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5 rue Émile Vandervelde B-1400 Nivelles Belgique

Tél. +32–(0)67 21.25.27 Fax. +32–(0)67 21.22.02 Cpte 068-2179326-54

rouche@amm.ucl.ac.be



Rapport au terme de trois années de recherche
(première partie)

Le présent document est la première partie du rapport final d’une recherche qui s’est étalée
sur trois ans. La deuxième partie du rapport est présentée à part sous le titre Vers une
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Avant-propos

1 La linéarité, une idée de base

Dans les années 60 et 70 du XXe siècle, les promoteurs des ✭✭ mathématiques modernes ✮✮ avaient
proposé un fil conducteur unique et clair pour l’enseignement des mathématiques. Pour le dire
sommairement, ils privilégiaient les structures et l’enchâınement déductif qui va des ensembles et
relations aux systèmes de nombres et aux espaces vectoriels. Cette conception exhibait l’unité de
la mathématique, que ces promoteurs défendaient si éloquemment.

À partir de la fin des années 70, ce fil conducteur a été délaissé pour l’essentiel, et l’enseignement,
comme les programmes en font foi, est revenu aux divisions traditionnelles des mathématiques,
celles que nous avons héritées de l’histoire plus ancienne. Il s’agit en gros de l’arithmétique, la
géométrie, l’algèbre, l’analyse et les probabilités. Or ces divisions de la matière mathématique ont
un sens. Dans une étude antérieure1, le CREM a montré que chacune d’elles est associée certes à
l’étude d’une certaine classe d’objets, mais aussi et peut-être surtout à un mode de pensée. C’est
bien d’ailleurs pour cela qu’elles ont émergé au cours des siècles.

Quoiqu’il en soit, et peut-être précisément parce qu’ils correspondent à des modes de pensée spéci-
fiques, ces chapitres ont tendance à se refermer chacun sur lui-même. Et l’enseignement mathéma-
tique, considéré dans son ensemble, se constitue alors en compartiments plus ou moins étanches.
Les enseignants connaissent bien les difficultés, pour les élèves, des transferts de méthodes et d’in-
tuitions d’une matière à une autre. Dans cette perspective, il manque des fils conducteurs, des liens
de parenté visibles qui favorisent la mobilité de la pensée.

Comme nous l’avons remarqué déjà ci-dessus, le point de vue des structures a été dans une assez
large mesure occulté à partir des années 80. Or les structures peuvent être considérées, en raison
même de leur abstraction, comme un mode de pensée non spécifique, en ce sens qu’elles trans-
cendent les divisions traditionnelles des mathématiques et de ce fait favorisent les transferts. Elles
transcendent ces divisions, parce qu’elles sont au cœur, au principe même de la pensée mathéma-
tique.

D’où la question : n’avons nous pas assisté, autour des années 80, à un retour trop ample du
balancier de l’histoire ? N’aurait-il pas mieux valu, plutôt que d’abandonner les structures, penser
à les enseigner autrement ? Telle est la question à laquelle le présent ouvrage propose des éléments
de réponse.

On a compris aujourd’hui que les structures ne peuvent pas être au début de l’enseignement.
Ce qui vient d’abord, ce sont les grandeurs, les nombres, les formes, des questions à leur sujet,
des symboles qui soutiennent la pensée mathématique commençante. Les parentés de structure se
découvrent petit à petit. Et d’ailleurs, certaines structures sont plus prégnantes que d’autres.

Dans cet ouvrage, nous montrons le pouvoir éclairant de la structure linéaire. C’est celle qui sous-
tend les grandeurs et leur mesure, les rapports et les proportions, la similitude, l’algèbre du premier

1 Voir Les mathématiques de la maternelle jusqu’à 18 ans, CREM [1995], dans les chapitres 4 à 9, les sections
intitulées ✭✭ Les nombres comme forme de pensée ✮✮, ✭✭ La géométrie comme forme de pensée ✮✮, etc.
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degré, les combinaisons linéaires et les espaces vectoriels. L’idée de linéarité, qui apparâıt modeste-
ment à l’école maternelle, se construit par généralisations successives tout au long de la scolarité.
Elle est de celles – la principale peut-être ? – qui peuvent soutenir la conception d’un enseignement
en spirale, puisque de classe en classe, elle revient dans des contextes divers et éclaire des questions
de plus en plus vastes. L’idée de structure linéaire n’est pas donnée au départ, elle s’élabore en
même temps que s’approfondit l’expérience mathématique des élèves.

2 De la prime enfance à l’âge adulte

Une fois de plus2, le CREM propose ici un ouvrage qui traite de l’enseignement des mathématiques
de la prime enfance à l’âge adulte. L’idée est qu’il est intéressant – voire nécessaire –, pour chaque
enseignant d’explorer non seulement les matières au programme de sa classe, mais encore celles
d’avant et celles d’après, puisque l’éducation mathématique forme un tout.

Le risque d’une étude adressée à des lecteurs aussi nombreux et divers est que beaucoup d’entre eux
ne la liront qu’en partie. Mais au moins prendront-ils conscience que leur travail quotidien a des
tenants et des aboutissants importants, et seront-ils tentés d’y aller voir. Qui plus est, les lecteurs
moins nombreux qui s’intéresseront à l’ensemble sont sans doute ceux qui sont le plus susceptibles
de faire évoluer l’enseignement.

3 Creuser profond mais aussi servir en classe

Cette étude regroupe des contributions de deux sortes. D’une part des chapitres de nature épistémo-
logique et historique sur la structure linéaire. L’idée est de creuser profond, sur un plan théorique.
Ensuite des chapitres de situations-problèmes adaptées à tous les âges de l’école, montrant prati-
quement la structure linéaire en construction dans diverses matières. Cette double face de notre
travail entrâıne un autre risque : c’est que le lecteur théoricien ne lise que ce qui l’intéresse im-
médiatement, et que le praticien fasse de même. Notre espoir est que certains, les plus nombreux
possibles, cèdent à la tentation d’éclairer un point de vue par l’autre, ce qui est – nous semble-t-il –
la meilleure façon de saisir véritablement l’ensemble du problème de l’éducation mathématique.

4 Contenu de l’ouvrage

L’introduction reprend et détaille l’intérêt de dégager un (voire plusieurs) fil conducteur pour l’en-
seignement des mathématiques.

La première partie, qui comporte quatre chapitres, concerne les élèves de deux ans et demi à douze
ans. Elle propose d’abord des situations-problèmes sur les balances et les poids à l’école maternelle.
Elle se poursuit par diverses activités destinées à l’école primaire et utilisant le tangram. Viennent
ensuite un chapitre sur les comparaisons et mesures de capacités, et un autre, destiné à la fin du
primaire, sur les grandeurs, les pourcentages et leurs représentations graphiques.

La deuxième partie vise les élèves de douze à quinze ans. et comprend deux chapitres, numérotés
5 et 6. Le chapitre 5 prend la suite du dernier chapitre de la première partie. Il traite d’abord des
pourcentages et de divers supports géométriques qui permettent de les visualiser, puis du thème

2 Voir les trois publications antérieures les plus importantes du CREM, à savoir : Les mathématiques de la
maternelle jusqu’à 18 ans [1995], Formes et mouvements, perspectives pour l’enseignement de la géométrie [2001] et
Construire et représenter, un aspect de la géométrie de la maternelle jusqu’à 18 ans [2001].
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général de la proportionnalité, dans ses expressions numérique (les tableaux de proportionnalité),
graphique et algébrique (les formules). Les contextes des questions posées sont divers : problèmes
de troc, d’épargne, remplissage d’un réservoir d’essence. Le même chapitre se termine par une
question de patterns de cubes et par une introduction des nombres entiers liée à des questions
d’alignement de points dans un système d’axes. Le chapitre 6 traite de la proportionnalité et
de la non-proportionnalité en géométrie, avec des questions de périmètres et d’aires et enfin une
introduction au théorème de Thalès conjointement avec des notions de perspective cavalière.

La troisième partie concerne les élèves de quinze à dix-huit ans. Elle comprend sept chapitres, qui
portent les numéros 7 à 13. Elle s’ouvre par une introduction historique consacrée aux méthodes
de fausse position et de double fausse position, permettant de montrer aux élèves que les pratiques
aujourd’hui communes sont apparues au terme d’une difficile maturation. Le chapitre 8 est une
introduction progressive au calcul vectoriel géométrique, partant de la notion de changement de
position. Le chapitre 9 complète le précédent par une initiation au produit scalaire et donc à
l’idée de bilinéarité. Les nombres complexes, considérés comme des vecteurs munis d’un produit
particulier, permettent d’aborder efficacement des questions de géométrie euclidienne : ils sont la
matière du chapitre 10. Le chapitre 11 propose une initiation simultanée à la réalisation de dessins
en Postscript et à la géométrie analytique. Les deux derniers chapitres de cette troisième partie
rattachent l’idée de vecteur à celle de grandeur vectorielle en physique. Le chapitre 12 traite d’abord
de problèmes simples d’équilibre de solides dans un champ de pesanteur uniforme, ce qui mobilise les
centres de gravité. Il étudie ensuite les conditions d’équilibre d’un point soumis à des forces, matière
qui permet d’introduire la règle du parallélogramme. Enfin le chapitre 13 introduit à la même loi
du parallélogramme, mais dans le contexte de la composition des vitesses pour des mouvements
uniformes et uniformément accélérés.

La quatrième partie est entièrement orientée vers l’histoire et l’épistémologie des vecteurs. Elle
comprend les chapitres 14 et 15. Le premier des deux explique la genèse des vecteurs dans le
contexte des nombres complexes, chez Tait, disciple de Hamilton, et Bellavitis. Le chapitre 15
tente une construction de l’idée de vecteur en partant de la géométrie analytique ordinaire et en
cherchant à dégager les expressions algébriques qui ont un sens géométrique indépendant du repère
choisi : ce sont les expressions que pour cela on qualifie d’intrinsèques.

La cinquième partie enfin ne comporte qu’un seul chapitre, ce qui peut parâıtre assez singulier. Cela
se justifie par le fait qu’elle propose une synthèse de tout l’ouvrage : en renvoyant systématiquement
à tous les autres chapitres, elle dégage la notion de structure linéaire dans ses divers avatars de
la maternelle jusqu’à dix-huit ans. C’est donc à ce chapitre que le lecteur est invité à se reporter
chaque fois qu’il éprouve le besoin de savoir où il en est.

Notons que nous n’avons pas couvert toutes les matières qui relèvent de l’idée linéaire. Et cer-
taines de celles qui manquent au tableau peuvent même être considérées comme particulièrement
importantes. Pour n’en citer que trois : les équations et les systèmes algébriques linéaires, ainsi
que le calcul matriciel, la différentielle, qui est l’application linéaire tangente à une fonction, et les
équations différentielles linéaires. Mais ce qui relève de la structure linéaire dans le corpus entier
des mathématiques est gigantesque, et nous ne pouvions tout traiter. Nous espérons, quoiqu’il en
soit, avoir au moins montré une certaine direction de pensée.

Ajoutons enfin que ce travail résulte de la collaboration de toute une équipe dans laquelle chacun a
pu exprimer sa sensibilité. Nous avons cherché davantage la qualité dans la diversité, que l’expression
d’une pensée par trop monolithique.
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5 Présentation type des situations-problèmes

Les situations-problèmes rassemblées dans les trois premières parties de ce rapport ont été conçues
chacune pour des élèves déterminés, dans une tranche d’âge donnée et possédant certaines connais-
sances préalables. Toutefois, elles peuvent être adaptées, dans certaines limites, à d’autres élèves.
Chaque professeur en jugera.

Ces situations sont présentées selon un plan uniforme3 comportant les rubriques suivantes :

De quoi s’agit-il ? – Description, en une ligne ou deux, de l’activité proposée aux élèves.

Enjeux – Matières couvertes et compétences visées.

De quoi a-t-on besoin ? – Description du matériel requis. Relevé des connaissances supposées
chez les élèves.

Comment s’y prendre ? – Cette rubrique comporte des questions à proposer aux élèves, des
indications pour organiser le travail en classe, des éléments de réponses aux questions, et les éléments
de la théorie auxquels la situation aboutit normalement.

Échos d’une ou plusieurs classes – Indications sur le déroulement de l’activité dans l’une
ou l’autre classe expérimentale. On relève les réactions les plus communes, mais aussi les plus
significatives, même si elles sont isolées.

Prolongements possibles – Nouvelles situations-problèmes, plus ou moins difficiles que celle
faisant l’objet principal de la section. Ces situations peuvent jouer le rôle de variantes, d’exercices,
de questions d’évaluation, de poursuite du travail pour les élèves mordus.

Vers où cela va-t-il ? – À quelles questions mathématiques plus avancées la situation en question
prépare-t-elle de manière directe ou indirecte ? Quels rapports la situation en question entretient-
elle avec d’autres disciplines ? Quelle place la situation occupe-t-elle dans la culture mathématique
globale ?

Commentaires – Éclaircissements de toutes natures susceptibles d’être utiles aux enseignants et
aux élèves, comme par exemple des indications sur l’histoire des mathématiques, des commentaires
sur le caractère plus ou moins réaliste de certains modèles mathématiques, etc.

3 Ce plan est inspiré par E. C. Wittmann et G. Müller [1990] et [1994]. Nous l’avons mis au point à l’occasion
d’une recherche précédente (voir CREM [2001b]).



Introduction :
vers un fil conducteur ?

Pourquoi est-il important de dégager un ou des fils conducteurs pour l’enseignement des ma-
thématiques, et comment y arriver ? C’est le sujet de cette introduction, que l’on s’est efforcé
de présenter de la manière la moins technique possible, de sorte qu’elle soit accessible à toute
personne cultivée, même brouillée avec les mathématiques. Il a fallu pour cela tenter une ga-
geure : sans faire de mathématiques, donner de cette discipline une idée raisonnablement fidèle.
Cette dernière entreprise est de celles qu’il ne faut jamais abandonner, tant sont énormes les
malentendus à propos des mathématiques, même chez beaucoup de personnes abondamment
diplômées.

On n’a pas tardé à s’apercevoir que la rigueur
ne pourrait pas s’établir dans les raisonnements,
si on ne la faisait pas entrer d’abord dans les définitions.

H. Poincaré

L’objectif de cette étude est de dégager, parmi d’autres sans doute, un fil conducteur pour l’en-
seignement des mathématiques de la prime enfance à l’âge adulte. Pour mener à bien une telle
entreprise, il faut – cela va de soi –, prendre deux choses en compte : d’une part les mathématiques
et d’autre part les élèves. Commençons par les mathématiques qui sont à la fois une forme de pensée
et un ensemble structuré de connaissances, c’est-à-dire une science. Nous commençons par là non
pas parce que les mathématiques seraient, lorsqu’il est question de concevoir leur enseignement,
plus importantes que les élèves, mais seulement pour assurer la clarté de l’exposé.

1 Logique et rigueur : le sens étroit

Essayons tout d’abord de dégager un caractère qui distingue assez clairement les mathématiques
des autres sciences dites exactes, des sciences humaines, de la philosophie et de la pensée commune.
Pour cela, analysons la portée et l’usage, dans ces différents domaines, des mots et des symboles
comme moyens d’expression de la pensée.

En mathématiques, chaque mot (chaque symbole aussi) est défini de manière univoque par quelques
propriétés complètement intelligibles, et renvoie de ce fait à une classe de choses connue sans
ambigüıté. Grâce à cela, ces mots et symboles peuvent être engagés dans des raisonnements déductifs
de longue haleine1. Ce qui est démontré est sûr et peut servir de point de départ à de nouvelles
déductions. La pensée mathématique n’appuie ses certitudes sur aucun soutien extérieur.

Dans les sciences dites exactes, comme par exemple la physique et la chimie, on se donne des
modèles mathématiques des phénomènes que l’on étudie. Si ces modèles sont assez précisément
décrits pour participer de l’univocité des mathématiques, alors travailler dans un modèle, c’est

1 Dans le Discours de la méthode, Descartes parlait de ✭✭ ces longues châınes de raisons, toutes simples et faciles,
dont les géomètres ont coutume de se servir pour parvenir à leurs plus difficiles démonstrations ✮✮.
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6 Introduction

faire des mathématiques. Et rien n’empêche dans ces conditions de construire des démonstrations
aussi longues que nécessaire. Mais les modèles représentent des situations ou des phénomènes réels,
et la question se pose toujours de l’adéquation du modèle à la réalité, de la conformité des déductions
aux données expérimentales. En ce sens, les sciences exactes fondent leurs énoncés pour la forme
sur les démonstrations mathématiques, et pour le fond sur la conformité à l’expérience.

