.
PRODUIT DE DEUX DROITES.—PRODUITS DE PLUSIEURS DROITES.

28. Jusqu’a présent, dans les calculs que nous avons effectués sur les droites, nous n’avons fait
intervenir que la multiplication par un nombre réel. Nous avons maintenant a considérer des
produits de droites multipliées les unes par les autres, et pour cela, nous devons tout d’abord
définir le produit de deux droites, que nous supposerons ramenées a la méme origine O.

Le produit de deuz droites OA, OB est une droite OC dont la LONGUEUR est égale au PRODUIT
des longueurs de OA et OB, et dont I’INCLINAISON est égale a la SOMME des inclinaisons de
OA et OB.

Il suit de 1a que 'équipollence'® OA.OB = OC entraine les deux égalités!!

gr.OA x gr.OB = gr.OC et inc.OA + inc.OB = inc.OC.

Une premiére remarque, indispensable a faire, c’est que, tandis que la somme de deux droites
était tout a fait indépendante de tout autre élément du plan, leur produit dépend au contraire
de l'origine des inclinaisons que 1’on a choisie.

Malgré la multiplicité des inclinaisons d’une droite donnée, il ne peut y avoir aucune indécision
sur la direction du produit, puisque l'inclinaison de celui-ci ne peut jamais étre altérée que d’un
nombre entier de circonférences, ce qui ne change rien & sa direction.

Sans contester ce qu'une définition comme celle que nous venons de donner peut en apparence
présenter d’arbitraire a priori, il est bon de montrer cependant qu’elle se justifie assez naturelle-
ment, a la condition qu’on admette pour unité la droite OI de longueur égale a I'unité et dirigée
suivant l'origine des inclinaisons.

D’apres la définition de la multiplication admise en Arithmétique, on doit former le produit OC,
au moyen du multiplicande OA, comme le multiplicateur OB est formé au moyen de I'unité OI.
Or, quelles opérations a-t-on fait subir a OI pour I'amener en OB 7 On a modifié la longueur dans

gr.01
de l'angle # = inc.OB. L’analogie nous conduit donc & dire, que pour avoir le produit OA.OB,

nous devons modifier la longueur de OA dans le rapport gr.OB, ce qui donnera une droite de
longueur gr.OA x gr.OB dirigée suivant OA, puis faire tourner cette droite de I'angle 3. Or, elle
avait pour inclinaison o = inc.OA. Son inclinaison apres la rotation sera donc a + 3; c’est-a-dire
que nous retombons précisément sur la droite OC, telle que nous ’avons définie plus haut.

le rapport = gr.OB, puis on a fait tourner la droite ainsi obtenue, dans le sens convenable,

10 7] faut entendre I’égalité.
' La notation gr.AB désigne la longueur (grandeur) d’une droite AB, indépendam-
ment de la direction de cette droite.

La notation inc.AB désigne I’inclinaison d’une droire AB. C’est I’angle formé par la
droite OM (OM=AB) et une droite OX appelée origine des inclinaisons. L’inclinaison
est positive si la rotation qui améne OX sur OM s’effectue dans le sens contraire a celui
des aiguilles d’'une montre, sinon elle est négative.
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LA LINEARITE COMME FIL CONDUCTEUR

. on trouve a l'origine des mathématiques des problémes qui se résolvent par une seule mul-
tiplication ou division, c’est-a-dire par le calcul d’une valeur d’une fonction f(x) = az, ou la
résolution d’une équation ax = b : ce sont la des problemes typiques d’algebre linéaire, et il n’est
pas possible de les traiter, ni méme de les poser correctement sans « penser linéairement ».

... on s’est apercu du caractere essentiellement linéaire de presque toute ’algebre moderne, dont
cette « linéarisation » est elle-méme 'un des traits marquants.

N. BOURBAKI

1 Introduction

Tout notre travail jusqu’ici a consisté a illustrer la notion de structure linéaire a travers ’ensemble
de la scolarité. Ce dernier chapitre, de nature plus théorique, esquisse le développement de cette
structure depuis les grandeurs jusqu’aux espaces vectoriels et permet ainsi de situer tous les autres
chapitres.

Plus précisément, nous essayons de montrer d’abord comment nait la notion de rapport entre deux
grandeurs, avant méme que celles-ci soient mesurées, et ensuite ce que devient cette notion des qu’il
est question de mesures, la mesure d’une grandeur étant un nombre positif. Apres nous regardons
ce que deviennent les rapports lorsqu’on en arrive aux grandeurs orientées, c’est-a-dire celles dont
les mesures sont des nombres relatifs. Et enfin nous étudions les mutations considérables que subit
la notion de rapport lorsqu’on essaie de I'appliquer aux grandeurs vectorielles, ce qui nous amene
jusqu’aux deux concepts de combinaison linéaire et de transformation linéaire.

Ce qui s’appelle rapport au départ d’une telle étude ne peut plus, apres quelques mutations, conti-
nuer a porter le méme nom. C’est pourquoi nous désignons du nom de structure linéaire ou de
linéarité cette plante dont la semence est le rapport entre deux grandeurs et qui, sans cesser ja-
mais d’étre elle-méme, se développe et finit par produire des fruits qui s’appellent combinaisons et
transformations linéaires.

Soulignons un choix méthodologique important. Qui dit rapport évoque une certaine relation entre
deux choses. Qui dit proportion évoque I'égalité de deux rapports et renvoie donc a quatre choses.
Nous adoptons ici de bout en bout un point de vue que nous croyons beaucoup plus éclairant,
a savoir celui de fonction linéaire, renvoyant d’emblée a une multitude de rapports égaux. Notre
idée est de partir des tableaux de proportionnalité entre grandeurs — ces tableaux expriment des
fonctions —, et de voir comment il faut adapter de tels tableaux pour passer des grandeurs aux
mesures des grandeurs, puis aux grandeurs orientées et enfin aux vecteurs.
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Notre parcours est un survol. A aucun moment nous ne nous attardons aux détails sans grande
portée. A chaque étape, nous essayons de montrer les contextes significatifs ou nait une théorie et les
grands axes de celle-ci, qui expliquent son efficacité. Nous essayons de montrer sur quelles difficultés
bute chaque théorie lorsqu’on tente de I’appliquer dans de nouveaux contextes, et comment il faut la
plupart du temps la restructurer pour dépasser les obstacles. La restructurer plutot que la retoucher,
car une théorie est une construction logique, et dés qu’on change un axiome ou une définition, tout
ce qui en résulte est a refaire. Ce qui nous intéresse, c’est I’enchainement des idées, le développement
d’une pensée qui augmente sa puissance, c’est-a-dire sa généralité, par bonds successifs.

Au terme du parcours, la théorie la plus générale et la plus abstraite puise son sens dans tous les
contextes, tous les champs de phénomenes et de problemes qu’elle a traversés, tous les obstacles
qu’elle a surmontés pour se constituer en instrument de pensée efficace. La théorie abstraite exposée
comme un monument logique isolé provoque 'admiration et fige la pensée. La théorie abstraite
conquise au terme d'un parcours de questions significatives et de révisions motivées', provoque les
transferts d’intuition, la mobilité de la pensée, la capacité de résoudre des problemes. Elle a des
racines pour ’alimenter.

Voyons maintenant a quels lecteurs cette étude est destinée. L’idée d’analyser 1’évolution d’une
notion a travers une succession de contextes problématiques de plus en plus généraux ne peut
évidemment pas inspirer directement un enseignement d’initiation. La motivation d'un premier
enseignement se trouve en effet dans les phénomenes intrigants, les questions curieuses, et non dans
les concepts qui servent d’instruments pour en parler et y répondre. L’intérét pour les concepts
eux-mémes, que ce soit sur un plan mathématique ou épistémologique, ne vient qu’apres. Il est le
fait d’une pensée qui réfléchit sur elle-méme.

Mais une telle réflexion peut fournir un fil conducteur pour ’enseignement. En particulier, parcourir
les étapes de généralisation successives d'une théorie peut inspirer un enseignement en spirale. On
dit souvent — a raison —, que les enseignants doivent en savoir plus que leurs éleves. Toutefois, si
les choses qu’ils savent en plus ne sont que des théories sans racines, fussent-elles brillantes, ils
en seront embarrassés. Le savoir supplémentaire dont les enseignants ont un pressant besoin, c’est
un savoir a la fois mathématique et épistémologique, ce sont des mathématiques alimentées par
Iexpérience.

2 Un exemple élémentaire

Comme nous 'avons dit, toute cette étude porte sur la proportionnalité et les phénomeénes apparen-
tés. Notre propos sera simplifié si nous commencons par un exemple familier qui illustre les diverses
facettes de I'idée de proportionnalité. Presque tous les matériaux dont sont faits les objets usuels
peuvent nous fournir un tel exemple. Pour fixer les idées, considérons 'aluminium.

(1) Une fonction. Supposons que nous disposions d’un certain nombre d’objets en aluminium,
des gros, des moyens, des petits, dans le désordre. Mesurons le volume et la masse de chacun et
disposons nos résultats en tableau, le volume d’un objet a gauche et sa masse en regard sur la méme
ligne (voir tableau 1). Ce tableau comporte autant de lignes que nous avons d’objets. Mais nous
pouvons toujours I'étendre en y écrivant le volume et la masse d’un nouvel objet en aluminium
absolument quelconque.

1 On parle beaucoup aujourd’hui du constructivisme comme philosophie de I’enseignement. Mais si ce que I’on
enseigne est, par nécessité, soumis & des révisions, cela signifie que le savoir ne se construit pas comme une maison,
au départ d’un plan préétabli, et en ajoutant a chaque étape de nouvelles briques a la partie déja définitivement en
place. Dans la construction du savoir, il faut au contraire refaire le plan a diverses reprises.
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On dit qu’il existe une fonction qui a tout volume d’aluminium fait volume | masse
correspondre sa masse et réciproquement. Le tableau 1 représente une 1dm® | 2,7kg
petite partie de cette fonction. 2dm?® | 5,4 kg
(2) Deux additions. On peut additionner les volumes : par exemple 5dm? | 13,5 kg
rassembler 5 dm? et 2 dm?. On peut aussi additionner les masses : par 20 dm?3 54 kg
exemple ajouter 4 kg a 10 kg. Ainsi la fonction en question fait cor- 12 dm3 | 32,4 kg

respondre une grandeur munie d’une somme (le volume) & une autre

3
grandeur munie elle aussi d’'une somme (la masse). 15 dm” | 40,5 kg

8 dm? | 21,6 kg
3dm?® | 8,1kg

(3) Les sommes se correspondent. Prenons deux éléments dans la
premiere colonne du tableau et faisons-en la somme :

2 dm® + 3 dm® = 5 dm?. T(.zé)éeau 1.
Celle-ci se trouve dans le tableau en regard de la somme des masses correspondantes :
5,4 kg + 8,1 kg = 13,5 kg.
Ainsi, une somme de volumes a pour masse la somme des masses correspondantes et réciproquement.

(4) La proportionnalité. Deux volumes quelconques sont entre eux comme les masses corres-
pondantes. Par exemple 2 dm? est & 3 dm® comme 5,4 kg est & 8,1 kg. On exprime souvent cela

en abrégé sous la forme
2 54

3 81

(5) Egalité des rapports internes. On exprime aussi cette derniere propriété autrement, a savoir
en parlant de rapports internes. On passe de 2 & 3 dm?® en multipliant 3 dm?® par 1,5 ou 3/2. Le
rapport est le méme entre les masses correspondantes : on passe de 5,4 kg a 8,1 kg en multipliant
5,4 kg par 1,5 ou 3/2. L adjectif interne exprime le fait que les rapports considérés sont internes a
une colonne du tableau.

(6) La régle de trois. La regle de trois est une expression calculatoire de la méme situation. Si
2 dm?® pesent 5,4 kg, alors 1 dm?® pese 2 fois moins, c’est-a-dire 2,7 kg. Mais alors 3 dm? pesent 3
fois plus, c’est-a-dire 8,1 kg.

(7) Le rapport externe. Dans notre exemple, ce que 1'on désigne du
nom de rapport externe est la masse volumique, qui est de 2,7 kg/ dm?.
On passe d'un volume quelconque a la masse correspondante en multi-

volume masse
1dm? | 2,7kg

pliant le volume par la masse volumique. Par exemple : 2dm® | 5,4 kg
3 dm? x 2,7 kg/dm® = 8,1 kg. 3w’ | 8 1kg

’ ’ 4 dm? | 10,8 kg

L’adjectif externe exprime le fait que le rapport en question fait sortir 5dm? | 13,5 kg
d’une colonne pour aller vers 'autre. 6 dm? | 16,2 kg
(8) Des accroissements constants. Si dans la premieére colonne du 7 dm? | 18,9 kg
tableau on passe de chaque ligne a la suivante en ajoutant toujours la 8 dm? | 21,6 kg

meéme quantité, il en va de méme dans la deuxieéme colonne, et récipro-
quement. C’est ce qu’illustre le tableau 2.

Tableau 2.
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(9) Un graphique en ligne droite. Si on porte les masses en fonction des volumes dans un
systeme d’axes gradués régulierement, on obtient un graphique en ligne droite.

(10) Une pente constante. Ce graphique monte avec une pente constante. Cette pente peut étre
identifiée a la masse volumique.

(11) Une formule, une fonction du premier degré. La masse m s’exprime en fonction du
volume v par la formule m = av, dans laquelle a représente la masse volumique. La fonction qui se
trouve au second membre de cette égalité est du premier degré.

Ce sont-la onze facettes de la linéarité, observées sur un exemple particulier et & un niveau d’abs-
traction modéré. Elles nous serviront de référence — par analogie et constraste —, pour parler ci-apres
de la linéarité a d’autres niveaux, plus élémentaires ou plus avancés. La multiplicité méme de ces
facettes montre que le concept de linéarité est moins immédiat qu’on n’aurait tendance a le croire.