Les mots utilisés dans les autres domaines de la connaissance sont aussi, comme les mots et symboles
mathématiques, cernés par des définitions, les dictionnaires en font foi. Mais ces définitions n’ont
pas la même univocité logique, et de ce fait elles ne peuvent pas être engagées dans des déductions
de quelque ampleur. On les précise souvent par des exemples. Des mots tels que maison, cheval,
révolution, liberté, et même mathématiques, sont définis d’une façon qui parle à l’intuition et renvoie
à un ensemble de choses cerné approximativement. Tout essai de déduction stricte qui les utilise
s’enlise au bout de quelques pas.

Ceci ne veut pas dire, loin de là, que ces notions seraient inutilisables et donc inutiles. Mais on ne
peut les appliquer à des objets particuliers qu’à coup de commentaires, de correctifs et de nuances.
La rigueur mathématique n’est autre que le respect de la logique. La rigueur dans les sciences
humaines et bien souvent dans la pensée commune, s’appuie certes aussi sur la logique, mais tout
autant sur le soin avec lequel on introduit les correctifs et les nuances qui assurent la fidélité à un
certain objet2.

Ce caractère des sciences humaines est compatible avec la production d’études longues et perti-
nentes, mais qui par delà l’argumentation s’appuient aussi sur des observations, des expériences,
des enquêtes.

Le cas de la philosophie est plus subtil. Les philosophes sont coutumiers de développements de
longue haleine. Dans la mesure où ceux-ci sont purement spéculatifs, et où par nature ils ne se
fondent pas seulement sur la déduction pure, ils ne peuvent conclure de façon totalement convain-
cante et demeurent donc des objets de débats. Ceci ne leur enlève ni leur pertinence, ni leur intérêt,
en tant que matières à réflexion et sources d’orientations intellectuelles et morales.

Nous appellerons ci-après sens étroit – sans connotation péjorative pour l’adjectif étroit –, le sens
des mots et des symboles tel qu’il est codifié, dans n’importe quelle discipline intellectuelle, pour
assurer ou favoriser la solidité des raisonnements et des arguments. Le sens étroit est associé à
l’univocité, à la rigueur de la pensée.

2 Intuition et créativité : le sens large

Mais un mot (ou un symbole) n’est jamais entièrement cerné par sa définition. Chacun renvoie
dans la mémoire aux questions et contextes où il a été rencontré et a joué un rôle, aux exemples
dans lesquels il s’est incarné, aux choses qui lui ressemblent et à celles qui s’opposent à lui. Ces
liens sont rationnels ou non, nécessaires ou fortuits, forts ou ténus. C’est parce que les mots et
les concepts ont beaucoup de référents, beaucoup de liens entre eux qui forment comme un tissu
mental, que la pensée est mobile et peut être créative, que l’imagination peut soupçonner (deviner)
des propriétés. Bien entendu, ces choses que l’on soupçonne, il faut ensuite les infirmer ou confirmer

2 Pour répondre à cette difficulté, le sociologue allemand Max Weber (cf. M. Weber [1965]) a proposé la notion
d’idéal type. Un idéal type est un concept répondant à une définition la plus claire possible. Il est doté d’une netteté
logique qui en fait un bon instrument d’argumentation, mais cette netteté n’est souvent obtenue qu’au prix d’une
schématisation, une stylisation de la réalité. Ce qui ne va toutefois jamais jusqu’à permettre de longues déductions.
Le fait qu’un idéal type s’écarte ainsi de la réalité par raison de clarté implique ce que nous disions ci-dessus, à
savoir qu’on ne peut l’utiliser pour étudier adéquatement des cas particuliers qu’en l’entourant de commentaires et
de correctifs.
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en les ramenant dans le champ du sens étroit. Nous appellerons ci-après sens large d’un mot (ou
d’un symbole) l’ensemble, l’essaim des référents auxquels il renvoie – rationnellement ou non –,
dans la mémoire et l’imagination.

Toute pensée en recherche, toute pensée mathématique créative en particulier, est une sorte de
contrepoint entre le sens large et le sens étroit, entre l’imagination et l’intuition d’une part, et la
rigueur de l’autre. Comme l’a dit Poincaré [1908], ✭✭ c’est par la logique qu’on démontre, c’est
par l’intuition qu’on invente. Savoir critiquer est bien, savoir créer est mieux. ✮✮ Une pensée réduite
au sens large, à l’imagination débridée, s’agiterait beaucoup et n’aboutirait nulle part. Une pensée
réduite au sens étroit serait immobile, car elle ne saurait où aller.

Le sens large est variable d’une personne à l’autre. Un enfant a dans sa mémoire une foule de
choses qui relèvent de l’expérience commune, de ce qu’on lui a enseigné à l’école et de tout ce qu’il
a brodé de raisonnable ou même d’un peu fou autour de cela au fil de sa pensée libre et de ses
rêves. Une personne qui a fait beaucoup de mathématiques a accumulé en outre dans sa mémoire,
non seulement des théories bien en forme, mais encore une énorme quantité d’images, d’analogies,
de perspectives, étranges ou non, d’intuitions, qui mélangent souvent mathématiques et pensée
commune, et constituent le terreau de sa créativité.

3 La déduction comme fil conducteur

Après ces considérations sur les deux registres indissociables de la pensée mathématique, examinons
la forme générale de la science mathématique comme ensemble structuré de connaissances. Un survol
historique s’avérera utile en l’occurrence.

Nous avons vu que la pensée mathématique est capable de produire de longues châınes de déduc-
tions. Le premier exemple majeur que l’histoire nous en ait légué est constitué par les Éléments
d’Euclide au IIIe siècle av. J.-C.3 C’est un vaste traité de géométrie et d’arithmétique dans le-
quel tous les théorèmes sont tirés par déduction d’un petit nombre d’axiomes. Les Éléments sont
demeurés en occident, quasiment jusqu’au XIXe siècle, le modèle de la rigueur mathématique.

Toutefois, on s’est aperçu au XIXe siècle qu’Euclide utilisait certains axiomes non explicités, qu’il
s’appuyait sur l’une ou l’autre proposition intuitive, non rattachée déductivement aux axiomes. En
d’autres termes, il ne satisfaisait pas entièrement à ce qu’étaient devenus les critères de rigueur à
la fin du XIXe siècle. Mais en 1899, David Hilbert a donné une version nouvelle de la géométrie
d’Euclide, entièrement conforme à ces critères.

À cette même époque, bien d’autres théories mathématiques avaient été développées, la plupart en
dehors du cadre euclidien. Elles concernaient de nouvelles formes de la géométrie, les nombres, l’al-
gèbre, l’analyse, etc. Ces théories avaient chacune la forme dont nous avons parlé, à savoir celle d’un
système déductif long et rigoureux, accroché à quelques axiomes. Toutefois, elles coexistaient dans
un certain désordre, et leur foisonnement faisait désirer non seulement une organisation d’ensemble,
mais encore et surtout un fondement unique.

Et c’est là ce qu’a réalisé le XXe siècle. Ces longs enchâınements déductifs coexistants ont été
organisés en une architecture d’un seul tenant, tout entière déduite des quelques axiomes de la
théorie des ensembles. Ce résultat spectaculaire, sans doute peu connu du grand public, a frappé les
imaginations des mathématiciens. Il constitue une preuve de fait de l’autonomie des mathématiques,
de leur capacité d’avancer sans dérailler sur de très longues distances – peut-être indéfiniment ? –,
en s’appuyant sur l’univocité de leurs concepts. Le premier traité qui ait matérialisé cet effort de

3 Les mathématiques antérieures n’ont pas produit de monument déductif comparable.
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synthèse a été publié en de nombreux volumes à partir de 1939 par un groupe de mathématiciens
français rassemblés sous le pseudonyme de Nicolas Bourbaki.

Pour arriver à cette organisation axiomatique globale, il a fallu concentrer l’attention sur les en-
châınements logiques, ce qui ne peut se faire avec toute la rigueur et la sûreté de pensée requise
qu’au détriment des autres registres de la pensée mathématique. La question qui s’impose à tout
moment dans ce genre d’entreprise est, pour le dire familièrement : qu’est-ce qui dépend de quoi ?
Et pour y répondre, il faut écarter de la réflexion les perceptions, les mouvements, les intuitions, les
conjectures. Il faut écarter les questions du type : d’où cela vient-il ? pour résoudre quels problèmes
a-t-on inventé cela ? y a-t-il d’autres applications possibles ? y a-t-il des images ou des analogies qui
aident à saisir telle ou telle partie ? Bref il faut, par raison de méthode et de façon radicale, réduire la
pensée au sens étroit. Ce qui n’a – soulignons-le – jamais empêché les mathématiciens qui l’ont fait
de naviguer par ailleurs avec bonheur dans le sens large. Mais il reste que le produit fini est là, sous
forme de traité austère, séparant soigneusement et à juste titre les parties strictement déductives
d’éventuelles allusions à l’histoire et aux contextes. Dans l’histoire, il y a d’abord des questions,
des problèmes, et on construit des théories pour y répondre. Dans les mathématiques réécrites dé-
ductivement, il y a d’abord les théories, et ensuite les problèmes passés au rang d’applications. Et
dans beaucoup de traités, il n’y a pas d’applications.

Il importe d’ailleurs d’observer ici un paradoxe du sens large. On pourrait dire sans trop déformer
la vérité que les mathématiques présentées déductivement comme dans le traité de Bourbaki ne
sont rien d’autre que les mathématiques réduites au sens étroit. Mais il faut tout de suite nuancer
cette vue des choses. Comment procède en effet celui qui aborde un traité déductif et s’y enfonce ?
Il commence par déchiffrer le texte pas à pas, en vérifiant chaque implication. Mais il ne peut pas
poursuivre longtemps ce travail ingrat. Il l’interrompt fréquemment pour se donner des exemples,
il s’interroge sur la marche générale de la pensée, sur ses motivations et ses moyens, il repère les
passages cruciaux et les distingue des points techniques mineurs, il circule intuitivement avec de
plus en plus d’aisance à travers la théorie. On peut dire en bref qu’il se construit un nouveau
sens large. Et si on continue à penser que l’exposé déductif pur renvoie au sens étroit, alors le
lecteur développe en quelque sorte un sens large du sens étroit, nourri par une intuition des formes
abstraites. Le sens étroit, les implications considérées une à la fois, fut-ce dans le bon ordre, sont
imbuvables. Tout le monde, tout mathématicien a besoin de relever la tête et de regarder en arrière
et en avant, et même jusqu’à l’horizon.

Ce qui par contre s’avérera éclairant pour nous est de réaliser que les mathématiques ainsi recons-
truites à partir de la théorie des ensembles vont des structures pauvres vers les plus riches. Qu’est-ce
que cela veut dire ? Cette question mérite un développement assez long.

4 Les structures pauvres et les structures riches

Qu’est-ce qu’une structure pauvre ? Qu’est-ce qu’une structure riche ? Pour comprendre cela,
regardons d’abord du côté de la géométrie, et pour la facilité, bornons-nous à la géométrie plane.
Cette géométrie a pour vocation d’étudier toutes les figures planes, et il y en a vraiment beaucoup,
d’une infinité de formes et de tailles. Il y en a tellement que l’on n’arrive à se faire une idée que
d’une toute petite partie d’entre elles.

On dit d’une géométrie qu’elle est riche lorsqu’elle distingue et décrit beaucoup de types de figures
différents. Et pour faire cela, elle doit bien entendu s’appuyer sur un nombre suffisant de proprié-
tés. La géométrie habituelle, qui est aussi la géométrie d’Euclide , est une géométrie riche. On y
étudie les propriétés d’alignement, les intersections, le parallélisme, les longueurs, les angles et leurs
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mesures. On y distingue les polygones des cercles, les carrés des rectangles, ceux-ci des parallélo-
grammes, ces derniers des trapèzes, etc. Ou plus exactement, parmi les trapèzes on distingue les
parallélogrammes, parmi ceux-ci les rectangles, et parmi ces derniers les carrés.

Une géométrie un peu moins riche que celle-là porte le nom de géométrie affine. On y distingue moins
de types de figures que dans la géométrie euclidienne, ce qui va de pair avec le fait qu’on y considère
moins de propriétés. En géométrie affine, on étudie les propriétés d’alignement, d’intersection et
de parallélisme, mais on ne s’intéresse pas de manière générale aux longueurs, et on ne mesure pas
les angles. À cause de cela, on ne distingue plus par exemple les carrés des rectangles, ni ceux-ci
des parallélogrammes : il s’agit dans tous les cas de quadrilatères possédant deux paires de côtés
parallèles. Mais on distingue les parallélogrammes des trapèzes, car ces derniers peuvent n’avoir
qu’une paire de côtés parallèles.

Une géométrie encore moins riche – on peut aussi dire plus pauvre –, que la géométrie affine est la
géométrie projective. Dans celle-ci, on distingue encore moins de types de figures, parce que l’on
s’intéresse à moins de propriétés. On ne retient plus que les propriétés d’alignement et d’intersection,
et on exclut le parallélisme et a fortiori la mesure des longueurs et des angles. Dans ce cadre-là, un
quadrilatère en vaut un autre, puisque la seule chose que l’on considère est le fait qu’il y ait quatre
côtés qui se coupent deux à deux en quatre sommets. Par contre, on distingue bien les quadrilatères
des triangles et des pentagones.

Une géométrie encore plus pauvre que ces trois premières est celle qui porte le nom de topologie. On
ne s’y intéresse plus quasiment à aucune des propriétés que nous avons évoquées jusqu’à présent.
Tout ce qui demeure est une propriété qui se trouve dans les autres géométries, mais que nous
n’avons pas mentionnée encore, à savoir la continuité. En topologie, on distingue les figures d’un
seul tenant, que l’on qualifie de connexes, et les autres. On distingue aussi les figures en boucle
fermée et les autres : les carrés, triangles, rectangles, cercles, ellipses sont des boucles fermées et
sont donc équivalents en topologie ; les angles, les lignes brisées ouvertes sont des figures d’un autre
type. Parmi les figures en boucle fermée, on distingue aussi celles qui ne se recoupent pas de celles
qui se recoupent une fois comme le chiffre 8, et de celles qui se recoupent deux fois, trois fois, etc.

Résumons-nous : de deux structures qui étudient un même ensemble d’objets, on dit que l’une est
pauvre si elle s’intéresse à peu de propriétés et qu’en conséquence elle discerne peu de catégories
d’objets, et on dit qu’une autre est plus riche lorsqu’au contraire elle étudie davantage de propriétés
et discerne dans l’ensemble davantage de catégories d’objets4.

5 Voir et concevoir

Les conséquences de cette distinction entre structures plus ou moins riches ou pauvres sont consi-
dérables quant à la manière d’imaginer – de ✭✭ voir dans sa tête ✮✮ –, et de concevoir les catégories
d’objets. Si une catégorie est peu nombreuse (parce qu’elle possède de nombreuses propriétés), on
y accède sans trop de peine en imagination. On se représente assez facilement tous les carrés, et
même tous les rectangles possibles : l’intuition joue à plein. Par contre, si une catégorie est im-
mensément nombreuse et ne possède qu’un tout petit nombre de propriétés, il devient impossible
de la parcourir en imagination et donc, pour l’étudier de manière quelque peu sûre, on est bien
forcé de se concentrer davantage sur ces propriétés et leurs conséquences logiques. Les intuitions

4 C’est un peu comme en biologie, où tous les objets que l’on étudie sont des êtres vivants. Il faut donner davantage
de caractères pour discerner les règnes végétal et animal, davantage encore pour arriver dans le règne animal aux
vertébrés et invertébrés, et ainsi de suite pour décrire les reptiles, les mammifères, etc., puis les ruminants, puis les
bovidés. Et donc en biologie aussi, moins il y de caractères imposés, plus la classe des êtres visés est vaste, diverse,
difficile à imaginer.
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globalisantes échappent et la déduction en devient plus nécessaire. Pour conclure sûrement, il faut
faire plus grande la part de l’intellect, concevoir à défaut de voir. Il est par exemple beaucoup plus
difficile d’imaginer l’ensemble des quadrilatères que celui des rectangles. On voit des choses sur les
rectangles sans trop de risques de se tromper, alors que les quadrilatères quelconques relèvent avant
tout du raisonnement.

Il faut se méfier d’une confusion possible. On pourrait croire par exemple que la topologie est une
discipline simple parce qu’on y étudie peu de propriétés, et que, pour le bon sens, étudier peu de
propriétés semble bien plus facile que d’en étudier beaucoup. Mais c’est là une illusion de simplicité.
Car on ne fait pas si facilement l’impasse sur l’intuition. Celui qui, en topologie, connâıt les axiomes
et quelques exemples n’ira pas bien loin. Par contre celui qui a exploré longuement ces immenses
catégories d’objets ayant peu de propriétés, qui dans le cours de ses réflexions peut en évoquer
de toutes sortes à titre d’exemples et de contre-exemples, celui-là aura en topologie une démarche
créative et critique. Nous retrouvons ici, et ce n’est pas un hasard, le sens large et le sens étroit,
ainsi que l’appui qu’ils prennent l’un sur l’autre.

À la lumière de la distinction entre structures pauvres et riches, reprenons nos considérations sur
les mathématiques reconstruites au XXe siècle. La théorie des ensembles est la plus pauvre de
toutes. Elle s’occupe de peu de propriétés, la première d’entre elles étant l’appartenance d’un objet
à un ensemble. Elle ne discerne que des catégories d’objets en petit nombre et chacune immense :
les intersections, les réunions, les relations, les fonctions, . . . Le reste des mathématiques passe –
pour le dire très schématiquement –, par la construction de trois types de structures, qualifiées de
structures mères par Bourbaki : ce sont les structures algébriques et topologiques et les structures
d’ordre. Ce n’est pas ici le lieu de les présenter en détail. Chaque structure de l’un de ces types
est définie par très peu de propriétés et couvre un champ d’objets immense, extrêmement varié,
impossible à imaginer globalement, où les intuitions apportent par conséquent plus de conjectures
que de convictions fortes, et où, par conséquent encore, le dernier mot revient au seul raisonnement.

Il faut ensuite avancer encore longuement dans les châınes et les enchevêtrements de déductions
pour aboutir à ces objets plus familiers, plus riches de propriétés que sont les nombres, les figures
et les fonctions particulières étudiés dans l’enseignement élémentaire.

Étant donné la difficulté d’accès de l’intuition aux structures pauvres, on comprend que dans
l’histoire des mathématiques, les structures riches soient apparues avant les pauvres. Celles-ci ont
été le produit d’un très lent processus de clarification des dépendances logiques qui traversent les
matières étudiées. Les géométries sont exemplaires à cet égard. Celle d’Euclide date d’environ 300
ans avant J.-C. La projective est née au XVIIe siècle des travaux des peintres de la renaissance sur
les représentations fidèles des objets de l’espace. La topologie s’est constituée vers le début du XXe

siècle pour résoudre des questions liées autant à l’analyse qu’à la géométrie.

Une observation capitale s’impose ici. On pourrait croire que l’organisation déductive globale des
mathématiques n’a d’autre intérêt que d’unifier la discipline et d’assurer son fondement. Il n’en
est rien. L’identification, aux XIXe et XXe siècles, de structures abstraites entretenant entre elles
des liens fermement établis, a fourni à la pensée mathématique des outils d’une efficacité inégalée
jusque-là. Dès qu’un mathématicien travaillant dans un contexte problématique donné y découvre
l’existence d’une structure qui lui est familière par ailleurs, il dispose, pour avancer dans son travail
de compréhension, de toutes les propriétés de cette structure.

6 Les fils conducteurs de l’enseignement jusqu’en 1980

Jusqu’ici, nous avons longuement parlé de la science mathématique. Comme on s’en rendra compte
dans la suite, il fallait passer par là pour comprendre ce qu’ont été les fils conducteurs de l’en-
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seignement des mathématiques depuis le milieu du XXe siècle, et ce qu’ils pourraient être de nos
jours.

Jusqu’aux années 60, sauf exception, on enseignait à l’école primaire l’arithmétique élémentaire et
un peu – très peu –, de géométrie intuitive. On enseignait ensuite à l’école secondaire encore un
peu de géométrie intuitive, puis vers 14 ans la géométrie d’Euclide plus ou moins réaménagée,
l’algèbre héritée du XVIIIe siècle et quelques éléments d’analyse hérités du XIXe. À cette époque,
il n’existait pas pour l’enseignement des mathématiques de fil conducteur traversant la discipline
entière. Les chapitres enseignés étaient ceux qui étaient successivement montés du fond des siècles.

Dans les années 60 et 70, la réforme dite des ✭✭ mathématiques modernes ✮✮ a tenté une mise à jour de
l’enseignement. Le fil conducteur était alors celui de la déduction qui va des ensembles, relations et
fonctions aux diverses catégories de nombres, aux structures algébriques, à une géométrie algébrisée
et aux débuts de l’analyse. Ce fil conducteur, proclamé par les promoteurs de la réforme, était donc
celui qui va des structures pauvres vers les plus riches. Le modèle à suivre était celui du traité de
Bourbaki. L’unité de la mathématique devait inspirer et imprégner l’enseignement5. Il importait
d’enseigner dès le départ des concepts définitifs, ceux qui appartiennent aux mathématiques d’au-
jourd’hui. Certes, il fallait les rendre assimilables par les enfants en en cherchant les expressions les
plus simples et surtout en les illustrant de quelques exemples familiers. On considérait en tout cas
comme une source de difficultés pour les élèves le fait d’ajuster un concept en cours de route pour
l’adapter à de nouveaux contextes.

Ce fil conducteur était clair pour les mathématiciens qui le promouvaient, mais beaucoup moins
pour une partie importante des enseignants et pour la majorité des élèves. Ainsi par exemple, du
champ immense couvert par la théorie des ensembles, les élèves n’avaient accès au départ qu’à
quelques exemples relativement insignifiants. Le sens – la foule des référents de cette théorie –, se
construisait pour eux trop lentement, et donc ils ne pouvaient pas voir vers quelles applications on
les menait.

D’autre part, la réforme des ✭✭ mathématiques modernes ✮✮ a suscité d’emblée une controverse
majeure. Pour certains6 cet enseignement devait commencer vers quatorze ans, voire plus tard.
Pour d’autres, tels que Papy et Revuz, il pouvait commencer au début du secondaire7. Et même
l’idée d’enseigner, dès l’école élémentaire, en allant des structures pauvres vers les plus riches, a
été défendue avec force par Piaget8 et très largement appliquée, entre autres aux États-Unis, en
Belgique et en France.

Dans les faits, la réforme des ✭✭ mathématiques modernes ✮✮ a été élaborée d’abord pour les classes
supérieures du secondaire9, ensuite pour le secondaire inférieur et après seulement pour l’école
élémentaire. Ainsi le fil conducteur qui l’inspirait n’a pas été conçu dans l’ordre naturel des ap-
prentissages, qui est l’ordre chronologique. Cela pose question et nous y reviendrons. On se rend
compte en outre aujourd’hui que l’adaptation des ✭✭ mathématiques modernes ✮✮ à l’enseignement
élémentaire s’est appuyée sur une collaboration insuffisante entre spécialistes des mathématiques
et de l’épistémologie génétique, entre autres Piaget10.

5 J. Dieudonné, membre du groupe Bourbaki, était un promoteur éloquent de la réforme. L’un des manifestes
les plus clairs de celle-ci est la préface de son ouvrage : Algèbre linéaire et géométrie élémentaire, [1963]. Pour plus
de développements sur les ✭✭ mathématiques modernes ✮✮, voir entre autres R. Bkouche et al. [1991] et S.M.B. [1984].

6 Voir surtout J. Dieudonné [1963] et G. Choquet [1963].
7 Voir par exemple G. Papy [1963].
8 Voir J. Piaget [1947].
9 Cf. O.E.C.E. [1961].

10 Celui-ci n’a cessé de proclamer que les enfants acquièrent spontanément les notions de géométrie et d’arithmétique
en allant des structures pauvres vers les plus riches, c’est-à-dire dans l’ordre inverse de leur découverte historique.
Cette affirmation est loin d’être claire, tant est grande la distance entre les concepts mathématiques du XXe siècle et
les notions acquises par les enfants, et elle a fait l’objet d’interprétations quasi littérales.
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Quoiqu’il en soit de ces difficultés d’application, l’enseignement des mathématiques suivait à l’époque
un fil conducteur unique, clair et cohérent, celui de la structure déductive de la science mathéma-
tique elle-même.

7 La situation actuelle

Qu’en est-il actuellement ? Les ✭✭ mathématiques modernes ✮✮ n’ayant pas donné les résultats es-
comptés, d’autres réformes ont suivi, inspirées par d’autres idées. Aujourd’hui, et en s’en tenant
aux grandes lignes, on observe du côté des matières traitées : une insistance beaucoup moindre sur
les fondements (ensembles, relations, construction des systèmes de nombres) et sur les structures
présentées axiomatiquement, un recentrage de l’algèbre sur les polynômes, les fonctions rationnelles
et les équations des premier et deuxième degrés, un retour à la géométrie des figures accompagné
d’une initiation aux vecteurs et à la géométrie analytique, un recours aux transformations, prin-
cipalement planes et appliquées à l’étude des figures (plus guère de transformations étudiées pour
elles-mêmes), un développement du traitement de données, en y comprenant les statistiques et
probabilités, et enfin l’usage des calculatrices et, dans une mesure croissante, des ordinateurs.

Les ✭✭ mathématiques modernes ✮✮ ont laissé des traces dans cet enseignement. On ne retrouve plus
dans celui-ci la construction d’Euclide, qui était un fil conducteur majeur pour la géométrie dans la
première moitié du XXe siècle. On y découvre non pas un exposé ordonné des géométries projective,
affine et euclidienne, mais une conscience plus claire de la hiérarchie logique des géométries. On
observe aussi un usage plus général et plus précoce des fonctions, des graphiques de fonctions et de
leur interprétation, et de la géométrie analytique élémentaire. On s’accordera à reconnâıtre qu’il y
a, dans cette évolution, beaucoup de points positifs.

Quels sont d’autre part les principes qui inspirent aujourd’hui la conception de l’enseignement des
mathématiques et en particulier des programmes ? D’abord on essaie de cerner des ✭✭ mathématiques
du citoyen ✮✮, ou encore une culture mathématique de base. Le danger est que cette culture soit
identifiée à des mathématiques du pur quotidien. On y fait une part trop étroite aux probabilités
et statistiques.

D’autre part, l’insistance se porte davantage sur des compétences que sur des connaissances, sans
pour autant que ces deux notions soient conçues comme indépendantes l’une de l’autre11. Les
compétences, entre autres pour ce qui concerne les mathématiques, sont le plus souvent la capacité
de mobiliser ses connaissances à bon escient. Un effort est fait pour promouvoir cette vue équilibrée
des choses. Toutefois, un effet pervers de cette ✭✭ pédagogie des compétences ✮✮ est qu’une partie des
enseignants pensent encore développer les compétences en elles-mêmes, et parfois même une à la
fois.

Enfin un vaste mouvement milite en faveur d’un enseignement par situations-problèmes, qui met
en avant autant l’intuition et la créativité que la logique et la rigueur, c’est-à-dire les deux pôles
de l’activité mathématique. Il y a d’ailleurs un lien naturel entre les compétences et les situations-
problèmes, puisque les compétences fondamentales – celles qui sont constitutives de la maturité
intellectuelle –, sont aussi celles qui sous-tendent la résolution de problèmes. Par ailleurs on souligne
qu’on ne peut enseigner uniquement par problèmes, car il faut organiser des moments de mise en
ordre et de synthèse. L’enseignement par problèmes s’avère plus difficile que les autres formes
d’enseignement. Il requiert des enseignants un niveau de formation qui est loin d’être toujours
atteint actuellement12.

11 Cf. J.-P. Cazzaro et al. [2001] et CREM [1995].
12 Nous ne saurions trop souligner les dangers de cette situation. Sur la notion de compétence, les situations-

problèmes et les mathématiques du citoyen, voir entre autres CREM [1995].
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Une autre tendance de l’enseignement d’aujourd’hui est la volonté de promouvoir l’usage des moyens
informatiques. L’intention est double : d’une part les machines apportent la possibilité de nouvelles
explorations (par exemple des fluctuations d’échantillonnage), et d’autre part, en effectuant les
tâches de routine (les calculs numériques ou formels), elles libèrent du temps pour les questions de
fond.

La référence aux trois éléments clés que sont les mathématiques du citoyen, les compétences, les
problèmes, montre que l’intérêt se porte aujourd’hui autant sinon davantage vers la personne de
l’élève, ses capacités et son insertion sociale que vers la science mathématique comme corpus de
connaissances. On dit, et c’est bien raisonnable, qu’il faut partir de l’élève et de ses connaissances,
souvent plus proches du savoir commun que des mathématiques. On dit que l’élève doit construire
son savoir, bien entendu avec toute l’aide nécessaire du professeur, et sans oublier que les mathé-
matiques constituées, ou certains de ses chapitres, sont le terme de cette construction.

8 Que faire maintenant ?

Revenons à cette idée de partir de l’élève pour aller vers les mathématiques. C’est une idée simple
et saine. Mais c’est en même temps une gageure. Car la question n’est plus, comme à l’époque des
✭✭ mathématiques modernes ✮✮, d’inculquer une science bien connue, mais plutôt de partir d’un savoir
pour en construire un autre. Pour concevoir une ligne directrice de l’enseignement des mathéma-
tiques, il ne suffit plus de connâıtre les mathématiques et de s’appliquer à les exposer clairement
depuis le début. Il faut d’abord être familier du savoir de l’élève et chercher par quels aménagements
successifs et motivés on pourra en tirer le savoir mathématique souhaité. Dans cette optique, il n’est
plus guère question d’inculquer des concepts définitifs.

Comment les choses se présentent-elles ? Le fait le plus important est que la partie du savoir de
l’élève qui a vocation de donner naissance au savoir mathématique, cette partie est déjà structurée.
Par exemple, lorsqu’un petit enfant réalise qu’un objet solide déplacé peut être ramené à sa position
de départ, il rencontre une opération inversible, comme celles dont il est question dans la théorie
des groupes. Piaget [1937] a longuement expliqué cela. Lorsque l’enfant met deux bâtonnets bout
à bout, il réalise, avant toute mesure et dans le champ des seules grandeurs, une addition de deux
longueurs, et cette addition est entre autres commutative. On pourrait multiplier les exemples.

Bien entendu, l’enfant ne théorise pas ces propriétés de structure. Il les vit au niveau purement
sensori-moteur. Mais ces structures vécues sont néanmoins les germes d’où sortiront les mathéma-
tiques devenues plus tard conscientes et opératoires.

Un deuxième fait important est que ces structures qui sous-tendent les activités psycho-motrices
des enfants ne sont que de petits morceaux, des germes des structures évoluées vers lesquelles tend
l’enseignement. Mais elles préfigurent celles-ci.

La question centrale qui se pose est donc d’élaborer un fil conducteur qui parte de ces structures
embryonnaires pour aboutir aux structures classiques. Pour ce faire, nous proposons dans cette
étude de partir des deux opérations que les enfants acquièrent le plus spontanément : d’une part
l’addition des grandeurs, première opération binaire interne, et ensuite, grâce à l’itération de la
somme, la multiplication d’une grandeur par un nombre naturel, qui est une première opération
binaire externe. On a là, dès les premières années de la vie, une préfiguration de la structure linéaire,
celle qui exprime la proportionnalité et les phénomènes apparentés.