Sur les tableaux de proportionnalité en général , voir le chapitre 5.

3 Les rapports de grandeurs

Un rapport est la relation, telle ou telle, selon la taille, entre deux grandeurs du méme genre.
EucCLIDE

3.1 Avant les rapports, les grandeurs elles-mémes

La proportionnalité (ou la linéarité) a des antécédents. Tout commence avec les grandeurs. Rappe-
lons donc brievement comment celles-ci apparaissent dans ’expérience commune.

Les objets ont, selon le cas, une longueur, une hauteur, une aire, un volume, une masse, ... Ce sont
la divers types de grandeurs. S’intéresser a un type de grandeur, c’est donc regarder les objets d’'un
certain point de vue.

Une fois que l'on a fixé son attention sur un type de grandeur, la premiere démarche consiste a
vérifier si deux objets ont ou non la méme grandeur. S’il s’agit de la longueur de baguettes, de
tiges ou de segments, c’est facile : on les juxtapose. Pour les masses de deux objets, on les met
sur les plateaux d’une balance. L’égalité ou I'inégalité des aires est souvent plus difficile a vérifier,
méme pour des surfaces planes. En effet, leur forme empéche souvent lorsqu’on les superpose, soit
de les mettre en coincidence, soit d’inclure 'une dans 'autre. Toutefois on vérifie sans peine par
superposition que deux figures planes sont isométriques et donc de méme aire. Vérifier 1’égalité
ou l'inégalité de deux volumes est aussi bien souvent difficile. Une exception toutefois : celle des
« capacités », qui sont des volumes de liquide remplissant des récipients. Dans ces cas, on procede
par transvasements. Les inégalités de grandeurs conduisent naturellement a ce que PIAGET appelle
des sériations, opérations qui consistent a classer des objets par ordre de grandeurs croissantes ou
décroissantes.

Un dernier préliminaire de la linéarité, c’est 'addition des grandeurs. Elle est le plus souvent une
opération simple : on met deux tiges bout a bout pour additionner leurs longueurs, on rassemble
deux objets pour additionner leurs masses, et de méme on rapproche deux surfaces pour additionner
leurs aires et deux solides pour additionner leurs volumes.

Jusqu’ici nous avons parlé de diverses grandeurs que peuvent avoir des objets. Mais les intervalles de
temps, qui ne sont pas des objets au sens immédiat de ce terme, ont aussi une grandeur (leur durée),
et 'on est amené a les comparer, sérier, additionner. Ils posent un probleéme particulier du fait qu’ils
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ne se transportent pas dans le temps comme les objets se transportent dans ’espace. Pour manipuler
des intervalles de temps, il faut identifier des phénomenes de méme durée et reproductibles.

L’observation suivante est évidente, mais elle jouera un grand role dans la suite de ce travail : on
ne peut jamais comparer ou additionner que deuxr grandeurs de méme espéce : cela n’a pas de sens
de comparer ou additionner par exemple une longueur et une masse, ou une surface et un temps.

Sur les grandeurs en général, voir les chapitres 1, 2 et 3.

3.2 Deux grandeurs de natures différentes

Observons quelques phénomenes familiers. Pour peindre une surface deux fois plus grande qu’une
autre, on a besoin de deux fois plus de peinture. Si on marche deux fois plus longtemps — d’un
méme pas —, on va deux fois plus loin. Avec deux fois plus d’essence, on va deux fois plus loin.
Si on ensemence un champ deux fois plus grand, on obtient sauf exception une récolte deux fois
plus abondante. Deux fois plus de longueur d’un cable pese deux fois plus lourd. Deux fois plus de
surface découpée dans une tole pese deux fois plus lourd.

Mais les choses ne sont pas toujours aussi régulieres. Un étre humain deux fois plus agé qu'un autre
n’est ni deux fois plus haut, ni deux fois plus lourd que le premier. Un carré de c6té double d’un
autre n’a pas une aire double, mais bien une aire quadruple. Quand une voiture va deux fois plus
vite, sa distance de freinage en cas d’urgence est plus que deux fois plus longue.

Quoiqu’il en soit, dans beaucoup de phénomenes, deuz fois d’un coté correspond a deux fois de
l'autre.

Et d’autre part, le rapport le plus simple a saisir est celui du stmple au double. Mais si on double
le double, on obtient le rapport de un a quatre. Le rapport de un a un demi est aussi un rapport
facile. Par exemple, couper une ficelle ou une bandelette en deux parts égales est une opération
élémentaire. La diviser exactement en trois exige par contre un tatonnement. Ensuite couper deux
fois en deux amene & un quart. Lorsqu’on dispose d’un demi, on arrive facilement a un et un demi.
Il existe ainsi un petit nombre de rapports que nous concevons facilement. Nous n’envisagerons que
ceux-la pour commencer et nous n’introduirons des rappports plus compliqués qu’a la section 4.

Dans chacune des situations évoquées ci-dessus, nous avons mis deux grandeurs aire | vol.
en correspondance. Par exemple, toute surface a peindre exigeait un volume dé- ay V1
terminé de peinture, et avec un volume donné de peinture, on peut peindre une as Vg
surface bien déterminée. Nous pouvons représenter cela par un tableau en deux as V3
colonnes. Dans la premiere nous inscrivons les aires a1, as, ag, ... des surfaces a a4 Uy
peindre, et en face les volumes de peinture vy, vo, vs, ... correspondants. Bien as U5
entendu, un tel tableau n’aura jamais qu'un nombre fini de lignes, mais on peut ag V6
toujours 'allonger en y inscrivant de nouvelles aires et de nouveaux volumes.

Tableau 3.

Ce tableau est l'expression d’une fonction. La notion de fonction est tres importante pour nous :
en effet, toutes les situations que nous envisagerons dans la suite auront pour premieére expression
une fonction, représentable par un tableau en deux colonnes.

Le tableau 3 possede la propriété des rapports internes au sens ou, comme nous ’avons vu, si on
passe, dans la colonne de gauche, d'une certaine aire a une autre deux fois plus grande (ou quatre
fois, ou une fois et demie plus grande, ou deux fois plus petite, ...) on trouve dans la colonne de
droite un volume double (ou, selon le cas, quatre fois, ou une fois et demie plus grand, ou deux fois
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plus petit, ...). On exprime aussi cela en disant que les aires et les volumes sont proportionnels.

On dit également, en choisissant a titre d’exemple deux couples de valeurs correspondantes, que
a1 est a ag comime v est a vg.

A cause de cette propriété, on dit que le tableau 3 est un tableau de proportionnalité. Rappelons

que les rapports en question sont appelés rapports internes parce qu’ils concernent deux grandeurs
situées a l'intérieur d’'une méme colonne.

Ce tableau possede aussi la propriété de la somme. En effet, pour peindre deux surfaces, on peut —
mais cela va sans dire! —, rassembler les deux volumes de peinture préparés pour chacune d’elles.
En se référant au tableau, on exprime cela de la maniere suivante : a la somme de deux éléments
de gauche (par exemple ay et ag, et nous noterons leur somme a; @ ag) correspond la somme des
deux éléments correspondants de droite (ici v; @ v2). Nous utilisons le symbole & pour désigner la
somme de deux grandeurs, pour éviter la confusion avec la somme de deux nombres.

3.3 Deux grandeurs de méme nature

Passons maintenant a la proportionnalité entre deux grandeurs de méme nature. Elle va nous
apporter tout un lot de propriétés nouvelles. Nous commencerons par quelques situations concretes
qui font voir des proportions entre longueurs. Les figures habituellement associées au théoreme de
Thales pourraient en inspirer d’autres, que le lecteur évoquera sans peine. Nous passerons ensuite
aux masses. Pour étre complet, il faudrait aussi évoquer les aires, les volumes, les durées, ...

Les objets semblables

Tres jeunes, les enfants s’apercoivent que deux objets ont la méme forme, méme si leurs dimensions
sont différentes. Par exemple, ils voient bien qu'un petit bateau est un modele réduit d’un grand,
ou qu’une photographie est un agrandissement d’une autre. Considérons donc, a titre d’exemple,
le dessin d’un tangram et sa reproduction en deux fois plus grand (voir figure 1).

Fig. 1



3. Les rapports de grandeurs 571

A tout segment tel que a de la figure de gauche correspond un segment a’ deux fois a | d
plus grand dans la figure de droite. Disposons dans la premiere colonne d’un tableau b |V
les segments (ou plutot les lettres qui les représentent) relevés dans le petit tangram. c|d
Il y en a de six longueurs différentes. Ecrivons en regard les segments du tangram d| d
agrandi (voir tableau 4). Ce tableau représente une fonction, en ’occurrence avec un e|é
nombre fini de lignes. On passe d’un segment de gauche au segment correspondant flrf
de droite en multipliant la longueur par deux. Tableaw 4.

L’existence d’un rapport entre les deux éléments d’'une méme ligne du tableau est une propriété
nouvelle pour nous : en effet, a la section précédente, nos fonctions mettaient en relation deux gran-
deurs de natures différentes, et il n’existe aucun rapport, aucune comparaison possible entre de telles
grandeurs. Lorsque comme ici il existe toujours un méme rapport entre éléments correspondants
de la fonction, nous appelons ce rapport le rapport externe.

D’autre part, le tableau 4 possede aussi la propriété des rapports internes, comme on le vérifie sur
quelques exemples : ainsi, ¢ vaut deux fois a, et ¢’ vaut deux fois a’; de méme f vaut deux fois c,
et f’ vaut deux fois ¢’ ; ou encore e vaut une fois et demie ¢, et de I'autre coté ¢’ vaut une fois et
demie ¢/. Ce dernier cas releéve aussi, si on veut, de la propriété de la somme : on peut dire en effet
que e, qui vaut a @ ¢, correspond dans le tableau & €/, qui vaut a’ @ .

Nous avons donc maintenant affaire a un tableau qui posseéde les trois propriétés respectivement
du rapport externe, des rapports internes et de la somme. Bien entendu, nous n’avons vérifié ces
deux dernieres propriétés que sur quelques cas, mais nous nous satisferons pour l'instant de cette
vérification partielle. D’autre part, il y dans le tangram au moins un rapport plus compliqué que
les quelques rapports simples que nous avons identifiés jusqu’ici. En effet, le rapport de a a b n’est
ni le rapport de un a deux, ni le rapport de un a un et demi. Il en va de méme du rapport de b a
¢, et de celui de ¢ a d. C’est un rapport inconnu comme nous en trouverons quelques-uns sur notre

chemin?.

Les formats de papier

Nous venons d’engendrer un tableau de proportionnalité a partir de deux figures semblables. Restons
dans le domaine des longueurs et construisons une fonction a partir d’une toute autre expérience.

Si on plie une feuille de format A3 en deux dans le sens de sa largeur, on obtient le format A4. Si
on fait de méme avec ce dernier, on obtient le format A5. Et on peut continuer de méme. Chose
remarquable, si on dispose toutes les feuilles rectangulaires obtenues comme sur la figure 2 qui
les représente a 1’échelle, on s’apercoit que les diagonales de tous les rectangles sont alignées. On
n’observe pas ce curieux phénomene avec tous les formats de papier. Par exemple, si on part du
format Quarto, on obtient des rectangles dont les diagonales ne se superposent qu'une fois sur deux.
C’est ce qu’on voit sur la figure 3, qui les montre elle aussi a I’échelle.

2 Notre propos est de construire la notion de proportionnalité. Dans un exposé déductif, on ne laisse pas trainer
de difficulté non résolue. Par contre lorsqu’on construit un concept en cherchant une voie d’acces pas trop difficile,
on est amené non pas a ignorer, mais a renvoyer a plus tard certaines questions inaccessibles & un stade donné de
la construction. Comment croire en effet que I'on pourrait régler d’emblée le probleme des rapports irrationnels, ou
méme celui des rapports exprimés par des fractions compliquées ? La connaissance de quelques rapports simples nous
semble étre un soutien assez clair a ce stade de la construction.
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Revenons a la figure 2, et disposons dans la premiére colonne d’un tableau tous .
les petits cotés des rectangles, et dans la seconde colonne tous les grands cotés a|a
. . . 7 7 L3 7’ /
(voir tableau 5). On dirait que ce tableau est comme le précédent constitué sur b|b
la base d'un méme rapport entre a et a’, b et b/, etc. Mais alors que, dans le cas c|d
du tangram agrandi, ce rapport externe était de un a deux, ici ce n’est aucun des d|d
rapports simples qui nous sont familiers. En effet a ne va dans a/ ni deux fois, ni e| ¢
une fois et demie, ni une fois et un quart... Mais il semble pourtant, a vue, que Fif

a va dans @' autant de fois que b dans b', ¢ dans ¢/, etc. Laissons en suspens la 711000 5.
détermination exacte de ce rapport.

z©

Quoiqu’il en soit, nous reconnaissons dans le tableau 5 ’égalité
de quelques rapports internes. En effet, étant donné la facon
dont nous avons obtenu nos rectangles par pliage, nous voyons
par exemple que ¢ va deux fois dans a et ¢’ deux fois dans a’,
que e va deux fois dans c et ¢ deux fois dans ¢. De méme f
va quatre fois dans b, et f’ quatre fois dans t/'. Ces quelques
exemples nous portent a croire que le tableau 4 satisfait a la
propriété des rapports internes.