Partant de là, on suit, pour le dire rapidement, le chemin qui passe par les grandeurs avant toute
mesure, par la mesure des grandeurs (les nombres réels positifs), puis par la mesure des grandeurs
orientées (les nombres relatifs), et qui aboutit aux vecteurs et aux nombres complexes. Ce parcours
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n’est pas continu et ne peut pas l’être. En effet, chaque état du savoir, à un moment de la jeunesse,
répond à une structure déterminée par un ensemble d’axiomes, et pour passer d’une structure à la
suivante, il faut modifier cet ensemble. Or modifier un groupe d’axiomes, c’est changer ou ajouter
un axiome, ce qui change brusquement le paysage. Qui plus est, au fil de la construction de ce
savoir, des objets ontologiquement nouveaux apparaissent : après les grandeurs, successivement
les réels positifs, les relatifs, les vecteurs. En outre, les notions de somme et de produit par un
nombre mutent aussi dans le passage d’un type d’objets à un autre. Il est ainsi assez clair que l’idée
d’enseigner d’emblée aux enfants des concepts définitifs est impraticable13.

9 Pourquoi un fil conducteur ?

Nous sommes à pied d’œuvre maintenant pour répondre à la question : pourquoi a-t-on besoin d’un
fil conducteur – ou plutôt de fils conducteurs –, à travers toutes ces matières mathématiques que
l’on apprend de la prime enfance à l’âge adulte? Les arguments nous paraissent ici simples et forts.

Après tout, et quelle que soit l’importance que l’on accorde à l’acquisition de compétences, on en-
seigne en classe des matières qui s’enchâınent. Ces matières s’appuient à chaque âge sur un ensemble
de structures qui sont des outils de la pensée, des conditions de la compétence. La construction
du savoir mathématique forme un tout que l’on souhaite, selon une heureuse expression, parcourir
en suivant des spirales. Mais pour réaliser cela, il faut voir comment chaque spire s’articule à la
précédente et à la suivante, et aussi d’où viennent et vers où vont ces spirales. C’est pourquoi on a
besoin d’études de synthèse qui parcourent tous les niveaux scolaires.

De telles études sont difficiles et demandent des collaborations inhabituelles. Le plus souvent en effet,
les recherches sur l’apprentissage des mathématiques élémentaires sont réalisées par des psycho-
pédagogues qui ne connaissent pas bien le dessus de la spirale, et les recherches sur l’enseignement
plus avancé sont réalisées par des mathématiciens qui en ignorent le dessous.

Qui plus est, les stratifications du système scolaire ne favorisent pas l’émergence d’une conception
globale de l’enseignement. En effet, et malgré d’heureuses initiatives récentes14, les programmes
sont toujours élaborés par des commissions distinctes pour les enseignements élémentaire et secon-
daire, avec des coordinations insuffisantes. En outre, les enseignants des niveaux maternel, primaire,
secondaire inférieur et secondaire supérieur sont toujours formés à peu près séparément. Le résultat
est que bien souvent un enseignant d’un niveau donné situe difficilement son action dans l’ensemble,
ignorant pour l’essentiel comment les élèves qui lui arrivent ont été formés, et ce que ceux qui le
quittent vont devoir affronter.

Une vue d’ensemble de la construction mathématique telle qu’elle s’articule au savoir commun et
aux autres disciplines intellectuelles est enfin un objectif proprement culturel dont on souhaiterait
voir s’approcher tout enseignant, tout étudiant, tout citoyen.

13 On objectera peut-être que les axiomes ne mutent pas dans leur expression formelle. Par exemple, l’égalité
a + b = b + a exprime la commutativité de la somme quels que soient a et b, grandeurs, naturels, réels positifs ou
négatifs, vecteurs. Mais l’enseignement ne confine heureusement pas les esprits des élèves au champ des expressions
formelles, et celles-ci ne contiennent pas tout le sens des concepts.

14 Spécialement la promulgation, en Communauté française de Belgique, des Socles de compétences à 14 ans.
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1

Familiarisation avec les poids

à l’école maternelle

1 Introduction

Les activités proposées ci-dessous sont conçues de manière à ce que les no-
tions abordées s’élaborent progressivement au fil de l’exécution des tâches
proposées aux enfants. On débute par des manipulations de base, impor-
tantes pour aborder la notion ciblée. Celles-ci sont accessibles à tous, y
compris aux plus jeunes. On poursuit par des actions plus élaborées, fai-
sant intervenir le langage oral, et aussi un langage écrit par le biais de
symboles. Parfois, l’enfant travaille en toute liberté et parfois il reçoit une
consigne précise. Enfin, il y a des jeux structurés à jouer seul ou à plusieurs,
qui réinvestissent les découvertes faites au cours des autres activités.

Les activités sont présentées ici sous forme d’ateliers, chacun accessible
à quelques enfants1. L’enseignant les introduit dans l’ordre, séance après
séance. Une nouvelle activité vient s’ajouter aux autres, mais celles-ci res-
tent accessibles dans la classe. Pas d’obligation de passer par toutes les
activités, ni de consacrer un temps défini par l’enseignant à une tâche dé-
terminée. Quel que soit le type d’activité choisi par les enfants, qu’ils y
restent longtemps ou au contraire passent d’une activité à l’autre, ils sont
confrontés à la notion de poids et développent à ce propos des compétences
à des degrés divers.

Compétences. – Tout au long des séquences, certaines compétences sont
déjà présentes dans nos objectifs même si elles ne seront certifiées qu’à
l’école primaire.

Comparer des grandeurs de même nature et concevoir la grandeur comme
une propriété de l’objet, la reconnâıtre et la mesurer.

Effectuer le mesurage en utilisant des étalons familiers et en exprimer le
résultat.

Faire des estimations en utilisant des étalons familiers et conventionnels.
1 Ce dispositif permet aux enfants d’âges et de niveaux différents de trouver leur

place. La méthodologie se rapportant au travail en ateliers est décrite dans les ouvrages
de A. Godenir et P. Descy [1998] et N. du Saussois [1991].

17
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Établir des relations dans un système (le système décimal) pour donner du
sens à la lecture et à l’écriture d’une mesure.

2 Manipulations libres des balances

De quoi s’agit-il ? Donner à manipuler différents types de balances et divers objets à poser
sur les plateaux.

Enjeux Commencer à identifier le poids comme une grandeur, les grandeurs étant
un préalable à la proportionnalité.

Manier des instruments en vue de comparer des objets selon leurs poids.

Découvrir un lien de causalité entre l’inclinaison de la balance et les poids
des objets.

Comparer les poids d’objets en apparence semblables ou au contraire très
différents : confronter ses perceptions à la réaction d’une balance.

Sur l’identification des grandeurs associées à un objet (poids, hauteur, . . .)
et sur les égalités et inégalités de grandeurs, voir2 chapitre 16, section 3.1.

De quoi a-t-on
besoin ?

Une balance à plateaux suspendus.

Une balance de Roberval (ancienne balance de ménage à poids, figure 1).

Fig. 1

Divers objets : blocs de construction, petites voitures, cailloux, fruits, . . .
Ce matériel peut être renouvelé à chaque séance et enrichi avec les objets
apportés par les enfants.

Comment s’y
prendre ?

On dispose le matériel sur une table et on propose aux enfants de faire
des expériences avec les objets et les balances. On les laisse prendre libre-
ment connaissance du matériel. L’enseignant ne parle ni de graduations,
ni d’unités de poids, il n’utilise pas encore les termes ✭✭ plus lourd ou plus
léger que ✮✮, ni ✭✭ moins lourd ou moins léger que ✮✮, ceci pour que les enfants
découvrent eux-mêmes qu’un objet plus lourd fait pencher la balance de
son côté. Après la séance, on discute en groupe des expériences de chacun.

2 Dans la rubrique Enjeux de chaque section, nous renvoyons au dernier chapitre
(chapitre 16), qui expose en détails le fil conducteur de la proportionnalité - linéarité
depuis les grandeurs jusqu’aux espaces vectoriels.
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3 Soupeser des objets

3.1 Léger ou lourd ?

De quoi s’agit-il ? On donne aux enfants un ensemble d’objets, certains légers et tous sensible-
ment de même poids, d’autres plus lourds et également tous sensiblement
de même poids. On leur demande de les trier en les soupesant.

Enjeux Continuer à se familiariser avec les poids, soupeser.

Dissocier mentalement l’aspect visuel et la sensation de poids.

Classer en fonction d’un critère. Chaque objet ayant plusieurs grandeurs
(hauteur, volume, poids, . . .), sélectionner une grandeur particulière, ici le
poids, et ordonner selon celle-là. Voir chapitre 16, section 3.1.

De quoi a-t-on
besoin ?

Une série d’objets que l’enseignant aura préalablement choisis pour former
deux groupes de poids bien distincts et quasi égaux dans chaque groupe.
Par exemple, des objets de plus ou moins 30 à 50 grammes pour former
le groupe des objets ✭✭ légers ✮✮ et d’autres objets d’environ 150 grammes
pour le groupe des objets ✭✭ lourds ✮✮. Il faut veiller à ce que certains des
objets légers soient volumineux et que certains des objets lourds soient
peu volumineux, pour que le classement ne se fasse pas selon le volume de
l’objet, mais bien selon la sensation de poids.

Comment s’y
prendre ?

Placer sur une table tous les objets et deux bôıtes pour les classer en
deux groupes. Sur chaque bôıte, un symbole permet d’identifier le type
d’objet qu’il faut y mettre : les objets qui paraissent lourds dans l’une et
les objets qui semblent légers dans l’autre. Les deux symboles choisis sont,
par exemple, deux personnes qui portent des objets comme à la figure 2.

Fig. 2

L’enseignant illustre cela avec deux objets réels et des mouvements de son
corps : l’objet léger (entouré sur le premier dessin) peut être soulevé faci-
lement, tandis que l’objet lourd (entouré sur le second dessin) fait pencher
le bras du personnage vers le sol. La consigne est : ✭✭ Prenez un objet dans
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chaque main et essayez de dire lequel est le plus lourd et lequel est le
plus léger. Placez-les chacun dans la bôıte correspondante. Si vous hésitez
choisissez d’autres objets. ✮✮

3.2 Du plus léger au plus lourd

De quoi s’agit-il ? Ranger des pots du plus léger au plus lourd.

Enjeux Exercer la perception du poids.

Ordonner des objets en fonction de leurs poids, ce que Piaget appelle sérier
les poids. Voir chapitre 16, section 3.1.

De quoi a-t-on
besoin ?

Quatre séries de trois pots (par exemple d’une boisson lactée) opaques,
fermés et identiques. La première série est remplie de sable à trois niveaux
différents de sorte qu’en les soupesant, on sente des poids de plus en plus
grands. De la même manière, la deuxième série est remplie de gravier à trois
niveaux, la troisième série d’eau à trois niveaux et la quatrième d’écrous à
trois niveaux.

Comment s’y
prendre ?

Les pots sont déposés sur une table. Chaque série de trois pots est iden-
tifiable par une couleur : trois pots bleus pour ceux contenant de l’eau,
trois pots jaunes pour le sable, trois pots verts pour les écrous et trois pots
rouges pour le gravier.

Dans chaque cas, l’enfant doit ranger les pots du plus léger au plus lourd
(ou inversement).

Prolongements
possibles

Aux enfants plus âgés, on présente des séries de 4 ou 5 pots. Ainsi, les
différences de poids sont plus difficiles à percevoir, les comparaisons plus
nombreuses et l’ordre croissant plus complexe à établir.

Comparer les poids de deux pots complètement remplis de deux couleurs
différentes.

4 Comparer avec les balances

De quoi s’agit-il ? Les enfants pèsent des fruits et légumes à l’aide d’une balance à plateaux
et/ou d’une balance de ménage, afin de comparer leurs poids (plus lourd,
égal ou plus léger que. . .). Ils symbolisent leurs résultats à l’aide de cartons
représentant les fruits et légumes et les positions des balances.

Enjeux Comparer les poids de deux éléments à l’aide d’une balance à plateaux ou
d’une balance de ménage.

Garder une trace de la comparaison au moyen de symboles.

Voir chapitre 16, section 3.1.
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De quoi a-t-on
besoin ?

Une balance à plateaux suspendus et une balance de ménage.

Trois panneaux pour attacher les cartons au moyen de velcro (figure 3 et
fiche 1 à la page 75).

Les 24 cartons à découper représentant les balances à plateaux suspendus
(figure 4) et les balances de ménage (figure 5) (fiches 2 et 3 aux pages 76
et 77). Ils sont destinés à être fixés aux panneaux à l’aide de velcro.

Les 15 cartons de fruits et légumes à découper (fiche 4 à la page 78). Ils
sont destinés à être fixés aux panneaux à l’aide de velcro.

mettre
ici du
velcro

?
mettre
ici du
velcro

mettre
ici du
velcro

mettre
ici du
velcro

?
mettre
ici du
velcro

mettre
ici du
velcro

mettre
ici du
velcro

?
mettre
ici du
velcro

mettre
ici du
velcro

mettre
ici du
velcro

?
mettre
ici du
velcro

mettre
ici du
velcro

Fig. 3 Fig. 4

Fig. 5

Les 15 vrais fruits et légumes représentés sur les cartons. Il est évident que
le choix des fruits et légumes est arbitraire et peut être adapté en fonction
des saisons par exemple.
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Comment s’y
prendre ?

Le panneau s’organise en trois colonnes et se lit par lignes horizontales.
La première et la troisième colonnes présentent chacune quatre fruits ou
légumes. La colonne du centre est aussi munie de velcro et de points d’in-
terrogations, mais elle ne comporte pas de carton au début de l’activité.

?

?

?

?

Dans cette colonne, l’enfant doit placer les dessins de
balance correspondant aux situations rencontrées. Par
exemple, la première ligne du panneau présente un
ananas à gauche et une cerise à droite. L’enfant choisit
parmi les fruits et légumes à sa disposition un ananas
et une cerise qu’il place chacun sur un des plateaux de
la balance. Il observe le résultat ; ici la balance penche
du côté de l’ananas. Il choisit alors, parmi les dessins
de balances, le carton qui symbolise cette situation et
le place sur le panneau à l’endroit du point d’interro-
gation entre les deux dessins. Le panneau complété est
une trace des résultats des manipulations.

Attardons-nous sur ce point pour relever une difficulté qui pourrait se
présenter et qui peut être résolue justement par la lecture du panneau.
Il peut y avoir contradiction entre l’inclinaison de la balance et celle du
dessin qui la représente. Par exemple, l’enfant aurait posé l’ananas (lourd)
à droite et la cerise (moins lourde) à gauche, alors que sur le panneau
ces deux éléments seraient présentés dans la situation opposée. L’enfant
devra dans ce cas comprendre le passage de la comparaison réelle à sa
représentation. Pour qu’il y arrive, l’enseignant peut lui demander de faire
une lecture commentée de la ligne du panneau qui présente la situation (le
plateau le plus bas du côté du plus lourd et le plateau relevé du côté du
plus léger).

Ensuite, on présente le panneau différemment en plaçant à l’avance les
dessins de balances et en demandant à l’élève de le compléter par les dessins
de fruits et légumes de son choix qui respectent la situation. Plus difficile
encore, on propose un dessin de fruits et légumes et un dessin de balance :
à l’enfant de trouver ce qui complète cette situation en réalisant la pesée.
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? ?

? ?

? ?

? ?

?

?

?

?

5 Équilibrer une balance

De quoi s’agit-il ? Placer un objet sur un plateau d’une balance, puis équilibrer celle-ci.

Prélever de la plasticine pour réaliser une boule de même poids qu’un objet
donné.

Enjeux La notion de poids égaux et le vocabulaire ✭✭ être aussi lourd que ✮✮, ✭✭ avoir
le même poids que ✮✮, ✭✭ peser autant que ✮✮. Voir l’activité précédente.

Travailler l’invariance de la masse (forme différente et pourtant même
poids).

Accumuler des objets identiques qui servent d’unité pour parvenir au même
poids qu’un objet quelconque.

Mesurer par encadrement. Voir chapitre 16, section 4.2.

Une règle de la proportionnalité : quand on double ou triple le poids d’un
côté, il faut doubler ou tripler le poids de l’autre côté de la balance pour
conserver l’équilibre. Voir chapitre 16, page 573.

De quoi a-t-on
besoin ?

Une balance à plateaux suspendus ou une balance de Roberval.

De la plasticine.

Un lot d’objets de même type (Lego, gros écrous, . . .).

Des lots de 2, 3 et 4 objets identiques.

Des cartons représentant les objets à peser.

Des cartons représentant les objets servant d’unité de poids (Lego, gros
écrous, . . .).

Un panneau en deux colonnes pour afficher les cartons.
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Comment s’y
prendre ?

Avec la plasticine
L’enfant place sur un plateau de la balance un objet de son choix et forme
par tâtonnement une boule de plasticine qu’il place sur l’autre plateau
pour équilibrer la balance. Pour constater l’équilibre, il faut attendre que
le fléau de la balance s’immobilise à l’horizontale.

Avec des objets identiques comme unités
L’enfant place un objet sur un plateau de la balance et place sur l’autre
le nombre nécessaire d’unités (Lego, écrous, . . .) pour arriver à l’équilibre.
Par exemple, pour une figurine sur un plateau, il faut quatre briques Lego
sur l’autre, ou encore pour une pomme sur un plateau, il faut neuf gros
écrous sur l’autre.

Parfois, l’enfant ne parvient pas exactement à l’équilibre : ✭✭ Trois briques
c’est trop et deux ce n’est pas assez ✮✮. Soit il retire la dernière brique qu’il
a posée et la remplace par une ou plusieurs briques plus petites, soit il
enlève les grosses briques et les remplace par des plus petites. On aborde
ici la notion d’encadrement. L’enfant affine le choix des unités pour être
plus précis dans ses mesures.

Avec plusieurs objets identiques
L’enseignant propose à l’enfant quelques objets identiques pouvant chacun
être équilibré par un nombre entier de briques. Un de ces objets ayant
été pesé, l’enfant en dépose un second à côté du premier. Combien doit-
il ajouter d’unités (Lego, écrous, . . .) sur le second plateau pour rétablir
l’équilibre ?

Par exemple, l’enfant place une figurine sur le premier plateau et deux
écrous sur le second pour arriver à l’équilibre, soit ✭✭ une figurine pour deux
écrous ✮✮. S’il ajoute une figurine identique à la première, il doit ajouter
deux écrous sur le second plateau pour rétablir l’équilibre, soit ✭✭ deux
figurines pour quatre écrous ✮✮. S’il place trois figurines identiques, il doit
encore ajouter deux écrous, soit ✭✭ trois figurines pour six écrous ✮✮. . .

Fig. 6
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Ceci est une étape importante dans l’acquisition du concept de linéarité.
C’est pourquoi, on veillera à garder une trace en reportant les résultats
obtenus sur un panneau : dans une première colonne, on présente les objets
à peser dessinés sur des cartons et dans la seconde colonne, les unités
placées sur l’autre plateau. Entre les deux colonnes, on place un dessin de
balance équilibrée qui symbolise la notion ✭✭ a le même poids que ✮✮, ✭✭ est
aussi lourd que ✮✮ (figure 6).

6 Jeux pour deux joueurs

Ces activités de jeux fixeront les acquis des situations précédentes.

6.1 Bataille : un grand classique

De quoi s’agit-il ? Remporter le plus possible d’objets à partir d’un jeu de cartes représentant
des objets à peser sur une balance à plateaux.

Enjeux Comparer les poids de deux objets à l’aide d’une balance à plateaux.

Comprendre qu’un objet plus lourd qu’un autre peut se révéler plus léger
qu’un troisième.

Voir chapitre 16, section 3.1.

De quoi a-t-on
besoin ?

Dans une bôıte ouverte, un lot de 10 objets différents dont deux seulement
de même poids.

Des cartes représentant les objets, une carte par objet sauf pour les deux
objets de même poids, chacun représenté par deux cartes. Donc, en tout
douze cartes.

Une balance à plateaux.

Comment s’y
prendre ?

Le principe est celui, classique, de la bataille. Les 12 cartes sont mélangées
et distribuées également aux deux joueurs, qui les placent en pile devant
eux, faces cachées. Les deux joueurs retournent en même temps leur pre-
mière carte. Ils choisissent chacun dans la bôıte l’objet représenté sur leur
carte et le posent sur un plateau de la balance pour déterminer le plus
lourd. Celui qui possède la carte représentant l’objet le plus lourd ramasse
les deux cartes et les place sous sa pile. L’autre enfant replace les objets
dans la bôıte.

Le jeu continue ainsi. Il y a bataille lorsque les deux cartes retournées
sont identiques, mais également lorsque deux objets pesés équilibrent la
balance. Dans ce cas, chaque joueur place sur la carte qu’il a jouée une
deuxième carte face cachée, puis une troisième face visible. Chacun pèse
les deux nouveaux objets et le gagnant remporte les six cartes. Lorsqu’un
joueur ne possède plus de carte, il est déclaré perdant.

Une variante du jeu consiste à tenir ses cartes en mains (et non face cachée
sur la table). Ainsi chaque joueur peut choisir la carte qu’il va mettre en
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jeu. Cela révèle des surprises, car une carte qui vient de gagner peut être
perdante au tour suivant ; tout dépend de l’objet choisi par l’autre enfant.
Les joueurs découvrent de cette manière qu’un objet plus lourd qu’un autre
peut se révéler plus léger qu’un troisième.

6.2 Que le plus lourd gagne

De quoi s’agit-il ? Peser des objets tirés au sort pour déterminer le plus lourd.

Enjeux Exercer la perception du poids (soupeser des objets).

Comparer les poids de deux objets à l’aide d’une balance. Voir chapitre
16, section 3.1.

De quoi a-t-on
besoin ?

Une balance.

Un grand sac contenant 20 objets divers.

Deux bôıtes pour placer les objets gagnés.

Comment s’y
prendre ?

Les deux joueurs placent la balance entre eux. Il ont chacun une bôıte
vide pour placer les objets gagnés au cours de la partie. Le premier prend
sans regarder un objet dans le sac, le second fait de même. Chacun place
son objet sur un plateau de la balance et le joueur qui avait choisi l’objet
le plus lourd remporte la manche. Autrement dit, celui en faveur de qui
penche la balance reçoit les deux objets qu’il place dans sa bôıte. C’est
alors au tour de l’enfant qui a perdu son objet de choisir dans le sac. Les
joueurs recommencent ainsi jusqu’à ce que le sac soit vide. Chacun compte
les objets de sa bôıte pour déterminer le gagnant. La stratégie consiste à
soupeser les objets dans le sac, ce qui est permis tant qu’on ne regarde pas
le contenu, et à choisir celui qui semble le plus lourd et non pas le plus
volumineux, ce qui engendre bien des surprises !

6.3 Memory des sacs

De quoi s’agit-il ? Retrouver les sacs qui ont le même poids en les soupesant (estimation).

Enjeux Exercer la perception du poids (soupeser des objets).

Associer des objets de poids égaux sans avoir recours à la vue. Voir chapitre
16, section 3.1.

De quoi a-t-on
besoin ?

Dix sacs en tissu opaque de couleur identique (par exemple des gants de
toilette) fermés par des élastiques.

Du sable ou un autre matériau assez lourd pour lester les sacs.

Un plateau de jeu comportant dix grandes cases de couleurs différentes
pour y placer les dix sacs.

Une balance pour les cas de litige.
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Comment s’y
prendre ?

Au préalable, l’enseignant leste les sacs par paires de même poids. Il les
ferme à l’aide d’un élastique.

Deux enfants placent le plateau de jeu entre eux. Chacun dispose cinq sacs
au hasard sur les cases du plateau. Ils déterminent celui qui commence.
À chaque tour, l’enfant a le droit de soulever deux sacs et d’estimer s’ils
ont le même poids. S’il estime que les deux sacs sont de poids différents,
il les repose sur les cases où il les a pris. S’il pense que les deux sacs sont
aussi lourds l’un que l’autre, il l’annonce et fait estimer à l’autre enfant.
En cas de contestation, les enfants ont recours à la balance. Le joueur qui
a trouvé deux sacs identiques les garde et c’est au suivant d’essayer. Celui
qui a le plus de sacs a gagné.

Le principe du memory s’applique à ce jeu dans la mesure où l’enfant essaie
de se souvenir sur quelle case (importance de la couleur) se trouve tel sac
qu’il aurait déjà soupesé. On peut même convenir d’annoncer à haute voix
si les sacs soulevés sont plus ou moins lourds ou légers.

Une variante plus facile du jeu consiste à présenter deux séries de sacs
de couleurs différentes en répartissant les poids identiques entre les deux
couleurs. Par exemple, une série de 5 sacs verts de poids différents qui
correspond à une série de cinq sacs jaunes comportant les mêmes poids.
Ainsi l’enfant sait qu’il doit associer à chaque tour un sac vert à un sac
jaune et les possibilités sont moins nombreuses.

Une variante plus difficile est de proposer un plus grand nombre de sacs
remplis de matériaux divers. Ainsi s’ajoute à l’estimation de poids, une
reconnaissance tactile du contenu.
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Polygones superposables, polygones de
même forme :

le Tangram à l’école primaire

1 Introduction

Le Tangram nous vient de Chine, il est vieux d’environ 2 500 ans et s’utilise
comme un puzzle. Il se compose de sept pièces, à savoir un carré, un paral-
lélogramme, et cinq triangles rectangles, deux grands, un moyen et deux
petits. En assemblant ces sept pièces de diverses façons, on peut obtenir
des centaines de configurations différentes1. Un assemblage particulier est
celui du carré (figure 1).

Fig. 1 Fig. 2

Les sept polygones ont entre eux des rapports de grandeurs simples2. En
pavant le carré formé des sept pièces avec le petit triangle (figure 2), on
voit apparâıtre certaines propriétés, à savoir :

certains côtés de polygones ont même longueur ;
1 D. Picon [1997] présente plus de mille configurations. Nous en avons utilisé quelques-

unes.
2 La description des propriétés du Tangram est destinée dans un premier temps à

l’enseignant exclusivement. C’est l’objectif des activités qui suivent de faire découvrir
ces propriétés aux élèves.

28
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les aires de chacun des deux grands triangles valent quatre fois l’aire d’un
petit ;

les aires du carré, du parallélogramme et du moyen triangle valent deux
fois l’aire d’un petit triangle ;

la construction de la figure fait jouer un rôle aux diagonales et aux points
milieux de certains segments ;

le parallélogramme a deux orientations possibles dans le plan : il est orienté
différemment selon la face sur laquelle il est posé. La figure 3 montre que
lors d’une rotation dans le plan, par exemple un demi-tour sur la table,
le parallélogramme garde son orientation. Tandis que la figure 4 illustre le
retournement du parallélogramme obtenu en sortant du plan : on passe de
la face A à la face B, qui est orientée différemment.

A

A

A

A

A

A

A

Fig. 3

BA

Fig. 4

En règle générale, l’exploitation des figures du Tangram fait appel aux
notions de famille de figures, parallélisme, perpendicularité, amplitude
d’angle, symétries, pavages, conservation de l’aire indépendamment de la
forme, etc. Ces notions sont des enjeux pour chacune des activités.

On trouve des Tangram plastifiés dans le commerce. On peut aussi en faire
soi-même dans du carton, en étant très soigneux quant aux dimensions des
pièces3 (ceci a beaucoup d’importance pour réussir certaines manipula-
tions).

Les activités ci-après peuvent être proposées de la première à la sixième
primaires. Certaines sont aménagées différemment pour les petits et les
grands, nous le mentionnons explicitement au moment venu. De plus, nous
suggérons que chaque activité fasse l’objet d’une séance commune à la
classe, puis soit reprise à d’autres moments sous forme d’ateliers ou de
prolongements visant à améliorer les compétences visées.

2 Découverte des pièces du Tangram

De quoi s’agit-il ? Explorer les possibilités du Tangram en formant librement des configura-
tions, en superposant des pièces, en reproduisant un modèle.

3 Le côté du carré composé des sept pièces doit mesurer au moins 10 cm pour que
les pièces soient faciles à manipuler.
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Enjeux Se familiariser avec des polygones simples.

Explorer des égalités et inégalités d’aires et de côtés. Découvrir des formes
identiques (en passant d’un Tangram à un autre). Voir chapitre 16, section
3.1.

Compétences. – Reconnâıtre, comparer des figures, les différencier.
Construire des figures avec du matériel varié.

De quoi a-t-on
besoin ?

Un Tangram4 par enfant.

Comment s’y
prendre ?

Tout d’abord, on donne les pièces aux enfants et on les laisse manipuler
librement, créer des configurations, échanger des propos.

Ensuite, on leur demande de travailler par deux : un enfant crée un as-
semblage (figure 5 par exemple) et l’autre s’en sert comme modèle pour le
reproduire avec ses pièces. Puis, on échange les rôles.

Fig. 5

Par le va-et-vient entre le modèle et la reproduction, les élèves appro-
fondissent les possibilités du Tangram et les différences entre les pièces.
L’enfant qui reproduit le modèle, analyse sa composition, les positions re-
latives des pièces, leur orientation (important pour le parallélogramme).
Il est amené à distinguer le petit, le moyen et le grand triangle, à juxta-
poser des côtés de même longueur, etc. Les deux élèves discutent de ce
qui est réalisé avec un vocabulaire plus ou moins précis, mais néanmoins
efficace dans l’action. Ils peuvent superposer les triangles pour vérifier leur
conformité au modèle.

Échos des classes Les enfants ne se lassent pas d’imaginer des assemblages. Les manipulations
libres ont été proposées au début de chaque séance dans toutes les classes
et les élèves ont été créatifs. Au fil du temps, ils ont enrichi leur pratique
de ce qu’ils avaient découvert précédemment : ils refaisaient spontanément
une partie d’activité qui leur avait particulièrement plu. Lors de ces ma-
nipulations libres, les échanges oraux entre enfants ont été nombreux : ils
ont expliqué ce que représentait leur dessin, se sont mutuellement lancé
des défis, etc.

En outre, les réalisations libres n’ont pas toutes été planes : certains ont
empilé les pièces, les ont dressées en les faisant tenir en équilibre ou en les
calant avec d’autres pièces. L’enseignant les a laissé faire.

En première et deuxième primaires en particulier, l’enseignant a proposé
la même activité en ajoutant une limite de temps. Il a donné le signal
du départ pour que le premier enfant de chaque équipe de deux crée son
modèle et il a compté jusqu’à 20. Au bout du compte, le modèle devait être
terminé. L’enseignant a compté à nouveau jusqu’à 20 pour fixer le temps
de reproduction du modèle par le deuxième enfant de chaque équipe. La
limitation du temps a été particulièrement stimulante pour les enfants. En
effet, à défaut de cette limitation, certains passaient trop de temps à créer

4 Dans la section De quoi a-t-on besoin ? de toutes les activités, nous entendons par
Tangram les sept pièces en vrac.
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leur modèle et l’autre enfant de l’équipe s’impatientait ou se désintéressait.
De plus, ce fut un bon exercice pour ceux qui ne mâıtrisaient pas bien la
comptine orale des nombres et qui anticipaient difficilement la limite du
temps imparti. On aurait également pu proposer à l’un des enfants de
compter jusqu’à 20 en gardant un certain rythme ou encore de compter à
rebours.

3 Reproduction d’un modèle

Après avoir découvert le Tangram et travaillé uniquement des modèles de
même grandeur, on propose à présent des modèles plus grands ou plus
petits (plus de superposition possible). On va également introduire un
vocabulaire spécifique au travers d’explications orales.

3.1 Repérage visuel

De quoi s’agit-il ? Reproduire avec son Tangram un assemblage des sept pièces placé au ta-
bleau.

Enjeux Reconnâıtre des polygones de même forme et de grandeurs différentes.
Créer une configuration semblable à un modèle plus grand. Voir chapitre
16, section 3.3.

Compétences. – Reconnâıtre, comparer des figures, les différencier. Re-
connâıtre et construire des agrandissements et des réductions de figures.

De quoi a-t-on
besoin ?

Un Tangram par enfant.

Un grand Tangram qui adhère au tableau et dont les pièces sont facilement
déplaçables5.

Des fiches portant chacune un modèle d’assemblage - à une échelle diffé-
rente des pièces que manipulent les enfants - (voir en annexe les fiches 5
et 6 aux pages 79 et 80).

Comment s’y
prendre ?

Tout d’abord, l’enseignant prépare un assemblage au tableau. Chaque en-
fant doit reproduire ce dessin sur son bureau avec ses pièces.

Puis, c’est au tour d’un enfant de créer le modèle au tableau, si possible
hors de la vue des élèves pour qu’ils ne soient pas guidés par les étapes de
la construction, mais bien par le dessin achevé.