En définitive, ce que la figure 2 suggere, c’est que si I'on as-
semble des rectangles de maniere que leurs diagonales se su-
perposent de la maniere indiquée, les cotés de ces rectangles
sont proportionnels. Ainsi, pour créer des couples de segments
de méme rapport, il suffit de dessiner, comme sur la figure 4,
une demi-droite dans un angle droit et d’ajouter a la figure des
segments tels que z, 2/, y, 3/, etc. C’est 14 une sorte de machine
a fabriquer des segments proportionnels.

Sur les figures semblables, voir le chapitre 2. Sur le théoréme de

Thalés, qui est la clef des similitudes, voir chapitre 6.
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La balance

Avec une balance ordinaire, on peut par tatonnement créer une masse égale a une masse donnée, et
donc ensuite doubler une masse. Il faut pour cela disposer d’une matiere qui, telle la plasticine, se
laisse couper en morceaux quelconques. On peut aussi diviser une masse en deux parts égales. On
arrive ainsi a prendre une fois et demie une masse donnée. On voit qu’on peut dans le domaine des
masses, réaliser les quelques rapports simples auxquels nous nous sommes bornés jusqu’ici. Nous
laissons au lecteur le soin d’imaginer comment ’on peut non seulement réaliser ces rapports, mais
aussi, lorsque deux masses sont données, vérifier si elles ont entre elles un de ces rapports simples.

Il existe d’ailleurs une facon commode de réaliser ou de vérifier un rapport de masses donné. Par
exemple, pour réaliser le rapport de deux a trois, qui est aussi le rapport de un a un et demi, on
construit une balance dont les longueurs des bras sont entre elles comme deux est a trois (voir
figure 5). Une telle balance est en équilibre lorsque les masses posées sur ses plateaux sont entre
elles comme deux est a trois, la masse deux étant du coté du bras de longueur trois et la masse
trois du coté du bras de longueur deux. On a la une sorte de machine a fabriquer des masses
proportionnelles.

Fig. 5
Créons donc a l’aide d’une telle balance un ensemble de couples de masses my | m)
(m1,m}), (ma2,m)), etc. et mettons-les en tableau (voir tableau 6). Ce tableau my | ml
possede la propriété des rapports internes. Cela signifie que si la balance de la ms | mh
figure 5 est équilibrée, elle le demeurera si on double les deux masses, ou si on ma |
les multiplie par un et demi, etc. Le tableau 5 possede aussi la propriété de la ms | ml
somme, dont il est facile de se donner un exemple. me | ml,
Sur les poids et les balances, voir chapitre 2. Tableaw 6

4 Numérisation des rapports, mesures

MESURE. s. fem. Ce qui sert a connoitre la grandeur, ’étendué, la quantité de quelque corps.
La mesure des longueurs est la ligne ou grain d’orge, le pouce contenant douze lignes, le pied
douze pouces, le pas geometrique cing pieds, la toise six pieds, la perche des Geometres dix
pieds; en quelques lieux elle va jusqu’a vingt-deux pieds; le stade cent vingt-cing pas; le mille
huit stades; la lieue Francgoise trois mille.

A. FURETIERE (1694)
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Reprenons les choses a la base. Deux grandeurs de méme espeéce peuvent étre comparées pour voir
si elles sont égales, ou si l'une est plus grande que l'autre (voir 3.1). Souvent dans le quotidien on ne
se contente pas de constater I'inégalité : on la qualifie en disant que telle grandeur est un peu plus
grande que telle autre, ou beaucoup plus grande, ou énormément plus grande, etc. En s’exprimant
ainsi, on compare certes dans chaque cas deux grandeurs, mais on va vers la comparaison des
rapports. En effet, si une grandeur est beaucoup plus grande qu’une autre, le rapport entre les
deux est plus grand que si la premiere est seulement un peu plus grande que 'autre.

Pour dépasser cette vue qualitative des rapports, nous avons chiffré quelques rapports simples. Les
tout premiers, ceux de un a deux, de un a un demi, et de un a un et demi, étaient parfois simples
a percevoir. Par exemple on voit a peu prés bien qu’'un objet est deux fois plus long qu'un autre
lorsque les deux ne sont ni trop grands ni trop petits et qu’ils sont disposés parallelement dans un
plan frontal par rapport a I'observateur. Il est déja beaucoup plus difficile d’estimer si un objet
est deux fois plus lourd qu'un autre, en les soupesant I’'un dans une main et 'autre dans 'autre.
Estimer qu’un intervalle de temps est deux fois plus long qu’un autre ne peut se faire a peu pres
correctement que pour des intervalles situés dans une gamme de durées assez restreinte et proches
I'un de 'autre dans le temps.

S’il est vrai que les rapports de grandeurs ne peuvent étre percus que dans de tels cas simples, par
contre des rapports un peu plus compliqués peuvent étre construits ou vérifiés par des opérations
mécaniques. Comme nous l’avons vu, on engendre par itération du doublement les rapports de un
a quatre, ou de un a huit, et par itération du partage en deux parts égales, les rapports de un a un
quart ou un huitieme. Par reports successifs, on vérifie sans peine qu’une tige est trois ou quatre
ou cinq fois plus grande qu’une autre. Par contre un rapport de quatre a sept par exemple est déja
beaucoup plus difficile & vérifier.

Ainsi, caractériser numériquement tous les rapports possibles n’est pas une question triviale. Il s’agit
du probleme de la mesure, qui est 'objet de cette nouvelle section. Ce sera un voyage comportant
un bon nombre d’étapes.

4.1 Fixer une unité de mesure

Nous pourrions attaquer la question sous ’angle le plus général possible, en nous demandant com-
ment attacher un nombre au rapport de deux grandeurs quelconques. Mais l'intérét principal de
pouvoir chiffrer les rapports réside dans la possibilité, pour chaque domaine de grandeur (les lon-
gueurs, les masses, etc.) de rapporter chaque grandeur a une grandeur particuliere choisie pour
unité. Faire cela, c’est ramener la comparaison des grandeurs d’une méme espece a la comparaison
de leur rapport chiffré a 'unité, c’est-a-dire de leur mesure. Tres tot dans I'histoire, les communau-
tés humaines ont découvert cette pratique extraordinairement féconde qui consiste a choisir dans
chaque domaine une grandeur de référence (ou un petit nombre de telles grandeurs). Nous plagons
la suite de notre exposé dans cette perspective-la.

Sur le choix d’une unité, qu’elle soit de rencontre ou conventionnelle, voir les chapitres 1, 2.
4.2 Mesure en nombre entier et encadrement

Multiplier une grandeur a par un nombre naturel® n, c’est faire la somme de n grandeurs égales &
a, ce qui se note na.

3 Nous supposons les nombres naturels connus, au moins dans leurs propriétés les plus élémentaires. Par ailleurs,
ce n’est pas ici le lieu de rappeler en détail comment on les construit, que ce soit dans leur aspect cardinal, ou dans
leur aspect ordinal. Cette construction a des analogies avec celle des grandeurs. On trouvera quelques compléments
d’information & ce sujet dans N. ROUCHE [1992]. Bien entendu, dans la réalité, les enfants n’apprennent pas d’abord
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Soient deux grandeurs u et a, et n un nombre naturel. Si u multipliée par n est égale a a, autrement
dit si a = nu, alors on dit que n est la mesure de a dans I'unité w. On dit aussi que u va n fois
dans a, ou encore que u est contenue n fois dans a. Le rapport entre les grandeurs u et a est ainsi
caractérisé par le seul nombre n.

Il arrive souvent, lorsqu’on a deux grandeurs u et a, avec u plus petite que a, que pour un certain
nombre n, nu soit plus petite que a, et que par contre (n+ 1)u soit plus grande que a. On dit alors
que la grandeur a est encadrée par nu et (n + 1)u.

Dans un tel cas, la mesure de a n’est connue qu’approximativement. Une premiere facon d’affiner
la mesure consiste simplement & choisir une unité plus petite. Mais on voit tout de suite combien
une telle décision est peu commode. En effet si, pour chaque mesure que 'on veut faire, on choisit
une unité assurant la précision que I'on désire, on obtiendra des mesures rapportées a toutes sortes
d’unités, qui ne seront pas facilement comparables entre elles. Il faut donc chercher des solutions
plus commodes.

Sur les mesures en nombres entiers et les encadrements, voir les chapitres 1, 2.

4.3 Les unités de commune mesure

Lorsque I'unité u n’est pas contenue un nombre naturel de fois dans une grandeur a, il arrive qu’il
existe une troisieme grandeur ¢ qui soit contenue un nombre entier m de fois dans u, et aussi un
nombre entier n de fois dans a. Autrement dit, on a alors

u=mc et a=nc.
La grandeur c est appelée unité de commune mesure entre a et b. On dit alors que
u est a a comme m est a n.
Le rapport entre les deux grandeurs u et a est dans ces conditions caractérisé par deux nombres.

On se demande naturellement si, étant donné deux grandeurs, il en existe toujours une troisieme
qui soit unité de commune mesure pour les deux autres. La réponse n’a rien d’évident. On la doit
aux Pythagoriciens vers les VI® ou V° siecles avant J.-C. Et cette réponse est non. Parfois il y a
une unité de commune mesure, et parfois il n’y en a pas. Dans le premier cas, on dit que le rapport
des deux grandeurs est rationnel, et dans le second qu’il est irrationnel®.

4.4 Les mesures fractionnaires

Ramener la comparaison de deux grandeurs a celle de deux nombres est une idée intéressante,
quoique recourir & un seul nombre est évidemment plus pratique. Mais nous avons vu ci-dessus
qu’étant donné deux grandeurs u et a, u étant la plus petite, on ne peut pas toujours trouver un
nombre naturel n qui soit la mesure de a dans 'unité u. Toutefois si on ne peut pas trouver un
nombre naturel, peut-étre peut-on trouver un nombre d’un autre type? Ou alors, si on n’a pas
encore de nombre adéquat, comment étendre la notion de nombre pour que, quelles que soient deux
grandeurs u et a, on trouve un nombre p tel que a = pu? Pour arriver a ce résultat, I'humanité est
passée par plusieurs étapes.

les naturels, et ensuite les grandeurs : ces deux apprentissages non seulement progressent simultanément, mais encore
s’épaulent fortement 'un l'autre. Cette remarque suffit & montrer que notre étude ne saurait étre considérée comme
un projet d’enseignement. En dissociant ici dans une certaine mesure les naturels des grandeurs, nous avons pour
seul objectif de montrer le plus clairement possible comment les mesures dépendent des naturels.

4 L’adjectif irrationnel renvoie & la difficulté de rendre raison de tous les rapports entre grandeurs en recourant
aux seuls nombres naturels. Il est remarquable d’ailleurs que le mot raison vienne du latin ratio, qui veut dire rapport.
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Repartons du fait que toute grandeur peut-étre multipliée par un nombre naturel n quelconque.
Cette opération de multiplication possede une réciproque : toute grandeur peut étre partagée (divi-
sée) en n parts égales, quel que soit le nombre naturel n. Diviser une grandeur a par n, ¢’est trouver
une grandeur b telle que a = nb. Le résultat de la division de a par n s’écrit b= = ou b= %a.

On peut aussi enchainer une division d’une grandeur a par un nombre naturel n, ce qui donne
%a, et une multiplication du résultat par un nombre naturel m, ce qui donne m(%a). Comme on
obtient le méme résultat en exécutant les deux opérations dans l’ordre inverse®, on peut supprimer
les parentheses et écrire simplement 7*a. On dit alors que 7 est un opérateur fractionnaire agissant
sur a.

Rappelons que, si deux grandeurs w et a sont telles que a = nu, nous disons que n est la mesure de
a dans l'unité u. Si maintenant deux grandeurs a et u sont telles que a = 7*u, nous dirons que **
est la mesure de a dans ["unité u. Il s’agit cette fois d'une mesure fractionnaire. La fraction comme
opérateur composé (deux opérations enchainées) se mue ici en un nombre qui exprime un rapport.
Ce changement de statut de la fraction n’est pas facile a admettre, les enseignants en savent quelque

chose.

Etant donné deux grandeurs u et a, existe-t-il toujours deux nombres naturels m et n tels que
a = Tu? La réponse est non, comme tout a I’heure, lorsque nous nous interrogions sur I'existence
d’une commune mesure entre deux grandeurs quelconques. Nous ne nous attarderons pas ici sur
cette impossibilité.

Dans la pratique, on trouve toujours une mesure exprimable par une fraction (sachant bien par
ailleurs que toute mesure est approximative). C’est pourquoi, dans ce qui suit, nous supposerons
qu’étant donné deux grandeurs u et a de méme nature, il existe toujours un nombre « tel que
a = au. Ce nombre « est 'expression numérique du rapport entre u et a.

Quoiqu’il en soit, les mesures fractionnaires ont été tres communément utilisées au cours de 1’his-
toire. Mais elles ont un inconvénient grave. En effet, lorsqu’on a mesuré des grandeurs, on est
souvent amené a calculer avec les mesures. L’ennui est que le calcul sur les fractions n’est pas facile,
comme en témoignent les écoliers.

Examinons maintenant un autre perfectionnement de I'idée de mesure.

Sur les mesures fractionnaires, voir chapitre 2.

4.5 Les mesures décimales

Une démarche importante dans I’histoire de I’humanité a consisté a mesurer toute grandeur non
seulement dans une unité convenue, mais encore en utilisant ses sous-unités décimales, de sorte que le
nombre exprimant la mesure soit décimal, avec toutes les facilités de calcul que cela comporte. Ceci
fait, on dispose de la notion la plus répandue de mesure d’une grandeur. Soit u 1'unité convenue :
a toute grandeur a nous pouvons associer le nombre décimal a tel que a = au. Le nombre «
peut étre un décimal tres long. Il peut méme étre de longueur infinie, et étre périodique ou non.
Nous n’examinerons pas ces phénomenes ici, d’autant que, dans la pratique, toute mesure est
approximative et s’arréte a quelques chiffres apres la virgule.