Ensuite, l’enseignant place au tableau une fiche avec un assemblage (fiches
5 et 6) : un élève compose ce modèle au tableau avec le grand Tangram

5 On peut utiliser un matériel magnétique qui adhère aux surfaces métalliques de
certaines armoires ou tableaux. On peut aussi placer du velcro au dos des pièces et couvrir
le tableau d’un drap de feutrine qui permet de les y accrocher. On peut tout simplement
mettre du papier collant double face sur les pièces, mais cette solution est moins pratique
car le papier collant tend à se détacher au fur et à mesure des manipulations.
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pendant que les autres réalisent la même chose sur leur bureau. Puis, on
vérifie collectivement si la composition de la fiche et celle du tableau sont
semblables. La comparaison porte sur les positions relatives des pièces, les
écarts angulaires entre elles (dont il faut estimer à vue l’amplitude), les
côtés adjacents, etc. Les enfants essaient de verbaliser les différences pour
que celui qui est au tableau corrige. Si les remarques ne sont pas assez
précises, ils viennent montrer au tableau les différences entre la fiche et le
Tangram. Ce faisant, chacun vérifie ce qu’il a composé sur son bureau.

Enfin, chacun travaille individuellement avec ses pièces sur son bureau.
Pour cela, les enfants reçoivent une série de fiches qui leur servent de
modèles.

Échos des classes La reproduction du modèle passe d’abord par une reconnaissance globale
de la forme : ✭✭ Ça ressemble à un bonhomme (figure 6), c’est un grand
rectangle (figure 7), on dirait un carré avec des trous dedans (figure 8). . . ✮✮

Fig. 6 Fig. 7 Fig. 8

Ils ont repéré chaque pièce au tableau et ont placé la leur sur le bureau
dans une position similaire. Ce faisant, ils ont transposé l’orientation du
tableau à la surface de leur bureau, ils ont pris comme repères le haut, le
bas, la gauche et la droite.

Fig. 9

Fig. 10

Des confusions sont parfois apparues entre les petits, les moyens et les
grands triangles. Par exemple, un enfant a comparé deux pièces voisines :
le côté du triangle choisi était plus grand que celui du carré auquel il
se juxtaposait (figure 9) tandis qu’au tableau les deux côtés s’ajustaient
parfaitement (figure 10). Un autre élève a réalisé tout l’assemblage, puis
en comparant sa production à celle du tableau, il a remarqué que la forme
globale qu’il avait obtenue était différente.

Un autre problème fréquent et déjà rencontré dans les manipulations libres
a concerné l’orientation du parallélogramme (voir la section 1 à la page 28).
Un élève a observé que sur l’assemblage du tableau (figure 11) le parallélo-
gramme ✭✭ penchait ✮✮ vers la gauche et l’a disposé sur son bureau pour qu’il
✭✭ penche ✮✮ également vers la gauche, mais sans tenir compte des positions
des grands et des petits côtés, ce qui a donné le résultat de la figure 12.
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Fig. 11 Fig. 12

Cette situation a posé problème à beaucoup d’enfants qui, même s’ils
voyaient une différence avec le modèle, ne parvenaient pas à la corriger
immédiatement. Ils ont fait pivoter le parallélogramme sur le bureau et
ont cherché la bonne orientation sans penser tout de suite à le retourner.
Par ailleurs, s’ils étaient attentifs à la longueur des côtés, par exemple en
juxtaposant le carré au parallélogramme, ils en oubliaient l’orientation du
parallélogramme (figure 13).Fig. 13
Remarquons que le matériel magnétique n’adhère au tableau que d’un seul
côté6. Ce fait a mis le problème en lumière, car lorsque l’élève retournait
la pièce, elle n’adhérait plus au tableau. Il fallait donc deux pièces ma-
gnétiques pour présenter le parallélogramme sur ses deux faces (figure 14).
La présence de ces deux pièces distinctes a permis d’illustrer dans plu-

B

A

Fig. 14

sieurs activités les deux orientations possibles du parallélogramme : lors
des reproductions de modèles au tableau, il a fallu choisir la pièce illustrant
l’orientation voulue. Néanmoins, le problème s’est présenté différemment
pour les élèves travaillant sur leur bureau : les deux faces de leur paral-
lélogramme n’avaient aucun signe distinctif. La référence aux deux pièces
magnétiques a levé les hésitations à certains moments.

Enfin, les jeunes élèves se sont montrés vite satisfaits d’une reproduction
qui respectait globalement le modèle. Les détails de positions relatives des
pièces n’ont pas toujours attiré leur attention. C’est en faisant le rappro-
chement avec le ✭✭ jeu des sept erreurs ✮✮ qu’ils ont observé plus minutieuse-
ment la configuration. Il n’a pas été facile d’expliquer les différences entre
le modèle et la reproduction. Les élèves ont volontiers utilisé des termes
imagés ainsi qu’un vocabulaire spatial et géométrique minimal. Pour des
échos relatifs au vocabulaire, voir la section suivante.

3.2 Description orale

De quoi s’agit-il ? Expliquer oralement la disposition des pièces pour reproduire un modèle.

Enjeux Utiliser un vocabulaire géométrique et spatial approprié à l’expression des
similitudes. Voir chapitre 16, section 3.3.

6 La situation est la même si l’on utilise des pièces de Tangram coloriées différemment
sur chaque face. Selon la face choisie, le parallélogramme a ou non la même couleur que
les autres pièces.
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Comprendre et interpréter des instructions pour effectuer une construction
précise.

Compétences. – Décrire les différentes étapes d’une contruction en s’ap-
puyant sur des propriétés de figures, de transformations. Comprendre et
utiliser, dans leur contexte les termes usuels propres à la géométrie.

De quoi a-t-on
besoin ?

Un Tangram par enfant.

Un grand Tangram pour le tableau.

Des modèles dessinés sur fiches (voir en annexe les fiches 5 à 7 aux pages
79 à 81).

Comment s’y
prendre ?

Dans un premier temps, on travaille collectivement. L’enseignant choisit
un modèle où les pièces du Tangram se succèdent dans un ordre simple à
décrire (par exemple la figure 15). Il fait venir un enfant devant la classe

Fig. 15

pour décrire ce modèle aux autres élèves, qui doivent le composer sur leur
bureau sans le voir. En première et deuxième années, pour ne pas imposer
une description trop longue à un seul élève, l’enseignant demande à plu-
sieurs d’entre eux de venir tour à tour décrire une seule pièce du Tangram
(dans l’ordre de la construction, par exemple de haut en bas) et sa posi-
tion par rapport aux autres. L’enseignant met en évidence, éventuellement
en les écrivant au tableau, les types d’informations qu’il faut donner pour
pouvoir construire l’assemblage, à savoir le nom de la forme à prendre,
sa taille s’il s’agit d’un triangle, son orientation dans le plan et enfin sa
position par rapport aux autres pièces.

Ensuite, en guise de synthèse, un enfant vient répéter la description com-
plète pendant qu’un autre construit l’assemblage au tableau. Ceci permet
à l’enfant qui décrit d’avoir un retour direct de ce qu’il dit. S’il n’est pas
assez clair ou précis dans ses explications, la réalisation au tableau ne cor-
respond pas à son modèle et il peut rectifier ses propos. Les autres élèves
interviennent également. Mieux encore, si deux enfants construisent chacun
au tableau un assemblage conforme à la description, alors des différences
d’interprétation apparaissent au vu des constructions. Par exemple, en di-
sant de mettre le grand côté du triangle à l’horizontale, on peut obtenir
les deux positions de la figure 16.

Fig. 16

Dans un deuxième temps, les enfants travaillent par deux en plaçant un
écran entre eux. L’un invente avec ses pièces un modèle sur le bureau et
explique la disposition des pièces à l’autre, qui doit à son tour le reproduire.
Pour vérifier, ils enlèvent l’écran. Puis ils échangent les rôles.

Échos des classes Lors de la description collective, la richesse du vocabulaire varie en fonction
de l’âge et du niveau des enfants. Néanmoins, on a constaté que tant que les
enfants se comprennent avec un vocabulaire sommaire et non spécifique-
ment géométrique, ils continuent à l’employer. De plus, ils font beaucoup
de gestes qui éclairent souvent leurs paroles. Pourtant, l’introduction de
mots précis par l’enseignant a permis à certains moments d’améliorer la
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compréhension, car un mot pouvait alors remplacer une phrase entière et
la description était plus aisée. Les enfants ne se sont pas toujours souvenus
de la signification de mots employés par certains ; il y a eu des confusions.
Cette activité a été l’occasion de rappeler ou clarifier certaines notions et
surtout de composer une liste de mots communs à la classe. Les élèves
n’ont pas intégré tout de suite des mots parfois nouveaux pour eux, mais
ils les ont compris dans certains contextes et à force de les utiliser dans les
diverses activités proposées plus loin, ils se les sont appropriés peu à peu.

Par ailleurs, pour faciliter l’explication du dessin à la classe, l’enseignant
a noté au tableau un schéma à suivre pour la description :

1. NOM de la forme,

2. TAILLE (pour les triangles seulement),

3. SENS7 de la forme,

4. POSITION de la forme dans le dessin.

Si l’on regarde en détail le vocabulaire utilisé, on peut faire quelques consta-
tations. Tout d’abord, le nom des formes était familier à part celui du
parallélogramme, qui était inconnu des plus jeunes – ils l’ont appelé ✭✭ la
forme longue ✮✮ – et souvent oublié par les plus âgés. Le mot exact a été
vite adopté. La taille des pièces n’a pas posé de problèmes : petit, moyen
et grand font partie du vocabulaire courant.

Ensuite, l’orientation d’une forme a été choisie en fonction de ses caracté-
ristiques morphologiques. Pour le carré, les enfants ont parlé de ✭✭ droit ✮✮

et ✭✭ penché ✮✮, ✭✭ pointe vers le haut/le bas ✮✮, ✭✭ mettre le carré comme un
losange ✮✮, ✭✭ mettre le bord du dessus horizontal ✮✮. Pour le triangle, outre
la grandeur de la forme, ils ont souvent évoqué le grand côté en disant ✭✭ le
grand bord couché/debout/penché ✮✮, ✭✭ le grand bord droit ✮✮, ✭✭ le grand
côté vers le haut/le bas ✮✮, ✭✭ le grand côté horizontal/vertical/oblique ✮✮ ; ils
ont aussi parlé de ✭✭ la grande pointe en haut/en bas/à gauche/à droite ✮✮,
✭✭ l’angle droit au-dessus/en dessous/à gauche/à droite ✮✮. Pour le parallé-
logramme, ils distinguaient ✭✭ les grands et les petits bords/côtés ✮✮, ✭✭ les
grands côtés horizontalement/verticalement ✮✮, et, pour distinguer ses deux
orientations, ils ont ajouté à ces termes ✭✭ le parallélogramme penche vers
la gauche/la droite ✮✮.

Fig. 17

Enfin, la position d’une pièce par rapport aux autres a fait appel soit au
sens figuratif du dessin, par exemple ✭✭ le carré pour faire la tête et le
triangle pour le ventre ✮✮, soit aux notions spatiales s’appliquant au plan :
✭✭ à gauche/droite de ✮✮, ✭✭ au-dessus/en dessous ✮✮, ✭✭ en haut/en bas ✮✮, ✭✭ au
milieu de ✮✮, ✭✭ entre ✮✮, ✭✭ à côté de ✮✮, ✭✭ contre ✮✮, etc.

Un enfant de deuxième primaire, après plusieurs essais, a fait la description
suivante (en se référant à la figure 17) :

✭✭ On prend le grand triangle, on met son grand côté horizontalement vers
le bas et on le met en bas du bureau. On prend le triangle moyen, on le
met comme l’autre et on le place au-dessus du grand triangle au milieu. On
prend le petit triangle avec son grand côté horizontalement vers le haut,

7 Terme plus simple à comprendre à cet égard que orientation.
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on le met au-dessus du moyen triangle, pointe contre pointe. On prend le
parallélogramme (intervention de l’enseignant), on le met penché à droite
avec son grand côté horizontal, à droite du petit triangle, avec son bord
tout contre, ça fait une grande ligne horizontale toute droite en haut. ✮✮

4 Mémorisation d’une configuration

La difficulté supplémentaire dans les deux activités qui suivent est que
les enfants n’ont plus le modèle sous les yeux. D’abord, ils doivent faire
appel uniquement à leur mémoire. Ensuite, ils doivent expliquer oralement
la configuration soit avec l’aide d’un schéma, soit avec leur mémoire pour
seul support.

4.1 Recomposer un dessin caché (de 6 à 9 ans)

De quoi s’agit-il ? Observer, pendant un temps limité, une configuration puis un dessin du
Tangram afin de mémoriser l’emplacement des pièces. Reconstruire l’as-
semblage sans avoir le modèle sous les yeux.

Enjeux Exercer le sens de l’observation (deux objets identiques).

Mémoriser une configuration complexe en se donnant des repères. Voir
chapitre 16, section 3.3.

Reconstituer un modèle en faisant appel à sa mémoire.

Compétences. – Reconnâıtre, comparer des figures, les différencier, les
classer. Construire des figures avec du matériel varié. Dans un contexte de
[. . .] reproduction de dessins, relever la présence de régularités.

De quoi a-t-on
besoin ?

Un Tangram par enfant.

Des modèles dessinés chacun sur une fiche séparée (voir en annexe les fiches
5 et 6, aux pages 79 et 80).

Comment s’y
prendre ?

Tout d’abord, chaque enfant fait une composition avec ses pièces sur son
bureau. Il doit la regarder attentivement en vue de la mémoriser puis,
au signal de l’enseignant, il mélange les pièces et essaie de reconstituer
sa configuration initiale. Après quelques tentatives, on s’aperçoit qu’il est
difficile d’être sûr que l’on a bien refait un assemblage identique. C’est pour
cette raison que l’on va proposer des modèles sur fiches, afin de garder une
trace de ce que l’on compose et pouvoir vérifier.

Ensuite, les élèves sont par deux (chacun a son Tangram) et l’enseignant
place entre eux une fiche face cachée et donne la consigne suivante : ✭✭ Au
signal, vous retournerez le modèle, vous le regarderez attentivement pour
retenir l’emplacement de chaque pièce et après pouvoir refaire l’assem-
blage avec vos pièces. Attention, il est interdit de toucher aux pièces du
Tangram pendant que vous regardez le modèle. Lorsque je vous dirai de



4. Mémorisation d’une configuration 37

cacher le modèle, vous devrez le reconstituer sur le bureau. Vous aurez
droit à plusieurs essais si nécessaire. ✮✮

L’enseignant donne alors le signal de regarder le modèle et veille à ce que les
enfants ne commencent pas l’assemblage à ce moment. Après une dizaine
de secondes, il demande de cacher le modèle et de reproduire le dessin
avec les pièces. Si les élèves ne parviennent pas à faire l’assemblage au
premier coup, ils doivent au moins placer l’une ou l’autre pièce. Ensuite,
l’enseignant donne un nouveau signal : retour à l’observation sans toucher
aux pièces, et ainsi de suite autant de fois que nécessaire.

L’enseignant souligne l’importance de se donner des repères lors de l’ob-
servation du modèle. Afin de mieux mémoriser celui-ci, chacun choisit une
technique qui l’aide à retenir l’emplacement des pièces les unes par rap-
port aux autres, à repérer dans le modèle les pièces qu’il a déjà bien placées
et ce qui manque encore ou ce qui n’est pas correct. L’enseignant estime
le nombre d’essais nécessaires pour que la majorité des enfants aient ter-
miné leur reconstitution. Il explique éventuellement aux plus rapides qu’ils
pourraient tout de même s’être trompés, ceci afin qu’ils prêtent attention
au modèle lorsque celui-ci est visible. Finalement, il autorise à retourner
définitivement le modèle pour corriger.

Échos des classes Lorsque les enfants ont créé leur propre composition puis mélangé leurs
pièces, ils l’ont recomposée assez facilement. Leurs assemblages possédaient
très souvent une structure presque symétrique. Grâce à cela, les enfants
les mémorisaient plus facilement, que ce soit visuellement ou par les gestes
qui ont permis de le composer.