Sur les mesures décimales, voir chapitre 3.

5 Ce qui n’a rien d’évident : couper une tarte en 4 et prendre 3 morceaux, c’est bien autre chose que de partager
3 tartes entre 4 personnes. Sur cette difficulté, cf. N. ROUCHE [1992].
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4.6 Le rapport entre deux nombres

I cm 1 Nous venons de voir, trés sommairement, comment les nombres fraction-
naires et décimaux peuvent naitre des rapports entre grandeurs®. Mais
les nombres eux-mémes’, munis des opérations que nous connaissons,
se comportent a beaucoup d’égards comme des grandeurs. En particu-
lier, entre deux nombres quelconques, nous pouvons définir un rapport.
Soient « et [ deux nombres (a non nul). Il existe un nombre p tel que
8 = pa. Or, nous savons que p = g En gros, le nombre p dit combien
de fois a va dans 3. Nous dirons que p est le rapport entre « et 5.

4.7 Un tableau de mesures

Considérons maintenant un tableau dans la premiere colonne duquel
nous disposons des segments, avec chaque fois leur mesure en regard
dans la deuxieéme colonne : voir figure 6. Il n’y a pas de rapport (au sens
technique du terme rapport) entre un segment et sa mesure : on ne peut
pas augmenter ou diminuer un segment en espérant obtenir un nombre.
Le tableau en question ne comporte pas de rapport externe. Le principe
qui a permis de le constituer est la mesure des longueurs de la premiere
colonne.

Par contre il existe évidemment des rapports internes a la premiere co-
lonne, et aussi — nous venons de le voir —, des rapports internes entre les
nombres de la deuxieme colonne. Il résulte des propriétés de la mesure
que ces rapports sont égaux. Montrons-le sur un exemple. Les grandeurs
a et b de la figure 6 sont telles que a = 1,5 cm et b = 4 cm. Le rapport
des deux mesures est ici 1445. Par ailleurs % = 1 cm. Il vient donc que
a= 1,5(%) = 1T’f’b, et le rapport de a & b est donc bien de %.

Enfin nous retrouvons ici la propriété de la somme. En effet, la mesure
d 45 de la somme de deux longueurs est égale a la somme de leurs mesures.

Ces résultats, que nous venons de montrer sur un tableau de longueurs,
sont valables pour une grandeur de nature quelconque. Quel est ’avan-
tage d’avoir ainsi mis des mesures (des nombres) en regard des gran-
deurs ? Cet avantage est décisif. Comparer des grandeurs, les addition-
ner, les multiplier par un nombre, les diviser en parts égales sont des
opérations souvent malaisées, voire impossibles des qu’elles mettent en
ceuvre des objets difficiles & manipuler vu leur encombrement ou leur

25 poids. Les mesures ont pour vocation, pour fonction essentielle, de se
substituer aux grandeurs chaque fois que c’est possible. Les mesures sont
« les grandeurs passées sur le papier et dans la téte ». Elles représentent
fidélement les grandeurs parce que, comme nous venons de le voir, entre
les grandeurs et leurs mesures, il y a proportionnalité : les sommes et
les rapports se conservent : on peut manipuler les mesures au lieu des
grandeurs elles-mémes.

Fig. 6

6 (est bien aussi comme cela qu’ils sont nés dans I’histoire, méme si, depuis la fin du XIX® siécle, la plupart des
traités construisent les nombres dans la théorie des ensembles, ce qui fait que, dans ce cas, ils précedent la géométrie
et les rapports géométriques.

" Remarquons que les nombres dont nous parlons sont les réels positifs. Nous nous occuperons des nombres relatifs
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cm pouces

1 0,3937

1,5 0,5906

4 1,5748

3 1,1811

45 1,7717

25 09843
Fig. 7
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4.8 Changer d’unité

L’unité que 'on choisit pour mesurer des grandeurs est ar-
bitraire : le choix n’obéit qu’a des motifs de commodité.
Qu’arrive-t-il si on change dunité? Revenons a notre ta-
bleau de longueurs de la figure 6. Les longueurs y sont mesu-
rées en centimetres. La figure 7 montre les mémes longueurs
mesurées en pouces : 1 pouce vaut 2,54 cm. Les nouvelles
mesures s’obtiennent a partir des anciennes en multipliant
celles-ci par la mesure de ’ancienne unité dans la nouvelle.
Un phénomene paradoxal déroute beaucoup de gens : c’est
que plus 'unité est petite, plus les mesures sont grandes. Les
deux dernieres colonnes de la figure 7 constituent elles aussi
un tableau de proportionnalité.

Sur les changements d’unité, voir le chapitre 3.

4.9 Les représentations de données

S’il est vrai, comme nous l'avons souligné a la section 4.7,
qu’il est souvent avantageux de substituer les mesures aux
grandeurs, il est parfois utile de revenir des mesures a des
grandeurs faciles a percevoir, telles que des longueurs, des
secteurs circulaires, etc. Ainsi lorsqu’on dispose d’un en-
semble de données sous forme de mesures, on peut les re-
présenter graphiquement, ce qui a ’avantage, par rapport
a la consultation d’'un tableau de nombres, d’offrir une vue
d’ensemble des données et de faciliter les comparaisons.
Montrons sur un exemple qu’une représentation graphique
s’obtient a la suite de deux opérations. Le tableau 7 montre
les consommations journalieres d’eau d’une famille.

alimentation 51
vaisselle 81
hygiene corporelle | 38 1
WC 431
lessive 161
entretien 101
Tableau 7.

D’abord, on choisit une échelle de 1 cm pour 10 litres, en vue
de représenter les quantités par des batonnets. Le tableau 8
montre dans sa troisieme colonne, les longueurs obtenues.
Les deux dernieres colonnes du tableau expriment une pro-
portionnalité.

a la section 6.
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Ensuite il faut construire le graphique, c¢’est-a-dire des-
siner (par exemple) des batonnets dont les hauteurs
ailent les mesures calculées. C’est de nouveau l’expres-
sion d’une proportionnalité. La figure 8 montre le dia-
gramme.

On peut aussi transformer ces données en pourcen-
tages de la consommation totale, comme le montre le
tableau 9. La réduction a la base 100, si on la fait pour
plusieurs familles, facilite la comparaison des propor-
tions d’eau consacrées par ces familles aux différents
usages. Par contre elle fait disparaitre la communica-
tion des valeurs réellement consommées.
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alimentation 51 ] 0,5 cm

vaisselle 81 | 0,8 cm

hygiene corporelle | 38 1 | 3,8 cm

WC 431 | 4,3 cm

lessive 161 | 1,6 cm

entretien 101 | 1cm
Tableau 8.

alimentation | 51| 4,1 %
vaisselle | 81| 6,7 %

hygiene corporelle | 381 | 31,6 %
WC | 431 35,8 %

lessive | 161 | 13,3 %

entretien | 101 | 8,3 %

Tableau 9.

Les pourcentages peuvent se traduire en
diagrammes circulaires. Il faut pour cela
les convertir en secteurs circulaires, ce qui
est encore une opération de proportionna-
lité.

Sur divers modes de représentation de données, voir les chapitres 4 et 5.

5 Les rapports de mesures

L’espace et le temps sont des quantités de nature différente, ... on sent bien qu’on ne peut diviser
I’espace par le temps; ainsi quand on dit que les vitesses sont comme les espaces divisés par les
temps, c’est une expression abrégée qui signifie que les vitessses sont comme les rapports des
espaces a une méme commune mesure, divisés par les rapports des temps a une méme commune
mesure ; c¢’est-a-dire que si 'on prend, par exemple, le pied pour la mesure des espaces, et la
minute pour la mesure des temps, les vitesses de deux corps qui se meuvent uniformément sont
entre elles comme les nombres de pieds parcourus divisés par les nombres de minutes employées
a les parcourir, et non pas comme les pieds divisés par les minutes.

J. D’ALEMBERT

Voyons maintenant ce que deviennent les tableaux de proportionnalité lorsqu’on passe des grandeurs
aux mesures. L’effet le plus notable de ce passage sera de nous faire retrouver un rapport externe
pour les tableaux de proportionnalité entre grandeurs d’espéces différentes.
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5.1 Grandeurs de méme nature

Commencons toutefois par des grandeurs de méme nature, T ol d T2
et retournons au tableau 4 qui mettait en regard les lon- T 1510 22
gueurs des segments visibles sur un petit tangram et sur un 2’ > 4’
autre deux fois plus grand. Complétons ce tableau en lui ad- 582 I 7 564
joignant a gauche une colonne reprenant les longueurs des 3’ : T 6?
segments du petit tangram, et a droite une colonne avec les 1 ANAE

longueurs des segments du grand (voir tableau 10). Pour
toutes les mesures, nous avons choisi pour unité la longueur Tableau 10.
du segment a.

Entre la premiere et la quatrieme colonnes du tableau, il y proportionnalité, avec 2 pour rapport
externe. On vérifie sans peine pour ces colonnes de mesures la propriété des rapports internes et
celle de la somme.

Sur les tableaux de proportionnalité entre grandeurs de méme nature, voir le chapitre 5. Dans le

méme chapitre, on étudie un dessin a I’échelle.

5.2 Grandeurs de natures différentes

Revenons maintenant aux tableaux qui établissent une correspondance entre grandeurs de natures
différentes, telles par exemple que des volumes et des masses de solides d’'une méme matiere. Choi-
sissons I'aluminium comme & la section 2 et reprenons dans un tableau quelques volumes et quelques
masses (voir tableau 11). Ajoutons a ce tableau deux nouvelles colonnes : une a gauche des volumes
et qui représente leurs mesures en dm?, et une & droite des masses et qui représente leurs mesures
dans 'unité kg: voir tableau 12. Ce qui est intéressant maintenant, c’est que la premiere et la
quatrieme colonnes sont deux colonnes de nombres. Or nous avons vu qu’entre deux nombres (non
nuls), il y a un rapport. Si nous enjambons les deux colonnes centrales, nous retrouvons un rapport
externe (que nous n’avions pas entre les grandeurs elles-mémes), et qui se trouve étre le méme pour
tous les couples. Nous avons donc construit un tableau de proportionnalité entre les mesures.

vol. | masse dm? | vol. | masse | kg
U1 mq 2 U1 mq 5,4
() mo 3 V9 mo 8,1
V3 ms 5 V3 ms 13,5
o my 12 (o my 32,4
Vs meg 15 (%) mes 40,5
V6 me 8 Ve me 21,6
Tableau 11. Tableau 12.

Ce rapport constant est appelé la masse volumique de la matiere dont sont faits les corps que nous
étudions. Evidemment, cette masse volumique dépend des unités que nous avons choisies. Dans
notre exemple, et puisque nous avons choisi pour unité de volume le dm? et pour unité de masse le
kg, la masse volumique vaut 2,7 kg/dm?.

Sur le tableau de proportionnalité des mesures, nous retrouvons aussi la propriété des rapports
internes : le rapport des mesures de volumes de deux corps est toujours égal au rapport des mesures
de leurs masses.
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Et enfin, nous retrouvons aussi la propriété de la somme : la somme de deux mesures de volumes
correspond & la somme des mesures des masses correspondantes.

En conclusion, lorsque nous avons affaire a un tableau de proportionnalité qui met en correspon-
dance deux grandeurs de deux natures différentes, le tableau de leurs mesures possede les trois
propriétés de l'existence d’'un rapport externe, de 1’égalité des rapports internes et de la correspon-
dance des sommes.

Voir au chapitre 5 un exemple de proportionnalité entre massse et volume.

5.3 Graphiques de fonctions linéaires

A titre d’exemple, repartons du tableau 12. Nous voulons le mettre en graphique, ce qui aboutira
a la figure 9. Montrons que cette opération se décompose en plusieurs autres.

dm

Fig. 9

Ayant décidé de représenter les volumes par des segments, nous devons choisir la longueur du
segment qui représentera 'unité de volume : disons 0,5 cm pour 1 dm?. Nous devons choisir ensuite
une longueur de segment pour représenter I'unité de masse : disons 0,25 ¢m pour 1 kg. Ceci fait,
nous pouvons comme le montre le tableau 13 faire correspondre des mesures de longueurs aux
volumes et aux masses. Mais ce n’est pas tout, car nous devons encore convertir ces longueurs en
segments, pour pouvoir les reporter sur le graphique. C’est ce que montre le tableau 14.
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OAn/retrouve fians lla ﬁgur(le 9 le(si . rectarigles a cm | dm® | vol. || masse | kg om
cotés p’roportlonnes avec surs 1agor;a,es\s111— 1 5 o e 5.4 1.35
perposées, que nous avons déja rencontrés a la 5] 3 v o 81 | 2.025

section 3.3. Le tableau 14 montre comment on
recourt de fagon répétée a des proportionnali-
tés pour représenter une fonction de facon com-
mode. Remarquons que le choix de deux échelles
et le retour aux grandeurs par le tracé des axes
gradués sont des opérations de routine pour re-
présenter des fonctions quelconques, et donc pas Tableau 13.
seulement des fonctions linéaires.

25| 5 | v3 | ms | 135 3,375
6 12 (% my 32,4 8,1
75| 15 | s ms | 40,5 | 10,125
4 | 8 [ v | me |21,6| 54

long. | cm | dm® | vol. || masse | kg cm long.
ll 1 2 (%] mq 5,4 1,35 ,1
lo 1,5 3 V2 ma 8,1 | 2,025 5
l3 2,5 5 U3 ma 13,5 | 3,375 1
l4 6 12 V4 my 32,4 8,1 lfl
l5 751 15 U5 ms | 40,5 | 10,125 It
l6 4 8 Ve meg 21,6 5,4 lé

Tableau 14.

Voir des exemples et contre-exemples de fonctions linéaires aux chapitres 5 et 6.

5.4 Des objets et des opérateurs

Pour faire le point, a ce stade de notre étude, réexaminons les divers roles qu’y ont joués les
grandeurs et les nombres.

Au début nous n’avions pratiquement que des grandeurs. Nous ne nous sommes servis a ce stade
initial que de nombres tres simples tels que 2, % oul et %

Puis nous avons opéré sur les grandeurs en nous servant des nombres : nous avons multiplié une
grandeur par un naturel, divisé une grandeur par un naturel, puis combiné ces deux opérations
pour arriver a multiplier une grandeur par une fraction (un rationnel). Et nous avons soupgonné
au passage l'arrivée de nouveaux nombres, les irrationnels, mais avec une fonction analogue, celle
d’opérer sur une grandeur en la « multipliant ».

A ce stade, nous nous intéressions donc a deux sortes de choses : les grandeurs (et leurs rapports)
d’une part, et les nombres opérant sur les grandeurs de 'autre. Les grandeurs étaient plutét de
I’ordre des choses que 'on percoit, et les nombres de 1'ordre des choses qui guident une action, des
choses avec lesquelles on agit, des sortes d’outils.

Les opérateurs numériques nous ont amenés a exprimer les rapports par des nombres. Et, moyennant
le choix d’une unité standard, nous sommes arrivés a associer a chaque grandeur sa mesure, et a
toute mesure la grandeur correspondante. Nous pouvions alors, et ¢’était bien commode, substituer
le plus souvent les mesures aux grandeurs. Mais a partir de la, les nombres jouaient un double
role : d’une part a travers les mesures, ils prenaient la place des grandeurs, mais d’autre part ils
continuaient a jouer le role d’opérateurs, non plus sur les grandeurs mais sur leurs mesures.
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De la viennent des distinctions plus ou moins éclairantes comme celle des nombres concrets (par
exemple 4 dans « 4 metres ») et des nombres abstraits (par exemple 3 dans « 3 fois 4 metres »,
ou encore 3 et 4 dans « 3 x 4 » lorsque les nombres ne renvoient qu’a eux-mémes). Ou encore
la distinction entre multiplicande et multiplicateur puisque dans un produit, les deux facteurs ne
jouent pas toujours le méme role®.

Pour la suite de 'exposé, retenons principalement qu’a ce stade, un seul et méme type d’objet
mental, a savoir les nombres, joue deux roles. Plus tard, dans le développement de la structure
linéaire, ces deux roles seront assumés par des objets mentaux distincts.

6 Les rapports de grandeurs orientées

Nous prendrons toujours la dénomination de nombres dans le sens ou on ’emploie en arithmétique,
en faisant naitre les nombres de la mesure absolue des grandeurs; et nous appliquerons uniquement
la dénomination de quantités aux quantités réelles positives ou négatives, c’est-a-dire, aux nombres
précédés des signes + ou —. De plus, nous regarderons les quantités comme destinées a exprimer des
accroissements ou des diminutions ; en sorte qu’une grandeur donnée sera simplement représentée par un
nombre, si I’on se contente de la comparer a une autre grandeur de méme espece prise pour unité, et par
ce nombre précédé du signe + ou du signe —, si on la considére comme devant servir a l’accroissement
ou a la diminution d’une grandeur fixe de la méme espece.

A.-L. CAUCHY

Jusqu’ici tout notre exposé a porté sur les grandeurs et la mesure des grandeurs. La mesure d’une
grandeur est toujours un nombre positif. Nous n’avons donc a aucun moment éprouvé le besoin de
recourir a des nombres négatifs. Mais il y a des situations ou apparaissent des « grandeurs » de
deux types, que 'on pourrait dire antagonistes, et qui conduisent a des mesures tant négatives que
positives. Tel est le cas par exemple des abscisses sur une droite, des temps sur ’échelle des durées,
des vitesses, des charges électriques et de bien d’autres. Nous regroupons ces types de grandeurs
sous la dénomination commune de grandeurs orientées’.

Commencons par étudier deux d’entre elles qui sont apparentées aux longueurs, a savoir les positions
et variations de position sur une droite.

Au début de cet exposé, nous avons étudié les grandeurs en elles-mémes, munies d’un ordre et
d’une somme (cf. 3.1) avant d’étudier les rapports de grandeurs et les tableaux de proportionnalité
(cf. 3.2 et 3.3). Nous procéderons ici dans le méme ordre, en rappelant d’abord ce que sont ces
grandeurs orientées munies d’un ordre et d’'une somme, puis en nous occupant a leur propos des
rapports et proportions.

6.1 Les positions et les variations de position

Pour situer un point sur une droite, on choisit une origine sur celle-ci, on se donne la longueur du
segment entre le point et I'origine et on marque cette longueur par un symbole arbitraire exprimant
le fait que le point se trouve d’un coté ou de 'autre de I'origine. Le symbole peut étre un + ou un
—, mais remarquons que nous ne parlons pas encore ici de mesures. Ces longueurs marquées sont
ordonnées, mais pas du tout comme les longueurs ordinaires. En ce qui les concerne, les symboles

8 Et qu’en outre lorsqu’on les dispose I'un en dessous de I’autre pour effectuer ’algorithme de la multiplication, il
faut bien en mettre un au dessus et 'autre en dessous, et que l'algorithme n’est pas le méme selon le choix que 1’on
fait.

9 Dans cette étude, nous réservons le nom de grandeur orientée aux « grandeurs » qui sont mesurées par un nombre
relatif. Nous n’utiliserons donc pas cette expression pour les grandeurs de nature vectorielle a deux dimensions ou
davantage.
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< et > veulent dire respectivement non pas plus petit et plus grand, mais bien avant et apres dans
le sens choisi sur la droite.

Une longueur marquée a pour fonction premiere de repérer un point sur la droite, de dire ou il est.
A cause de cela, on voit mal a priori le sens qu’il y aurait a définir une addition sur ces longueurs.

Passons maintenant aux variations de position sur une droite. Ce sont les distances (plus précisément
les longueurs) dont on peut déplacer un point sur la droite, mais affectées d’un signe (par exemple +
ou —) selon que le point est déplacé dans un sens ou 'autre sur la droite. On ordonne les variations
de position en disant que

1) si deux variations de position sont positives, l'une est plus petite que Pautre si la distance (au sens
ordinaire) correspondant & la premiére est plus petite que la distance correspondant a la seconde;

2) si les deux variations sont 'une positive et l'autre négative, la négative est plus petite que la
positive ;

3) et enfin si les deux variations sont négatives, celle qui correspond & la plus grande distance est
plus petite que 'autre.

Comme on met deux baguettes ou deux segments bout a bout pour les additionner, il semble naturel
de convenir qu’additionner deux variations de position, c’est les exécuter I'une apres 'autre, les
enchainer. Mais cette définition souffre d’une limitation génante. En effet, pour pouvoir enchainer
deux variations de position, il faut que le point d’arrivée de la premiere coincide avec le point de
départ de la seconde. Or on voudrait pouvoir additionner deux variations de position quelconques.
Il nous faut pour cela adapter la notion de variation de position.

Répétons que pour additionner deux longueurs, représentées par deux baguettes, nous mettons ces
dernieres bout a bout en les alignant. Et pour ce faire, il nous faut le plus souvent déplacer les
baguettes pour les amener dans la position voulue. Une baguette (un segment) donnée représente
toujours la méme longueur, ou qu’elle se trouve dans l’espace, ce qui nous laisse la liberté de
I’amener ot nous voulons.

Pour pouvoir additionner deux variations de position quelconques sur une droite, il nous suffit de
donner aux variations de position sur la droite la méme liberté de mouvement que nous donnons
aux baguettes dans l’espace. Autrement dit, deux déplacements d’un point sur la droite (ou deux
segments orientés) seront considérés comme représentant la méme variation de position pour autant
qu’ils aient méme longueur et méme sens. Il faut un effort d’imagination pour assimiler ce nouveau
concept de variation de position.

Jusqu’ici nous avons associé aux positions et variations de position des longueurs munies d’un
signe. Nous n’avons donc pas encore parlé de mesurer ces longueurs. Si nous les mesurons (comme
on mesure des longueurs ordinaires), mais affectons les nombres trouvés, selon le cas, d’un signe
+ ou d’un signe —, nous obtenons les nombres relatifs. En outre, 'ordre sur les positions et les
variations de position nous fournit 'ordre sur les nombres relatifs. Et enfin I’addition des variations
de position nous fournit les regles applicables a I'addition des nombres relatifs.

Jusqu’ici également nous n’avons considéré que des grandeurs orientées qui se ramenent a des
longueurs munies d’un signe. Quant aux autres, les temps, vitesses, etc., elles se raménent aux
précédentes moyennant des opérations de mesure et des choix d’échelles de représentation analogues
a ceux que 'on rencontre dans les grandeurs ordinaires (cf. section 4). Nous n’en parlerons donc
pas davantage.
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6.2 Les tableaux de proportionnalité entre nombres relatifs

Fixons maintenant notre attention sur les grandeurs orien-
tées mesurées, et donc sur les nombres relatifs. Nous vou-
drions étendre a ceux-ci la notion de tableau de proportion-
nalité. Pour cela, nous devons convenir de ce que sera un
rapport entre deux nombres relatifs. Supposons pour un mo-
ment que les regles de la multiplication des relatifs aient été
élaborées, et justifiées de 'une ou I’autre facon, comme on le
fait dans ’enseignement secondaire. Nous dirons alors que si
y et x sont deux nombres relatifs quelconques, le rapport de
x a y est le nombre (relatif) a qui est tel que y = az. Ceci
fait, nous pouvons dresser des tableaux de proportionnalité
correspondant a des rapports externes a quelconques.

-3 | —6
-2 | -4
—11| -2

Tableau 15.
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-3 6
-2 4
-1 2
0 0
1] -2
2| —4
3| —6
4| -8
5| —10
Tableau 16.

Les tableaux 15 et 16 sont caractérisés respectivement par les rapports externes 2 et —2.

On vérifie sans peine que dans de tels tableaux, la propriété de la somme et celle des rapports
internes sont vérifiées, ce qui est rassurant. Ces tableaux sont illustrés par les figures 10 et 11.

y y
2+ 24
1L s
:é +‘1 i ﬁ x ié :‘1 i é x
i + 1]
+ 2T p

Fig. 10 Fig. 11
Supposons maintenant que nous 3T —¢
ayons choisi pour la multiplication S —
des relatifs une regle des signes dif-
férant de la regle ordinaire. Par e 2T
exemple que moins par moins donne 0 0 1+
moins et que les autres cas de la 1] -2 L 1
regle des signes demeurent inchan- 2| 4 £ x1 12 x
gés. Nous devons alors remplacer le 3] -6 1
tableau 16 par le tableau 17 et la fi- 4] -8 £0T
gure 11 par la figure 12. 5| —10

Tableau 17.

Fig. 12
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Le tableau 17 ne vérifie plus ni la propriété de la somme, ni celle des rapports internes. La figure
12 ne représente plus une droite.

Nous pourrions vérifier de méme les perturbations qu’introduiraient d’autres modifications a la regle
des signes. La conclusion est que celle-ci a un effet majeur : elle permet 'extension aux nombres
relatifs de la notion de tableau de proportionnalité, c¢’est-a-dire de la notion de fonction linéaire.
Elle permet la représentation de chaque droite passant par I'origine par une équation simple. Toute
autre régle bouleverserait la géométrie analytique!©.

Sur I’extension des tableaux de proportionnalité aux nombres relatifs, voir le chapitre 5.

6.3 Nouveaux objets, nouveaux opérateurs

Jetons maintenant un coup d’ceil d’ensemble sur cette sixieme section. Nos avons vu que la notion
de tableau de proportionnalité résiste au passage des grandeurs ordinaires aux grandeurs orientées,
des rapports et mesures positifs aux rapports et mesures exprimés par des nombres relatifs, de la
somme des mesures positives a la somme des mesures exprimées par des nombres relatifs. Toutefois,
dans les nouveaux tableaux de proportionnalité, les rapports externe et internes et la propriété de
la somme ont évidemment changé de visage. Heureusement ce changement est une généralisation :
ce que nous avons dit avant le passage aux nombres relatifs demeure applicable aux situations
nouvelles lorsque celles-ci ne font apparaitre, parmi les nombres relatifs, que des nombres positifs.

Lorsque nous considérions les grandeurs ordinaires, nous avons remarqué que les mesures et les
opérateurs étaient tous deux des nombres, positifs en l'occurrence (voir 5.4). Ceci demeure vrai
dans le cadre des grandeurs orientées : les mesures et les opérateurs sont encore tous deux des
nombres, a ceci pres qu’il s’agit maintenant de nombres relatifs. C’est seulement a la section 7 que
nous verrons les mesures et les opérateurs prendre des visages différents.

6.4 Les fonctions affines

X

Les fonctions linéaires, représentées t| ()
par des tableaux de proportionna- —3]-3,5
lité, ont pour graphiques des droites 9 9
passant par l'origine (voir figures 10 1] -0,5 2T
et 11). Mais dans de nombreuses cir- 0 1 1
constances, d’autres types de fonc- 1 2.5 L L
tions se présentent naturellement. 5 1 . 1 2 /
Par exemple, un mouvement uni- 3 5.5 1T
forme sur un axe des x répond a une 1 7 iy
équation du type 5 8.5

x(t) = xo + vt, Tableau 18.