Par ailleurs, lorsque le modèle leur était étranger, ils ont eu l’impression,
une fois la fiche retournée, de ne se souvenir de rien. Dès la deuxième obser-
vation, ils ont appliqué une technique de mémorisation. Certains ont utilisé
leur mémoire visuelle et ont dit : ✭✭ C’est comme si on dessinait les formes
dans notre tête. ✮✮ D’autres ont utilisé un moyen verbal : ils ont récité l’em-
placement des pièces dans un ordre donné. Par exemple, en haut le petit
triangle, puis le carré et à droite le moyen triangle. Chez certains, cette
technique s’est accompagnée de gestes dans l’espace déterminant l’empla-
cement des pièces de haut en bas ou de gauche à droite. Ce moyen verbal
a demandé plusieurs retours au modèle, alors qu’un enfant ayant vraiment
une image mentale de celui-ci pouvait le reproduire en deux fois, voire, plus
rarement, en une. Les techniques étaient variées et difficiles à analyser par
l’enseignant.

Les élèves qui ont dû, en cours de route, corriger des erreurs ont affronté
une situation beaucoup plus complexe que les autres. Leur esprit était sans
doute encombré d’informations trop nombreuses.

4.2 Expliquer une configuration cachée (de 9 à 12 ans)

De quoi s’agit-il ? Reproduire un modèle placé dans la classe, hors de la vue.
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Enjeux Mémoriser une configuration.

En dessiner un schéma.

Expliquer oralement une configuration à reproduire. Voir chapitre 16, sec-
tion 3.3.

Compétences. – Voir compétences à la page 36. En outre : Tracer des
figures simples. Décrire les différentes étapes d’une construction en s’ap-
puyant sur des propriétés de figures, de transformations.

De quoi a-t-on
besoin ?

Un Tangram pour deux enfants.

Quatre Tangram à placer chacun dans une bôıte.

Des feuilles et des crayons.

Comment s’y
prendre ?

La première étape est de passer par l’intermédiaire d’un dessin pour re-
constituer le modèle caché.

L’enseignant dispose les bôıtes aux quatre coins de la classe avec un as-
semblage des pièces du Tangram au fond de chaque bôıte. La présence des
pièces est importante et ne peut être remplacée par un dessin, car l’activité
consiste en partie à dessiner l’assemblage.

Les enfants sont par équipes de deux. Le premier muni d’un papier et
d’un crayon se rend en silence vers une des bôıtes et fait un schéma du
modèle. Il rejoint son coéquipier et lui explique oralement l’emplacement
de chaque pièce, en s’appuyant sur son schéma, mais sans le lui montrer.
Le coéquipier recompose l’assemblage sur son bureau. Ceci fait, il va voir
l’assemblage dans la bôıte et revient corriger éventuellement son travail.
Ensuite, les enfants échangent leurs rôles et choisissent une autre bôıte.

La seconde étape consiste à mémoriser le modèle et à l’expliquer à l’autre,
sans le soutien d’un schéma. Le défi est alors de faire le moins de trajets
possibles entre la bôıte et le bureau. Une étape intermédaire peut être,
pour l’enfant qui va voir le modèle, de le refaire lui-même sur le bureau
hors de la vue de son coéquipier, puis de lui expliquer la configuration.
Mais le but est bien de faire le trajet, de mémoriser le modèle placé dans
la bôıte et de l’expliquer à l’autre enfant pour qu’il puisse le recomposer
le plus vite possible. Après quoi, on échange les rôles.

Échos des classes Les schémas des enfants ont été faits rapidement, à main levée. Ils rendaient
assez bien le modèle. Certains ont écrit les noms des pièces et ont donné
une indication à propos de leur grandeur, parfois en abrégé. Ceci a permis
d’éviter les confusions lorsque le dessin n’était pas précis ou lorsque les
différences de grandeur des pièces n’étaient pas assez contrastées. Les élèves
ont eu l’attention attirée par la disposition des pièces dans le plan : le
haut, le bas, la gauche et la droite, les alignements des côtés des pièces
adjacentes. Les figures 18 à 20 montrent les dessins que des élèves ont faits
d’un même modèle non figuratif. Les figures 21 à 23 présentent les schémas
d’un modèle figuratif.
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Fig. 18 Fig. 19

Fig. 20

Fig. 21 Fig. 22 Fig. 23

Pour certains, le dessin n’a pas forcément facilité les explications. Les re-
marques à faire ici sur le vocabulaire employé par les élèves rejoignent celles
de la section 3.2 à la page 34. Le nombre moyen de trajets a été de trois,
jamais plus de cinq et souvent même un seul après un peu d’entrâınement.
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5 Silhouettes de Tangram

À présent, nous proposons des assemblages présentés seulement par leur
contour et donc sans dessin des pièces individuelles. Nous les appelons des
silhouettes.

5.1 Modèles superposables (de 6 à 12 ans)

De quoi s’agit-il ? Avec les sept pièces du Tangram, recouvrir parfaitement une surface don-
née par son contour.

Enjeux Égalité d’aires et de longueurs. Voir chapitre 16, sections 3.1 et 3.3.

Notion de frontière.

Observer pour anticiper : émettre des hypothèses quant au choix des pièces
à placer à certains endroits.

De quoi a-t-on
besoin ?

Un Tangram par enfant.

Des fiches avec, sur chacune, une silhouette de Tangram (voir en annexe
les fiches 8 à 10, aux pages 82 à 84, à agrandir à la taille des Tangram de
la classe).

Comment s’y
prendre ?

Chaque enfant reçoit une fiche sur laquelle figure une silhouette qu’il doit
recouvrir avec toutes ses pièces sans lacune ni chevauchement. Les fiches
sont de difficulté croissante. Lorsque des pièces se détachent nettement
du contour, le modèle est plus facile à reproduire (figure 24). Lorsque le
modèle est plus compact, il est par contre plus difficile car il ne permet pas
de deviner au préalable l’emplacement des pièces (figure 25). La consigne
est de procéder comme avec un puzzle en superposant ses pièces au modèle
pour trouver la façon dont le dessin est construit. Dès que deux élèves ont
terminé, l’enseignant contrôle et échange les modèles.

Fig. 24 Fig. 25

Lorsque les élèves ont travaillé sur plusieurs modèles, on propose à la classe
de composer un carré avec les sept pièces. Aux plus jeunes, il est néces-
saire de donner un dessin de carré comme base pour disposer leurs pièces.
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L’enseignant laisse les enfants chercher la solution aussi longtemps que
nécessaire. Après un certain temps, il peut les encourager en désignant à
chacun les pièces qui sont correctement placées et celles qui ne le sont pas.

Échos des classes À tout âge, cette activité a suscité beaucoup d’intérêt. Les élèves ont été
fiers de pouvoir résoudre le problème, surtout après beaucoup d’essais et
parfois un peu de découragement. En comparant leurs solutions pour un
même dessin, ils ont constaté avec étonnement qu’une silhouette n’accepte
souvent qu’une seule solution. Ils ont d’abord pensé pouvoir disposer les
pièces au hasard et parvenir à recouvrir la silhouette. Bien souvent, ils ont
cru être proches de la solution, mais un petit espace restait libre qui ne
correspondait à aucune pièce du Tangram. Il fallait alors enlever presque
toutes les pièces pour recommencer autrement. Les jeunes enfants n’ont
pas accepté facilement de retirer ce qu’ils avaient déjà placé.

Certains ont trouvé préférable de placer d’abord les grandes pièces et le
parallélogramme. D’autres ont raisonné sur les équivalences entre figures.
Par exemple, il leur restait à placer un grand triangle et sur la silhouette
se présentaient deux espaces valant chacun un petit triangle. ✭✭ Il faudrait
couper ce grand triangle en deux ✮✮, a dit un enfant, mais ce n’était pas
possible, alors il a remplacé sa grande pièce par deux plus petites et a pu
terminer son puzzle.

Les interactions entre élèves ont été nombreuses. Après être passée entre
les mains de plusieurs élèves, une silhouette avait la réputation d’être facile
ou difficile. Si un enfant ne parvenait pas à la solution, ceux qui avaient
réussi la fiche ont essayé de lui donner des conseils : ils avaient l’intention
de montrer la solution, mais ils ne s’en souvenaient plus. Une silhouette
pouvait passer plusieurs fois entre les mains d’un même élève qui la recon-
naissait, mais ne se rappelait pas la façon de la recouvrir. Pourtant, à force
de résoudre ces puzzles, la plupart des élèves sont devenus plus efficaces,
ils ont anticipé la place de certaines pièces et ont vu clairement quand ils
étaient engagés dans une mauvaise solution.

Il en est de même pour la composition du carré avec les sept pièces. Cette
activité, proposée à plusieurs reprises, a demandé chaque fois un temps
de réflexion. Tous les élèves sont arrivés à la solution après cinq à vingt
minutes. La figure 26 montre les deux solutions possibles en fonction de
l’orientation du parallélogramme.

A

B

Fig. 26
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5.2 Modèles à l’échelle (de 8 à 12 ans)

De quoi s’agit-il ? Assembler les sept pièces pour former une configuration semblable à une
silhouette plus grande ou plus petite qui sert de modèle.

Enjeux Affiner la perception des polygones semblables.

Notion de rapport interne8. Voir chapitre 16, section 3.3.

Compétences. – Voir compétences à la page 36. En outre : Reconnâıtre
et construire des agrandissements et des réductions de figures.

De quoi a-t-on
besoin ?

Un Tangram par enfant.

Un grand Tangram pour le tableau.

Des fiches avec, sur chacune, une petite silhouette de Tangram (voir en
annexe les fiches 8 à 10, aux pages 82 à 84).

Comment s’y
prendre ?

Au préalable, l’enseignant compose un assemblage au tableau avec les
grandes pièces, il en trace le contour puis retire les formes. Il présente
cette silhouette aux enfants en leur demandant de retrouver l’emplace-
ment des pièces. Ceux-ci cherchent la solution avec leurs petites pièces.
Puis le résultat des recherches est présenté au tableau.

Ensuite, chacun reçoit une fiche avec de petites silhouettes qu’il faut re-
composer avec les pièces. L’enseignant organise une manière de corriger
collectivement ou avec des fiches d’auto-correction.

Échos des classes L’exercice est surprenant, car on peut arriver à composer un dessin dont
l’allure générale ressemble au modèle, mais dont le contour est pourtant
différent. Cela a été le cas lorsqu’un bateau a été proposé comme modèle
au tableau (figure 27). Les élèves ont fait des essais qui représentaient bien
des bateaux, mais avec des proportions différentes (figures 28 et29).

Fig. 27 Fig. 28 Fig. 29

Ils parvenaient à composer la voile du bateau et les dimensions semblaient
8 Un rapport entre deux longueurs est appelé ici rapport interne si les deux longueurs

sont observées dans le même dessin.
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être à l’échelle du modèle, mais avec les pièces restantes ils n’ont pu faire
qu’une petite coque qui ne correspondait pas au reste. Les élèves plus âgés
ont reporté les distances d’un côté du dessin sur l’autre. Par exemple, la
✭✭ hauteur ✮✮ de la coque allant à vue deux fois dans la longueur à la base,
ils ont essayé une composition qui respectait cette observation.

6 Dessin à l’échelle d’un modèle simple

6.1 Dessin sur quadrillage d’un carré formé des sept
pièces (de 6 à 8 ans)

De quoi s’agit-il ? Dessiner sur quadrillage un carré formé des sept pièces du Tangram.

Enjeux Établir des rapports de longueurs (×2 et ×1/2) dans une configuration
(rapports internes) et les transposer sur un modèle à l’échelle. Voir chapitre
16, section 3.3.

Se repérer sur un quadrillage.

Utiliser les instruments de dessin : règle et crayon.

Compétences. – Tracer des figures simples. Reconnâıtre et construire des
agrandissements et des réductions de figures.

De quoi a-t-on
besoin ?

Un Tangram par enfant.

Des feuilles quadrillées.

Des règles et des crayons de couleurs.

Comment s’y
prendre ?

Chaque enfant compose le carré avec ses pièces et reçoit une feuille qua-
drillée pour le dessiner. La consigne est de dessiner le contour du carré
le plus grand possible (insister), puis de dessiner les différentes pièces. Il
est interdit de contourner les pièces. L’enseignant laisse les élèves faire un
premier essai seuls, puis reprend collectivement les suggestions de chacun
pour faire le dessin définitif sur une autre feuille. Il procède par étapes en
demandant à la classe ce qu’il faut faire et en réalisant le dessin en grand au
tableau. Selon son choix, il reproduit ou non le quadrillage au tableau. Pour
de jeunes enfants, cette reproduction du quadrillage est indispensable pour
se repérer, mais il est souhaitable de s’en passer dès que possible. L’idée
n’est pas que chaque enfant ait le même dessin, mais, pour des raisons de
clarté, on peut décider de fixer les dimensions du contour, par exemple au-
tant de centimètres de côté, ou autant de carrés du quadrillage en fonction
de la taille du papier.

Le tracé fait appel aux propriétés de la figure (voir la section 1 à la page 28),
l’enseignant les explique selon les nécessités. Il s’exprime dans un langage
spécifiquement géométrique et, avec de jeunes enfants, utilise des couleurs
pour clarifier le tracé.
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Lorsque le dessin est terminé, les élèves colorient les polygones qui com-
posent le carré avec des couleurs différentes, pour les faire ressortir et
atténuer les traits apparaissant par erreur.

Échos des classes Nous avons réalisé cette activité en deux étapes d’environ quarante minutes
chacune.

En première année, les enfants sont arrivés à dessiner sommairement l’em-
placement de chaque pièce dans le carré sans tenir compte des dimensions.
Parfois, le contour était rectangulaire au lieu d’être carré. Lors de la mise
en commun, le dessin s’est fait pas à pas au tableau et simultanément
sur les feuilles. Les enfants ont exprimé ce qu’ils voulaient dessiner, l’ont
montré au tableau sur un grand quadrillage et l’enseignant a dessiné en
expliquant comment il procédait.

Fig. 30 Fig. 31

L’utilisation de couleurs a permis de simplifier les consignes du tracé et
le quadrillage a beaucoup servi pour fixer les longueurs. Au passage, les
élèves ont appris à mieux manier la règle pour tracer des lignes droites.
L’enseignant a vérifié chaque dessin au fur et à mesure. Si une imprécision
passait inaperçue, après quelques tracés, le dessin se déformait et ne cor-
respondait plus à la description faite au tableau. Alors, certains enfants
trouvaient à leur dessin une allure bizarre : ✭✭ Mon dessin ne ressemble pas
à mes pièces. ✮✮ Les figures 30 et 31 présentent deux réalisations d’enfants
de première primaire.

En deuxième primaire, les élèves ont utilisé la règle comme instrument de
mesure9. Certains ont choisi la dimension du premier côté et l’ont reportée
pour tracer le carré. Ils n’avaient pas retenu la consigne de faire le carré le
plus grand possible. Comme l’enseignant le faisait remarquer, un enfant a
allongé ses traits sur toute la hauteur de la feuille : le carré était devenu
rectangle. Ce fut un véritable défi de ne pas travailler avec des dimensions
fixées à l’avance, mais de chercher comment tracer un côté le plus long
possible qui puisse être reporté des quatre côtés sans sortir de la page. Un
enfant a fait remarquer qu’on ne pouvait pas aller contre le bord de la
feuille, car les carrés du quadrillage à cet endroit n’apparaissaient pas en

9 Les mesures ont parfois entrâıné des erreurs de calcul.
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entier. Un autre a ajouté que c’était plus facile de suivre les lignes du qua-
drillage, ce que tous n’avaient pas fait. Une fois le contour du carré tracé,
l’enseignant a procédé au tableau comme en première année, sauf qu’il
n’a pas reproduit le quadrillage. Il a travaillé sans ce support et les élèves
divisaient les distances mentalement après les avoir mesurées. Comme ils
arrondissaient au centimètre près, des erreurs sont apparues lors de la di-
vision en deux des diagonales. Ils se sont alors servis du quadrillage. Les
figures 32 et 33 montrent deux réalisations d’enfants de deuxième primaire.

Fig. 32 Fig. 33

Prolongements
possibles

Découper le Tangram fait par les élèves pour s’en servir. Les élèves sont
groupés par deux, l’un avec des petites pièces de Tangram et l’autre avec
les grandes pièces qu’il a dessinées. L’un réalise une configuration sur le
bureau, l’autre le reproduit avec ses grandes pièces et inversement. L’ob-
jectif est de travailler avec un modèle qui n’est pas superposable à l’original
et de faire se correspondre, d’un Tangram à l’autre, les petits triangles, le
moyen et les grands.