Fig. 13

ou t est le temps, v la vitesse et xy 'abscisse du point mobile au temps ¢ = 0. Un exemple d’une
telle fonction (que I'on n’obtient bien entendu qu’apres avoir choisi des unités pour les abscisses,

10 H. FREUDENTHAL [1983] a observé que c’est & partir du moment ol la géométrie analytique est entrée dans la
pratique mathématique courante, c’est-a-dire dans la deuxiéme moitié du XVII® siecle, que les nombres relatifs ont
été utilisés constamment.
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les temps et la vitesse) est z(t) = 1+ 1,5¢t. Le tableau 18 et la figure 13 sont deux expressions de
cette fonction.

Le tableau 18 n’est pas défini par un rapport externe, et il ne possede t] ()

ni la propriété de la somme, ni celle des rapports internes. Il ne repré- 31 =35
sente donc pas une fonction linéaire. Toutefois, si on met en regard 1] -2 _72 15
la différence entre deux termes de la premiere colonne et la différence 1] -1]-0,5] 15
entre les deux termes correspondants de la seconde colonne, et que 1 0 115
l'on fait cela autant de fois que 'on veut, on obtient un tableau de 1 1 2.5 | 1.5
proportionnalité. Le tableau 19 illustre cette propriété en montrant 1 B 1115
les différences entre éléments successifs de chaque colonne. 1 3 55 1’5
Cette proportionnalité des différences n’exprime rien d’autre, dans le 1 1 : 6 1’5
cas du mouvement uniforme, que la propriété que résume la formule : 1 5 s 1’ 5
méme durée, méme distance parcourue. : .

Tableau 19.

Sur les fonctions affines, voir entre autres le chapitre 6.

7 Les vecteurs et les transformations

Je ne suis toujours pas satisfait de 'algebre, parce qu’elle ne donne pas la voie d’acces la
plus courte aux plus belles constructions de la géométrie. C’est pourquoi je pense qu’en ce qui
concerne la géométrie, nous avons besoin d’une autre analyse encore qui soit clairement géomé-
trique ou linéaire et qui exprime directement les situations comme ’algebre exprime directement
les grandeurs.

G. LEIBNIZ

Dans cette étude, nous avons d’abord examiné les grandeurs au sens ordinaire, dont les mesures
étaient des nombres positifs. Nous avons ensuite étudié les grandeurs orientées, dont les mesures
étaient des nombres relatifs. Mais les grandeurs ordinaires et les grandeurs orientées n’épuisent pas
le champ des grandeurs, si on accepte de donner a ce mot une signification assez étendue. En effet,
les changements de position dans I’espace (et non plus seulement sur une droite), les translations,
les forces, les vitesses, les champs électriques et magnétiques, etc. sont autant de choses qui peuvent
étre plus ou moins grandes, plus ou moins intenses, et qui sont par conséquent douées de grandeur.
Mais en outre elles ont une direction dans l'espace, et un sens sur cette direction. On les qualifie
de vectorielles.

Nous n’essaierons pas d’étendre la notion de tableau de proportionnalité successivement aux chan-
gements de position, translations, forces, vitesses, etc., car cela nous conduirait trop loin, et dans
certains cas n’aurait guere de sens''. Nous ne ferons ici cette tentative d’extension que pour les
changements de position d'un point dans un plan (et dans ’espace ce serait la méme chose), ce qui
nous conduira aux combinaisons et transformations linéaires. Ensuite, a la section 8, nous repren-
drons un par un les autres types de grandeurs vectorielles pour indiquer la spécificité de chacun.

7.1 De la droite au plan

A la section 6.1, nous avons étudié les variations de position sur une droite. Passons maintenant au
b
plan et a I'espace.

1 Voir & ce sujet la section 8.
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Considérons un mobile ponctuel passant d’un point & un autre. Le mouvement le plus simple qui
réalise cela suit le segment qui a pour origine le point de départ du mobile et pour extrémité son
point d’arrivée. Cette variation de la position est ainsi caractérisée par un segment orienté qui va
du point de départ au point d’arrivée. Ce segment possede une longueur, une direction et un sens.

Si nous voulons étendre la notion de tableau de proportionnalité, ou — si on préfere —, de fonction
linéaire, a ces objets nouveaux, nous devrons d’abord définir, en ce qui les concerne, les notions de
somme et de rapport.

Pour la somme, inspirons nous des variations de position sur une droite. Par définition, additionner
deux variations de position dans un plan ou l’espace consistera a enchainer les deux segments
orientés qui les représentent. Mais pour que cette addition soit définie pour deux variations de
position quelconques, il faut que nous puissions toujours déplacer les segments orientés pour les
amener en position enchainée. Et donc, de méme — rappelons-le —, que nous pouvions déplacer deux
baguettes quelconques pour additionner leurs longueurs, nous nous donnerons la liberté de déplacer
n’importe quel segment orienté, en prenant toutefois la précaution de lui conserver toujours méme
longueur, méme direction et méme sens. Nous désignerons les segments orientés ainsi libérés, du
nom de wvecteurs libres, ou en abrégé de vecteurs.

Venons-en maintenant au rapport de deux vecteurs. On pense tout de suite a ce que peut vouloir
dire multiplier un vecteur par un nombre relatif. C’est multiplier sa longueur par la valeur absolue
de ce nombre et, tout en maintenant sa direction, changer son sens ou non selon que le nombre par
lequel on multiplie est négatif ou positif. Et on est tenté alors de dire que deux vecteurs ont entre
eux le rapport a,, ou « est un nombre relatif, si en multipliant le premier par o on obtient le second.

Mais une telle définition du rapport n’est pas vraiment satisfaisante. En effet, selon cette définition,
deux vecteurs ne peuvent avoir un rapport entre eux que s’ils ont méme direction. Or nous voudrions
assez naturellement que deux vecteurs quelconques, méme de directions différentes, aient entre eux
un rapport, ce qui n’est pas possible avec notre définition. Que faire ?

7.2 Un tableau de proportionnalité étriqué

Malgré cette restriction, essayons de construire un tableau de pro- 7 | o =7
portionnalité qui s’appuie sur cette notion de rapport. Juste pour 7 = o 4 /“7
voir. Commencons par deux vecteurs @ et a' = A@a’, de rapport = =
. — = /

A (voir tableau 20). c=va | c =va
Inscrivons ensuite dans notre tableau n’importe quels couples e
(b,0b)et (T, ) tels que tc tc

. R - Tableau 20.

b=pa e b =pd,

—

T =va e (¢ = I/C?,

ou i et v sont deux nombres quelconques, et aussi tout couple de la forme
—  —
(D +7e, 0 +7) (1)

a condition que (b, b") et (¢, ) soient déja dans le tableau.

On vérifie sans peine que dans un tel tableau, tout vecteur de droite est égal au vecteur correspon-
dant de gauche multiplié par A. Ainsi A est le rapport externe du tableau. On vérifie aussi que ce
tableau possede les deux propriétés des rapports internes et de la somme.
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Toutefois, I’objection que nous pouvions craindre est bien 1a : @ et (7 étant choisis au départ dans
une certaine direction, tous les autres vecteurs du tableau ont cette méme direction. Et donc nous
ne sommes pas arrivés a construire un tableau de proportionnalité dans la premiere colonne duquel
nous puissions inscrire n’importe quel vecteur, avec en face celui qui lui correspondrait dans un
rapport donné a ’avance.

A nouveau, que faire? Nous devons certainement remplacer notre notion trop étroite de rapport.
Il nous faudrait une notion de rapport qui permette le passage d’un vecteur quelconque & un autre
vecteur quelconque. Existe-t-il une telle notion ? Pour Iinstant, mystere. . .

7.3 Une généralisation du rapport interne

Ce qui est possible par contre, c’est de passer de deux vecteurs quelconques a un vecteur quelconque,

a condition que les deux premiers soient non nuls et de directions différentes. Soient en effet deux
— . ) ) )

vecteurs @ et b de ce type. Alors, n'importe quel autre vecteur ¢ peut étre représenté sous la

forme _
T =aa+p00, (2)

ou « et 3 sont deux nombres appropriés (rappelons que nous travaillons dans le plan). On dit dans
ces conditions que ¢ est une combinaison linéaire de @ et . Une combinaison lindaire n’est pas
un rapport, mais elle généralise la notion de rapport du fait qu’elle s’y ramene lorsqu’on revient du
plan a la droite.

Pouvons-nous, a partir de la, construire quelque chose qui ressemble & un tableau de proportionna-
lité 7 Essayons de remplacer les rapports internes par des combinaisons linéaires. Commencons par
. . -\ ﬂ ERN

inscrire dans la premiere colonne deux vecteurs @ et b non nuls et dans la deuxieéme colonne les

7 .
vecteurs a’ et b tels que (voir tableau 21)

—

d = T et V=)D, (3)

oll A est un nombre non nul. On le voit, nous essayons de maintenir pour le rapport externe notre
ancienne notion de rapport.

Ajoutons ensuite, dans la premieére colonne, toutes les com- = | o = @
Do C — =
binaisons linéaires que nous voulons des vecteurs @ et b, = 7 =
_ — — - b | b =Xb
par exemple a1 @ + 81 b ou encore ay @ + 2 b . Nous pou- —
¢ dé inscri o ) @ +Bb | ard +5 0
vons par ce procédé inscrire dans cette premiere colonne n’im- 1 1 1 1
porte quel vecteur choisi au hasard. Décidons d’inscrire en @ + P2 b 042(7 + B b
face les combinaisons linéaires correspondantes (c’est-a-dire
- : - . 37
de mémes coefficients) de a’ et b’ . Tableaw 21.

De cette fagon, les combinaisons linéaires de gauche — qui nous servent de rapports internes —,
correspondent bien a celles de droite. Notre tableau ainsi constitué peut contenir autant de couples
que nous voulons.

Assurons-nous maintenant que notre tableau vérifie la propriété des rapports internes, en prenant
rapport interne au sens nouveau de combinaison linéaire. Soit une combinaison linéaire de deux
éléments quelconques de gauche, par exemple

@+ b)) +v(aa@ + 6 b), (4)

ce qui revient aussi a
—
b.

(pa1 +vag)@ + (upr + vf) (5)
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La méme opération exécutée dans la colonne de droite nous amene a

plord + /) + v(asd + /D), (6)

et ensuite a

-7 -7
(nay +vag)a + (uby +vfp2) b (7)
Cette expression s’écrit aussi
Al(pas + vaz) @ + (uby +v02) b (8)

On voit ainsi qu’entre (4) et (6) on retrouve le rapport externe .

Par ailleurs, nous n’avons pas a controler que notre tableau vérifie la propriété de la somme, puisque
la somme est un cas particulier de combinaison linéaire.

Nous avons donc bien construit un tableau de proportionnalité, si nous acceptons d’appeler ainsi
un tableau dans lequel les combinaisons linéaires ont pris la place des rapports internes.

La nature méme du rapport externe de ce tableau est telle que tout vecteur de droite est égal au
vecteur correspondant de gauche multiplié par un nombre A. Une telle transformation des vecteurs
du plan porte le nom d’homothétie. Voila donc I'aboutissement de notre recherche a ce stade : nous
voyons les homothéties comme pouvant étre exprimée par des « tableaux de proportionnalité », en
un sens convenablement adapté.

Un commentaire s’impose toutefois. Dans le cadre conceptuel ol nous nous trouvons, une ho-
mothétie transforme les vecteurs libres, c’est-a-dire ces variations de position que nous pouvons
transporter n’importe ou, sans autre contrainte que de respecter leur grandeur, leur direction et
leur sens. Mais le terme homothétie est plus souvent utilisé en un sens différent. Il désigne alors une
transformation du plan dans laquelle un point origine reste fixe tandis que tous les autres s’écartent
ou se rapprochent de l'origine dans une proportion donnée. Dans ce sens, une homothétie n’agit pas
sur des vecteurs libres, mais bien sur des points. Nous reviendrons sur cette distinction a la section
8.1.

7.4 Une généralisation du rapport externe

Mais revoyons maintenant attentivement le développement qui nous a conduits aux homothéties.
Pour constituer le tableau 21, nous avons d’abord inscrit a gauche des combinaisons linéaires quel-
conques de deux vecteurs @ et 7, puis des combinaisons linéaires des vecteurs ainsi obtenus. Ceci
fait, nous avons constaté que nous obtenions en face les mémes combinaisons linéaires, mais cette
fois des vecteurs (7 et ? Or, et c’est cela qui est curieux, pour prouver ce résultat (la correspon-
dance bien réguliere des combinaisons linéaires entre la gauche et la droite, voir 'expression (7)),
nous ne nous sommes pas du tout servis de la condition

N

d =27 et ¥ =27, 9)
Nous n’avions imposé cette derniere condition que pour préserver cette forme de rapport externe
pour notre tableau (ce qui a d’ailleurs réussi).

. . . 7 -7 o sl
Donc, si nous voulons, nous pouvons choisir les vecteurs a et b arbitrairement, et la propriété
des rapports internes (des combinaisons linéaires) sera encore vérifiée. Celle de la somme aussi.

Mais, ceci fait, se pose une question cruciale. En effet, dans ces nouvelles conditions, notre rapport
externe est perdu dans la forme que nous lui avions souhaitée. Alors, existe-t-il encore entre les
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deux colonnes quelque chose que nous puissions appeler rapport externe? Ou en termes plus imagés,
quel peut bien étre le contenu géométrique du passage de la colonne de gauche a celle de droite 7

Regardons cela de pres. Tout vecteur T de gauche peut étre écrit sous la forme
T=m@ b (10)
Le vecteur correspondant de droite est alors de la forme

Y =aid vt (11)

—

—

. / o A ’ . . . . 7 .
Mais a' et b peuvent aussi étre écrits comme combinaisons linéaires de
sous la forme

@ et b, par exemple

67 = 7‘117 + 7‘127,
—
A 7“21?—1—7“227.
En tenant compte de (11), nous obtenons encore
—
37 = ($1T11 + $2T21)7 + ($1T12 + .IQ’I“QQ) b . (12)

Autrement dit, si le vecteur T s’exprime en fonction des vecteurs @ et b par le couple (z1,x2),

. . R -
son image ? s’exprime par rapport aux méme vecteurs @ et b par le couple (17111 +xore1, T1712+
xar9g). Pour le lecteur qui connait déja un peu le calcul vectoriel, on peut reformuler cela en disant

que la transformation qui envoie T sur 37 a pour expression dans la base (@', b)),
/
T1 = T11%1 + 72172,
/
Ty = Ti2T1 + T22%2.

Telle est donc la loi de passage des T~ aux ? ou, en d’autres termes, voila ce qui nous tient lieu
de rapport externe.

En réalité, nous arrivons la a des tableaux de proportionnalité (considérablement) généralisés qui
expriment ce que 'on appelle les transformations linéaires du plan, pour la découverte desquelles
nous renvoyons le lecteur a des exposés plus complets. Par dela les homothéties, on y trouve les
isométries, les similitudes, les compressions, les cisaillements, . ..

Notons toutefois une difficulté. Ces transformations sont habituellement vues comme expédiant
chaque point du plan sur un autre (et parfois le méme). Or un vecteur libre n’est pas a priori
associé a un point. L’intuition le percoit soit comme un segment orienté transportable, soit comme
I’ensemble des segments orientés de méme longueur, direction et sens qu’un segment donné. Dans
les deux cas, cela exige un travail que d’associer tout vecteur libre a un et un seul point du plan et
réciproquement.

7.5 Nouveaux objets, nouveaux opérateurs

Pour en revenir a la mutation a laquelle nous venons d’assister, insistons sur sa signification pro-
fonde. Dans nos tableaux de proportionnalité relatifs aux grandeurs, aux mesures de grandeurs et
aux grandeurs orientées, nous avions des rapports internes et externes, mais ces rapports avec des
noms différents étaient de la méme nature et avaient tous le méme contenu géométrique simple.
Par contre, en passant aux « rapports » entre grandeurs a deux dimensions, nous assistons a une
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bifurcation de la notion : les rapports internes deviennent des combinaisons linéaires (notion au
contenu géométrique encore assez simple, caractérisée par deux nombres), mais les rapports ex-
ternes deviennent des relations au contenu géométrique divers, impossibles a saisir d’un seul coup
d’ceil intuitif, et caractérisées par quatre nombres.

Remarquons pour en finir avec les variations de position que nous pourrions aussi les étudier dans
I’espace. Les conclusions seraient analogues, quoique nous aurions alors a faire a des combinaisons
linéaires de trois vecteurs, et le substitut des rapports externes serait représenté non plus par quatre
nombres mais par neuf.

Le chapitre 8 introduit au calcul vectoriel en termes de déplacements. Il est complété par le chapitre 9
qui introduit le produit scalaire, expression de la bilinéarité. Voir aussi sur ces deux sujets, le chapitre
15.

7.6 Le plan quadrillé

Une comparaison peut éclairer la facon dont nous avons introduit les variations de position au début
de cette section 7. Lors d’une legon de gymnastique, un professeur dit a ses éleves : « Faites un
pas en avant. » Les éleves peuvent exécuter ce mouvement parce qu’ils ont un avant et un arriere :
chacun d’eux est un corps orienté. Tel n’est pas le cas d’un point dans un plan, et il n’est donc pas
possible de décrire de cette facon une variation de position d’un point. Mais le professeur peut dire
aussi : « Faites un pas vers le mur de gauche, ou vers le nord. » En disant cela, il se réfere a un
repere déja présent dans I’environnement. Nous aurions pu procéder de maniere analogue, mais ce
n’est pas ce que nous avons fait. Enfin le professeur peut faire lui-méme un pas dans une direction
choisie au hasard, puis dire a ses éleves : « Faites comme moi », voulant dire par la : « Faites un
pas de la méme longueur que le mien, dans la méme direction et le méme sens. » C’est comme cela
que nous avons procédé, en évoquant un mobile ponctuel qui passe d’un point & un autre, puis en
considérant que nous pouvions envisager un mouvement identique a partir de n’importe quel autre
point.

En procédant ainsi, nous avons pu poser, sans avoir a tenir compte de quoi que ce soit d’autre,
d’aucun repere préexistant, la question de ce que pourrait bien étre un rapport entre deux varia-
tions de position. En échouant & définir un tel rapport dans le cas général, mais en reconnaissant
ensuite la possibilité d’une sorte de rapport entre deux variations de position (non nulles et de
directions différentes) et une troisiéme, nous avons fait naitre la notion de combinaison linéaire
et, implicitement, celle de base du plan vectoriel. En mettant ensuite au point un « tableau de
proportionnalité » qui respecte cette sorte de rapport nouveau, nous avons fait naitre la notion de
transformation linéaire, autre et dernier avatar du rapport. Tout cela était conforme a 1’objectif
annoncé au début de cette étude et qui était de faire apparaitre diverses mutations de la notion de
rapport.

Il va de soi pourtant que dans la pratique, lorsqu’on veut spécifier une variation de position dans
un plan, celui-ci est souvent déja occupé par des objets ou des figures pouvant servir de repere. Par
exemple sur les plans de villes, on peut se référer a un quadrillage. Celui-ci tient lieu de repere et
permet d’emblée la décomposition des variations de position en deux composantes : avancer de tant,
dans tel sens, dans une direction du quadrillage, puis de tant, dans tel sens, dans 'autre direction,
le coté du carré servant d’'unité de mesure. Cette fagon plus concrete d’introduire les variations de
position est mieux adaptée a une premiere approche de la linéarité que notre recherche des avatars
de la notion de rapport. C’est le moment de rappeler que nous ne proposons pas du tout cette
recherche comme théme d’un enseignement élémentaire.

Sur l’utilisation du plan quadrillé pour introduire les vecteurs géométriques, voir le chapitre 8.
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8 Quelques sources de vecteurs

... Toute grandeur vectorielle dépend de deux éléments hétérogenes, 'un de nature arithmétique
et 'autre de nature géométrique, qui sont un nombre et une direction. On peut lui attacher un
vecteur, abstraction mathématique qui est a la grandeur vectorielle ce que le nombre est a la
grandeur scalaire et, de méme que I’étude des grandeurs scalaires se ramene a des raisonnements
sur les nombres, celle des grandeurs vectorielles se ramene a des raisonnements sur les vecteurs.

R. BRICARD

8.1 Repérer les points d’un plan

A la section 6.1, nous avons étudié le repérage des points sur une droite. Examinons maintenant le
repérage des points d’un plan. On ne peut pas spécifier la position d’un point si ce n’est par rapport
a quelque chose. Et donc il faut au départ se donner un repere. Alors on part d’un point (que l'on
appelle ['origine) dans une direction donnée, ce qui ne conduit qu’aux points d’une seule droite.
Pour balayer les autres points du plan, il faut changer de direction. On peut par exemple tourner
la droite choisie au départ, ce qui engendre les coordonnées polaires. Ici nous choisissons plutot
une deuxieme droite passant par l'origine et partant dans une autre direction que la premiere. En
munissant chacune des deux droites d’une unité orientée, nous obtenons un repere au sens bien
connu en géométrie.

Si le plan que l'on considére est déja muni d’un quadrillage (ou d’un pavage de parallélogrammes
identiques entre eux), on installe un repere en choisissant deux droites sécantes du quadrillage, puis
en orientant celles-ci.

La position d’'un point par rapport a un repere est donnée par ’enchainement de deux variations
de position : on avance de tant depuis l'origine le long du premier axe, puis on avance de tant
parallelement au second axe. C’est la une combinaison linéaire des deux variations de position
représentées par les deux unités orientées. Elle va de I'origine au point que ’on veut situer. Appelons-
la vecteur-position de ce point. Ses deux coefficients sont appelés les coordonnées du point. Les
vecteurs-positions sont aussi parfois appelés vecteurs liés.

Ce procédé fait jouer aux deux axes des roles différents. Pour leur faire jouer le méme role, on
peut construire le parallélogramme défini par les deux axes et les paralleles a ceux-ci passant par le
point a situer, puis considérer la variation de position qui, en suivant la diagonale, va de l'origine
au sommet opposé de ce parallélogramme.

Et maintenant pourquoi s’intéresser au produit d’un vecteur-position par un nombre et a la somme
de deux vecteurs-positions 7 Car a premiere vue un tel vecteur semble avoir rempli son office des
qu’il a montré ou est un point.

Toutefois, multiplier les vecteurs-positions de tous les points d’une figure par un méme nombre
aboutit a agrandir ou rapetisser la figure sans changer sa forme, ce qui a beaucoup de sens. En
faisant cela, on réalise une homothétie.

D’autre part, si certains points du plan sont affectés d’une masse, pour déterminer le centre d’inertie
de ce systeme de points, on est amené a faire la somme de tous les vecteurs-positions de ces points
multipliés chacun par la masse correspondante. Cette application justifie amplement le produit d’un
vecteur-position par un nombre et la somme de deux vecteurs-positions.

Ces deux opérations s’introduisent d’ailleurs de fagon naturelle, puisque pour multiplier un vecteur-
position par un nombre, il suffit de multiplier chacune de ses coordonnées par le nombre, et pour
additionner deux vecteurs-positions, il suffit d’additionner deux a deux leurs coordonnées.
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Comparés aux variations de position, les vecteurs-positions ont I’avantage de correspondre chacun
a un point du plan et réciproquement. Ils semblent donc particulierement adaptés a 1’étude des
transformations linéaires du plan : ce sont des transformations dans lesquelles chaque point est
envoyé sur un autre point (ou sur lui-méme). L’homothétie mentionnée ci-dessus en est un exemple,
mais il y a aussi les rotations, les symétries orthogonales et bien d’autres.

Parmi ces transformations, certaines sont linéaires, ¢’est-a-dire conservent les combinaisons linéaires,
et d’autres non. Mais c’est la un résultat théorique qui ne sera habituellement rencontré que bien
apres I'étude des transformations familieres.

8.2 Les translations

Soit une figure dans un plan. Si on la fait glisser sans la tourner vers un autre endroit du plan,
on obtient une deuxieme figure identique a la premiere. En répétant ce mouvement (un glissement
dans la méme direction et sur la méme distance) a partir de la deuxiéme figure, on en crée une
troisieme. On peut en créer de méme une quatrieme, une cinquieme, etc. On voit ainsi se constituer
une frise. En repartant de la premiere figure et par des mouvements identiques, quoique de sens
opposé, on allonge la frise de 'autre coté. On peut imaginer une frise infinie dans les deux sens.

On peut aussi passer de la frise & un papier peint (un réseau plan). Il suffit de choisir un deuxieme
mouvement, dans une direction différente du premier, et de reproduire la frise autant de fois que
I’on voudra par application réitérée de ce mouvement dans les deux sens.

On peut étudier, sur le papier peint, les passages d’un motif de base quelconque a un autre, de la
méme maniere que ’on étudiait le passage d’un point a un autre par une variation de position. Les
motifs du papier peint ont simplement pris la place des points. Le passage d’un motif a un autre,
caractérisé par sa longueur, sa direction et son sens, peut étre reproduit au départ de n’importe
quel motif. C’est intuitivement I'analogue du vecteur libre.

Dans ce cadre, la multiplication d’un mouvement par un nombre (en I'occurrence un entier) apparait
naturellement : on envoie le motif tant de fois plus loin dans un sens ou 'autre. La somme de deux
mouvements procede par enchainement, comme dans le cas des variations de position.

D’autre part, on ne doit pas ici introduire la notion de repere : elle se dégage en quelque sorte d’elle
méme, puisque n’importe quel mouvement peut étre exprimé comme la somme de deux mouvements
de directions différentes, multipliés chacun par un nombre approprié.

De ces considérations sur les papiers peints, on peut passer par analogie aux vecteurs libres du plan.

Changeons maintenant de point de vue. On peut engendrer une frise tout autrement que ci-dessus, a
condition que l'on ait déja acquis le concept de translation du plan entier (sans aller nécessairement
jusqu’a la composition des translations). On part d’une figure. On translate le plan, de maniere a
envoyer la figure a un autre endroit. Puis on pose la question : comment faudrait-il compléter la
figure de départ pour qu’elle retombe sur elle-méme (qu’elle soit invariante) a la suite de la seule
translation envisagée ? La figure complétée est une frise.

On peut alors engendrer un papier peint en demandant simplement de compléter la figure de départ
de sorte qu’elle se transforme en une figure invariante par application de deux translations du plan
de directions différentes.

On peut ensuite explorer toutes les translations du plan qui laissent le papier peint invariant. Et
on voit bien comment l’on retrouve ainsi le produit d’une translation par un nombre, la somme (la
composée) de deux translations, et comment on choisit deux translations de directions différentes
dont les combinaisons linéaires permettent de retrouver toutes les autres.
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Quelles que soient par ailleurs les facons de procéder pour créer une frise ou un papier peint, les
vecteurs mis au point dans de tels contextes sont plus proches des vecteurs libres que des vecteurs-
positions. Comme expliqué ci-dessus, cela demande un effort d’associer chacun d’eux & un point du
plan pour pouvoir ensuite envisager les transformations du plan d’un point de vue vectoriel.

Un avantage toutefois des frises et papiers peints, c¢’est que si le motif de base est lui-méme invariant
pour certaines symétries orthogonales ou rotations, ces symétries se transmettent au plan entier et
conduisent donc naturellement aux isométries du plan entier (mais non & d’autres transformations).

L’extension des isométries au plan entier est un caractere intéressant pour ceux qui étudient — ce
que nous ne ferons pas ici —, les propriétés de groupe de ces tranformations et les théoremes de
réduction : toute isométrie directe est une translation ou une rotation, et toute isométrie inverse
est une symétrie glissée.

8.3 Les vitesses

Les vecteurs se rencontrent dans d’autres champs que la géométrie. Considérons maintenant les
vitesses, qui relevent d’abord de la cinématique, avant de jouer un réle en dynamique, la ou les
forces interviennent. Concentrons-nous dans un premier temps sur les mouvements rectilignes et
uniformes d’un mobile ponctuel.

La vitesse d’'un tel mobile possede une grandeur, une direction et un sens. Il est par conséquent
tentant de la représenter par un vecteur. Mais tout d’abord on ne peut la représenter par un
segment orienté qu’apres avoir fait un double choix, nécessaire pour fixer la longueur du segment :
premierement on doit se donner une unité de longueur et une unité de temps, par exemple le metre et
la seconde, ce qui fixe 'unité de vitesse, dans notre exemple le metre par seconde ; deuxiemement,
on doit se donner une échelle de représentation des vitesses, en convenant par exemple de faire
correspondre un centimetre a un centimetre par seconde.

Ceci fait, la vitesse correspond-elle a un vecteur libre ou a un vecteur lié 7 A priori pas a un vecteur
libre, car elle est attachée a un point, a savoir le mobile. Il serait donc tres artificiel d’associer a la
vitesse un segment transportable en tout point de I'espace, et encore moins a un ensemble infini de
segments orientés de mémes longueur, direction et sens. Mais si on veut faire correspondre la vitesse
a un vecteur lié, on tombe sur une autre difficulté, a savoir que le segment orienté-vitesse doit étre
attaché a un point mobile, et non a une origine fixe, comme c’était le cas pour les vecteurs-positions.
Ainsi, si la vitesse est représentable par un vecteur, il s’agit d’'un vecteur tres particulier, peut-étre
une variété de vecteur que nous n’avons pas encore rencontrée. Nous reviendrons sur cette difficulté.

Ceci dit, pour que la vitesse soit représentée fidelement par un vecteur, il faut encore que cela ait
un sens de la multiplier par un nombre. Aucune difficulté a cela, car doubler, tripler, ... une vitesse,
en changeant ou non son sens, sont des opérations raisonnables et utiles.

Ensuite, quel sens y a-t-il a additionner deux vitesses? On peut se faire une idée, mais ce n’est
pas si facile, d’'un mobile susceptible de prendre deux mouvements (nous en sommes toujours aux
mouvements rectilignes et uniformes) et qui les prendrait tous les deux en méme temps. Par exemple,
il pourrait aller vers le nord a telle vitesse, et pourrait aussi aller vers I'ouest a telle autre vitesse.
Les deux mouvements ensemble le porteraient vers le nord-ouest. Mais qu’est-ce que cela veut dire
les deux mouvements ensemble ¢ Pour réaliser cela pratiquement, il faut se souvenir qu’un mobile
se meut toujours par rapport a quelque chose. Soit par exemple un nageur qui nage vers le nord
en eau dormante. Remplacons ensuite, fut-ce mentalement, I’eau dormante par un fleuve qui coule
vers I'ouest. Il se fait que la vitesse du nageur par rapport a la rive s’obtient en ajoutant, par la
regle du parallélogramme, sa vitesse initiale vers le nord et la vitesse du fleuve.
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La question ainsi posée débouche a terme sur celle du mouvement relatif. La vitesse du nageur par
rapport au fleuve est sa wvitesse relative. La vitesse du fleuve est sa vitesse d’entrainement. Enfin, la
vitesse du nageur par rapport a la rive (repeére fixe ou réputé tel) est sa vitesse absolue. La vitesse

absolue est la somme de la vitesse d’entrainement et de la vitesse relative!2.

Etant donné ce que nous avons dit de la maniere de faire correspondre des segments orientés aux
vitesses, la fagcon la plus naturelle d’additionner les vitesses est bien la regle du parallélogramme.
On ne voit pas en effet a quoi correspondrait le fait d’enchainer deux vecteurs vitesses.

En ce qui concerne par ailleurs les transformations linéaires, si étroitement liées aux vecteurs géo-
métriques, on ne voit guere a prior: pourquoi on s’en occuperait du coté des vitesses.

Si maintenant nous passons des mouvements rectilignes et uniformes aux mouvements quelconques,
la définition de la vitesse se complique. Elle devient ce que 'on appelle la wvitesse instantanée. Sa
direction (la tangente & la trajectoire) et sa grandeur sont déterminées au terme d’un processus de
limite appelé dérivation. Non seulement, comme dans le cas précédent, elle est attachée a un point
mobile, mais encore elle ne conserve le plus souvent ni sa grandeur et ni sa direction, elle en change
a chaque instant. Il n’empeéche, ce que nous avons dit ci-dessus du caractere vectoriel de la vitesse
demeure vrai. Mais cela nous entrainerait trop loin de le montrer ici.

La relation entre les vitesses et les vecteurs est étudiée au chapitre 13.

8.4 Les forces

Comme les vitesses, les forces sont candidates pour étre représentées par des vecteurs, puisqu’elles
ont comme ces dernieres une grandeur, une direction et un sens. Mais elles partagent avec les
vitesses la propriété que pour les représenter par des segments orientés, il faut d’abord les mesurer
dans une unité & choisir (par exemple le kilogramme-force qui est la plus disponible) et ensuite
choisir une échelle de représentation, par exemple un centimetre par kilogramme-force.

Ensuite est-ce qu’une force serait représentable plutot par un vecteur lié, ou plutot par un vecteur
libre 7 Il ne serait guere possible de répondre a cette question sans examiner les circonstances ol
des forces entrent en jeu. Dans un premier temps, bornons-nous au probléme le plus simple : celui
ou quelques forces tirent sur un point et ot on s’intéresse a 1’équilibre de celui-ci. Les forces sont
appliquées au point, et par conséquent le bon modele est plutot celui des vecteurs liés. Toutefois, on
peut tirer sur le point par I'intermédiaire de cordes dont la longueur n’a a priori pas d’importance.
Et donc on pourrait admettre que la force soit accrochée en un point quelconque de la corde. Cette
remarque n’a pas pour l'instant de grande conséquence, et donc oublions-la provisoirement. Nous
y reviendrons un peu plus tard.

En ce qui concerne la somme des forces, c’est clairement la loi du parallélogramme qui joue, car
on voit mal ce que pourrait vouloir dire ’action d’enchainer deux segments orientés représentant
des forces. La condition d’équilibre du point est que la somme des forces, calculée par la loi du
parallélogramme, soit nulle.

Multiplier les forces par un nombre est une opération qui a aussi un sens dans le probleme de
I’équilibre d’un point. En effet, par exemple, si un point est en équilibre sous 'action de quelques
forces, il demeure en équilibre si toutes ces forces sont multipliées par un méme nombre.

12 Cette loi ne va pas de soi, comme on s’en rend compte jusqu’a un certain point en considérant les accélérations.
Quittons momentanément le cadre des mouvements uniformes, et supposons que le nageur ait un mouvement accéléré
par rapport au fleuve et que le fleuve lui-méme ait un mouvement accéléré par rapport a la rive. Dans un tel cadre,
on définit pour le nageur une accélération relative, une accélération d’entrainement et une accélération absolue. Mais
il est généralement faux que la somme des deux premiéres soit égale a la troisieme.
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Multiplier, comme nous venons de le faire, toutes les forces appliquées en un point par un méme
nombre revient a soumettre les vecteurs-forces a une homothétie. Par dela cette remarque, on voit
mal a priori pourquoi on développerait une théorie des tranformations linéaires a propos des forces.

Dépassons maintenant le probleme élémentaire de 1’équilibre d’un point, et jetons un coup d’ceil sur
les questions plus générales ou des forces interviennent. Bornons-nous aux questions de statique,
car la dynamique nous entrainerait trop loin. Un probléme fondamental est celui de 1’équilibre
d’un solide soumis a quelques forces. Ces forces tirent ou poussent sur le solide en des points bien
déterminés. La condition (nécessaire et suffisante) d’équilibre est double : la somme (vectorielle ) des
forces doit étre nulle, et la somme des moments des forces par rapport a un point fixe quelconque doit
aussi étre nulle!®. Pour faire la somme des forces, le plus simple est de les imaginer toutes appliquées
a un point quelconque donné et de procéder comme pour 1’équilibre d’un point. Lorsqu’on fait cela,
on libere en pensée les forces de leur point d’application sur le solide. Elles deviennent des vecteurs
libres pour le temps du calcul. Par contre, pour faire la somme des moments des forces, on ne
peut plus déplacer celles-ci, sauf éventuellement que chacune peut glisser sur sa ligne d’action,
c’est-a-dire sur la droite déterminée par son point d’application et sa direction. En raison de cette
contrainte, les mécaniciens ont introduit la notion de systéme de vecteurs glissants, aussi appelé
torseurs. Ce n’est pas ici le lieu d’en faire la théorie.

Ceci suffit sans doute & montrer que les forces sont représentées fidelement par des vecteurs, au
sens ou on leur applique les regles de calcul introduites pour les vecteurs géométriques (ou plus
généralement pour les éléments des espaces vectoriels). Les vecteurs sont un outil de représentation
des forces et donnent la clé de nombreux calculs qu’on leur applique, mais ils ne disent pas tout
sur les forces. Un peu comme les nombres sont des outils de représentation pour celui qui pese et
paie des marchandises, mais les nombres ne disent pas tout sur les marchandises.

Sur la relation entre les forces et les vecteurs, voir le chapitre 12.

8.5 Les nombres complexes

Les nombres complexes sont parmi les objets mathématiques qui ont historiquement le plus contri-
bué a I’émergence des vecteurs. Contentons-nous ici de montrer ce que devient la notion de tableau
de proportionnalité lorsqu’on tente de I'étendre aux complexes. Disposons dans une premiere co-
lonne tous les nombres complexes que nous voulons. Ecrivons en face les mémes nombres multipliés
par un nombre complexe ¢, qui jouera le role de rapport externe. Un tel tableau satisfait aux deux
propriétés de la somme et des rapports internes, les notions de somme et de rapport étant prises
ici au sens des complexes. Ces propriétés résultent simplement du fait que les complexes forment
un corps.

Il est intéressant de noter que la fonction linéaire a laquelle renvoie un tel tableau n’est autre qu’une
similitude du plan complexe. A la section 7 notre généralisation des tableaux de proportionnalité
engendrait toutes les transformations linéaires du plan. Ici nous n’atteignons que les similitudes. Par
ailleurs, notre analyse de la section 7 s’étend sans peine aux espaces a n dimensions. Les nombres
complexes eux ne s’appliquent qu’au plan. Quoiqu’il en soit, la représentation des similitudes par
les complexes fait de ceux-ci un instrument tres efficace d’étude des problemes euclidiens plans.

Sur la relation entre les nombres complexes et les vecteurs, voir le chapitre 10.

3 Nous sommes obligés ici de déborder un peu le cadre théorique de la présente étude. Le lecteur qui ne compren-
drait pas ce paragraphe ne perdra pas grand chose de I’ensemble.



598 Chapitre 16. La linéarité comme fil conducteur

9 Conclusions

Jetons un dernier regard sur notre parcours. Nous sommes partis de la proportionnalité entre deux
grandeurs. Nous avons envisagé d’emblée la proportionnalité, non sous la forme de 1’égalité de
deux rapports, mais sous la forme des tableaux de proportionnalité. Nous avons donc privilégié les
familles — toujours extensibles —, de rapports égaux, ou plus généralement les fonctions linéaires.

Penser les choses par familles stimule davantage la pensée que de les envisager une par une'?.

Regarder cette matiere sous I'angle des tableaux et des fonctions nous a permis de mettre en
évidence d’emblée les trois propriétés fondamentales : celles du rapport externe, de la somme et
des rapports internes. Tout notre travail a consisté ensuite a voir comment ces notions s’adaptaient
a des contextes divers, sucessivement les mesures, les grandeurs mesurées, les grandeurs orientées
et leurs mesures, et enfin les grandeurs vectorielles. Nous avons étudié plusieurs généralisations
du concept de somme, qui a pourtant conservé le méme nom d’'un bout a l'autre, et plusieurs
généralisations du concept de rapport, celles-ci tellement profondes que le nom méme de rapport a
di étre remplacé, selon la matiere traitée, par ceux de combinaison linéaire et de quotient de deux
nombres complexes.

Au terme de ce parcours, nous avons un double espoir. C’est d’abord que le fil conducteur de la
linéarité (il n’est pas le seul, mais il est important) soutienne la conception d’un enseignement en
spirale, aide a en assurer la cohérence, et ramene ’attention sur les structures dans I’enseignement
des mathématiques. A I’époque des mathématiques modernes, on a cru possible d’exhiber tres tot
dans ’enseignement, et de maniere axiomatique, certaines structures importantes. Du fait que cela
s’est avéré difficile, certains ont eu tendance & conclure qu’il fallait accorder moins d’importance
aux structures. Cela nous semble contraire a la nature méme des mathématiques et préjudiciable
a l'enseignement. Nous proposons plutot d’envisager les structures autrement, a savoir en étant
attentif a leur émergence et a leur maturation a travers toute la scolarité, quoique sans vouloir les
inculquer prématurément dans une forme abstraite.

Notre deuxieme espoir est qu'un enseignant qui aurait compris les connexions importantes qui
relient tant de matieres, serait mieux armé pour interpréter les difficultés rencontrées par les éleves
dans les circonstances toujours pressantes d’une classe au travail.

1 Cétait une des conclusions méthodologiques de CREM [1995]
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