6.2 Dessin sur grande feuille d’un carré formé des sept
pièces (de 8 à 12 ans)

De quoi s’agit-il ? Dessiner sur une grande feuille le carré formé des sept pièces du Tangram.

Enjeux Établir des rapports de longueurs (×2 et ×1/2) dans une configuration
(rapports internes) et les transposer sur un modèle à l’échelle. Voir chapitre
16, section 3.3.

Utiliser les instruments de dessin : règle et équerre.

Calculer mentalement avec des nombres décimaux. Voir section 4.5.

Compétences. – Voir compétences à la page 43. En outre : Effectuer le
mesurage en utilisant des étalons conventionnels et en exprimer le résultat.
Mesurer des angles. Déterminer le rapport entre deux grandeurs. Identi-
fier et effectuer des opérations dans des situations variées. Connâıtre et
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énoncer des propriétés de côtés et d’angles utiles dans les constructions de
quadrilatères et de triangles.

De quoi a-t-on
besoin ?

Un Tangram par enfant.

Une grande feuille vierge (format A1) pour quatre enfants.

Une feuille A4 par enfant.

Des règles, des équerres, des crayons et des gommes.

Comment s’y
prendre ?

Au départ, chaque enfant compose un carré avec ses pièces. Ensuite, chaque
équipe de quatre reçoit une feuille sur laquelle elle doit reproduire le modèle
du carré le plus grand possible. Il s’agit donc bien d’un carré qui a pour
côté la largeur de la feuille (laisser les élèves le découvrir). Ils se mettent
d’accord sur la manière de procéder et chacun fait une part du travail en
coordination avec les autres. Certaines lignes sont très longues et comme
aucune règle n’est adéquate, il faut se mettre à plusieurs pour y arriver. Les
feuilles font rarement apparâıtre des nombres entiers dans les mesures des
côtés. Les enfants sont donc amenés à faire usage de nombres décimaux,
tout d’abord pour mesurer des longueurs, ensuite pour les partager en
deux, enfin pour les additionner en vue de vérifier leur dessin.

Dans un deuxième temps, les enfants font individuellement, sur une feuille
A4, le dessin le plus grand possible.

Échos des classes Certains élèves ont éprouvé des difficultés à choisir comme mesure la plus
grande possible, la largeur totale de la grande feuille. Ils n’ont pas accepté
facilement de prendre le bord de la feuille comme côté du carré et, par
conséquent, de ne pas le tracer. D’autres, par contre, y ont pensé tout
de suite. Beaucoup d’enfants n’ont pas bien utilisé leur règle, ils ont été
imprécis. Ils ont travaillé en marquant les points de division sur les côtés
des polygones déjà faits. Après avoir exécuté les tracés, ils ont vérifié les
angles droits avec leur équerre (souvent à la demande de l’enseignant).
Ils ont rapidement constaté qu’un écart de quelques millimètres au départ
pouvait engendrer de grandes déformations comme, par exemple, une figure
qui aurait dû être carrée et qui n’avait qu’un angle droit.

Les calculs avec des nombres décimaux ont posé des problèmes à certains,
bien qu’en équipe les ressources soient plus nombreuses. La collaboration
a été nécessaire pour tracer de grandes droites : les enfants ont aligné
leurs règles l’une derrière l’autre et l’un d’entre eux a été chargé de tracer.
Beaucoup ont pensé à utiliser la règle d’un mètre du tableau, mais elle
était trop imprécise pour faire des mesures. Les enfants ont mesuré alors
des segments inférieurs à la longueur de leur règle et les ont additionnés.

Le travail individuel a permis à chacun de refaire l’ensemble de la dé-
marche, ce qui était bien nécessaire dans certains groupes où un seul enfant
avait pris la tête des opérations.

Les figures 34 et 35 montrent les grandes feuilles de quatre groupes d’élèves
de troisième et quatrième primaires.
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Fig. 34 Fig. 35

Prolongements
possibles

Parvenir au partage du carré en sept pièces uniquement par pliage de la
feuille pour faire apparâıtre les traits de séparation10.

7 Dessin à l’échelle de modèles plus compliqués

7.1 Agrandissement d’une figure (de 8 à 10 ans)

De quoi s’agit-il ? Créer un dessin avec les pièces du Tangram et le reproduire quatre fois
plus grand.

Enjeux Reproduire un dessin à une échelle plus grande.

Notion de rapport externe11. Voir chapitre 16, section 3.3.

Compétences. – Tracer des figures simples. Résoudre des problèmes
simples de proportionnalité directe. Reconnâıtre et construire des agran-
dissements et des réductions de figures. Déterminer le rapport entre deux
grandeurs.

10 Cette activité est décrite dans ERMEL [1982].
11 Un rapport de deux longueurs est appelé ici rapport externe si les deux longueurs

sont observées sur deux figures semblables (à l’échelle).
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De quoi a-t-on
besoin ?

Un Tangram par enfant.

Une grande feuille vierge pour quatre enfants.

Des crayons ordinaires.

Comment s’y
prendre ?

Les enfants sont par équipes de quatre. Ils mettent leurs pièces en commun
et doivent recréer les pièces d’un Tangram quatre fois plus grand en as-
semblant chaque fois quatre pièces identiques. Ainsi avec les quatre carrés,
ils forment un carré quatre fois plus grand. Ils procèdent de la même ma-
nière pour le parallélogramme en assemblant les quatre parallélogrammes
de l’équipe. Et ainsi de suite pour le moyen triangle, les deux petits et les
deux grands triangles (figures 36).

Fig. 36

Ensuite, les quatre enfants de chaque groupe redistribuent les pièces et
chacun imagine un assemblage. Ils en choisissent un parmi les quatre. Dans
un coin de la feuille, ils disposent cet assemblage et contournent chaque
pièce pour former un dessin. Ils doivent alors composer le même dessin
quatre fois plus grand en assemblant, comme au début, les pièces identiques
pour obtenir une pièce quatre fois plus grande. Lorsque les pièces sont
posées correctement sur la feuille, ils contournent les ✭✭ grandes ✮✮ pièces,
c’est-à-dire celles formées des quatre petites pièces.

Échos des classes Voici, aux figures 37 et 38, la réalisation d’un groupe d’élèves.

Fig. 37 Fig. 38

Pour les enfants, le plus difficile a été de composer un grand triangle avec
quatre petits.

Lors du dessin, certains ont contourné toutes les pièces du grand modèle
comme le montre les figures 39 et 40, au lieu de faire apparâıtre juste le
contour des pièces quatre fois plus grandes.
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Fig. 39 Fig. 40

7.2 Réduction et agrandissement de figures
(de 10 à 12 ans)

De quoi s’agit-il ? Dessiner, d’après un modèle, un assemblage à une échelle plus petite. Ex-
primer l’échelle d’une silhouette par rapport à un modèle. À partir d’un
dessin à l’échelle 1/2 ou 1/4, dessiner l’original.

Enjeux Pratiquer les rapports internes et le rapport externe. Voir chapitre 16,
section 3.3.

Relever des dimensions et les exprimer à l’échelle voulue. Voir section 4.

Exprimer une échelle par une fraction. Voir section 4.4.

Dessiner avec une règle, une équerre et un rapporteur.

Calculer mentalement, par écrit ou à la calculatrice.

Compétences. – Tracer des figures simples. Mesurer des angles. Connâıtre
et énoncer les propriétés de côtés et d’angles utiles dans les constructions
de quadrilatères et de triangles. Dans un contexte de pliage, de découpage,
de pavage et de reproduction de dessins, relever la présence de régularités.

De quoi a-t-on
besoin ?

Un Tangram par enfant.

Un grand Tangram pour le tableau.

Des feuilles A4 vierges.

Des règles, équerres, rapporteurs, crayons et gommes.

La fiche 11 (voir en annexe à la page 85).

Comment s’y
prendre ?

La première étape consiste à réaliser un assemblage au tableau avec les
grandes pièces du Tangram, dans le but de le dessiner sur une feuille A4.
Les dimensions du dessin sont au choix, du moment que le dessin apparaisse
entièrement sur la feuille. Avant de commencer, l’enseignant interroge les
élèves sur la façon de procéder. Il faut connâıtre les dimensions des pièces
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du tableau pour les réduire à l’échelle de la feuille. Mais faut-il mesurer tous
les côtés de toutes les pièces ? Si on connâıt la mesure du côté du carré, par
exemple 25 cm, quelles mesures peut-on en déduire pour les autres pièces ?
Les élèves doivent imaginer ce cas avec leur Tangram et noter au brouillon
les dimensions des autres pièces en les comparant les unes aux autres. En
superposant les figures, on trouve deux sortes de côtés : ceux qui valent le
côté du carré ou le double, soit les longueurs notées a et 2a sur la figure
41, et ceux qui valent b et 2b dont on ne connâıt pas la mesure. Les élèves
s’expriment en termes de longueurs, soit a = 25 centimètres et b = 35,3
centimètres (mesures prises, dans ce cas-ci, sur la figure au tableau12).

À la suite de ce raisonnement, l’enseignant indique les mesures sur le dessin
du tableau. Les élèves doivent reproduire le dessin à l’échelle sur leur feuille
A4. Chacun choisit comme il l’entend le nombre par lequel il va diviser les
mesures relevées au tableau, pourvu que son dessin soit entièrement sur sa
feuille. Vient alors la phase de dessin : il faut utiliser les instruments pour
tracer les figures, les parallèles, les angles droits, le plus soigneusement
possible. Les enfants remarqueront en dessinant que, lors de la mise à

a

b

2a

2b

a

b

a

b

2a

Fig. 41

l’échelle des figures, les côtés changent de mesure mais les angles restent
identiques. Ils devront peut-être relever au tableau des angles entre des
côtés de pièces non jointives ou estimer à vue l’amplitude de ces angles,
marqués en gris sur la figure 42.

Fig. 42

Enfin, l’enseignant demande à chacun d’exprimer l’échelle de son dessin
sous forme d’une fraction. Il fait allusion aux mesures : si un centimètre
sur le dessin vaut cinq centimètres au tableau, on parle d’un dessin à
l’échelle 1/5.

On fait la synthèse suivante, illustrée par les cas rencontrés dans la classe.
On exprime l’échelle par un rapport qui nous parle de longueurs. Il s’agit
des longueurs des côtés d’une figure comparées aux longueurs des côtés
d’un modèle plus grand. Un centimètre sur un dessin à l’échelle correspond
à x centimètres sur le modèle : on parle dans ce cas de l’échelle 1/x.

À l’étape suivante, l’enseignant donne à la moitié des élèves le premier des-
sin de la fiche 8 à la page 82 et aux autres le deuxième dessin de cette même
fiche. Il leur est dit que le premier dessin est la reproduction d’un autre à

12 On peut décider de travailler sans mesurer b, au quel cas on contruit les figures en
reportant au compas la mesure prise sur la diagonale du carré.
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l’échelle 1/4 et que le deuxième est la reproduction du même modèle de
départ à l’échelle 1/2. On demande alors à chacun des élèves de retrouver
l’original. Ainsi, au bout du compte, tous devront arriver au même mo-
dèle de départ par des calculs différents, les uns multipliant les longueurs
par 2 et les autres par 4. La phase de dessin demande l’utilisation des
instruments.

Échos des classes Lorsque l’enseignant a demandé quelles étaient les mesures nécessaires pour
reproduire le dessin du tableau sur une feuille, les élèves ont rapidement
répondu qu’il ne fallait pas mesurer tous les côtés, puisque plusieurs figures
avaient des côtés de même longueur. Ils sont arrivés à cette conclusion
suite aux nombreuses manipulations où ils avaient remplacé une pièce par
une autre, expliqué la manière dont deux pièces se joignaient, dessiné un
schéma, etc.

Les figures 43 à 46 présentent les dessins des élèves d’après un grand modèle
au tableau : le premier était à l’échelle 1/5, les deux suivants à l’échelle
1/4 et le dernier à l’échelle 1/3.

Fig. 43

Fig. 44 Fig. 45
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Fig. 46

Les élèves avaient déjà rencontré des échelles sur des cartes géographiques,
mais certains ont fait la confusion avec le rapport des aires en disant qu’un
dessin à l’échelle 1/2 allait deux fois dans le modèle.

Le maniement des instruments, et particulièrement celui du rapporteur, a
posé quelques problèmes. L’enseignant a beaucoup insisté sur la précision
des mesures lors des relevés et du tracé. Certains n’étaient pas à l’aise avec
les calculs de décimaux et ont été autorisés à utiliser leur calculatrice, ceci
afin de ne pas alourdir l’activité.

Les figures 47 à 50 montrent les réalisations de quatre élèves. Chaque figure
présente le petit modèle à l’échelle 1/2 ou 1/4 (donné par l’enseignant) sur
lequel ils ont travaillé et l’agrandissement qu’ils ont eux-mêmes dessiné.

Fig. 47
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Fig. 48

Fig. 49

Fig. 50
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8 Fractions et aires

8.1 Trouver des fractions (de 10 à 12 ans)

De quoi s’agit-il ? Trouver la fraction que représente chaque pièce par rapport au Tangram
complet.

Enjeux Notions de fraction et d’équivalence par superposition de figures. Voir cha-
pitre 16, section 4.4.

Compétences. – Fractionner des objets en vue de les comparer.

De quoi a-t-on
besoin ?

Un Tangram par enfant.

Des feuilles et des crayons.

Comment s’y
prendre ?

Chaque élève forme le carré avec les sept pièces du Tangram. Il le dessine
sur un papier en contournant les pièces ou utilise le dessin réalisé à la
section 6.2 à la page 45.

La consigne est : ✭✭ Imaginons que le carré ainsi formé soit une tarte, quelle
part de cette tarte représente chaque morceau ? Ecrivez la fraction qui cor-
respond à chaque pièce du Tangram. ✮✮ Si les élèves démarrent difficilement,
on prend l’exemple du grand triangle : ✭✭ Combien de parts comme celle-ci
peut contenir la tarte carrée ? Le grand triangle va quatre fois dans la tarte,
donc il vaut 1/4 de la tarte carrée. ✮✮ Les enfants essaient d’appliquer le
même raisonnement aux autres pièces du Tangram pour obtenir la figure
51.

Seul le petit triangle va exactement seize fois dans la tarte carrée. Pour les
autres pièces, il faut recourir au pavage complet du grand carré à l’aide
du petit triangle (voir figure 52). Ils en arrivent à la conclusion que le
carré, le parallélogramme et le triangle moyen contiennent chacun deux
petits triangles, c’est-à-dire valent chacun 2/16 de la tarte carrée. À ce
stade, si les élèves ont déjà manipulé des fractions équivalentes, on peut
remplacer 2/16 par 1/8. Sinon, pour y arriver, on pourra tenir un des deux
raisonnements suivants.

Si le petit triangle va seize fois dans la tarte carrée, chacune des pièces qui
comprend deux petits triangles (le parallélogramme, le triangle moyen et
le carré) ira huit fois dans la tarte carrée.

Le découpage de la figure 53 montre que le carré va huit fois dans la
tarte carrée. Il suffit, ensuite, de montrer l’équivalence des aires du carré,
du parallélogramme et du triangle moyen en recourant au petit triangle
comme pièce de référence.

Ces trois pièces valent donc 1/8 de la tarte carrée.
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Échos des classes Pour trouver les différentes fractions, les élèves ont eu recours au pavage
complet du grand carré. Pour cela, ils ont reporté une pièce sur le dessin
et l’ont contournée pour faire apparâıtre le pavage. La figure 52 montre un
exemple de pavage avec le petit triangle et la figure 53, le pavage avec le
carré.

Certains enfants ont été surpris dans un premier temps par l’équivalence
des aires du carré, du parallélogramme et du triangle moyen : le recours
au petit triangle comme pièce de référence les a convaincus (figure 54).

Fig. 54

8.2 Évaluer des aires (de 10 à 12 ans)

De quoi s’agit-il ? Exprimer l’aire d’un dessin au moyen d’une unité non conventionnelle, puis
en centimètres carrés.

Enjeux Notions d’aire par pavage et recouvrement13. Voir chapitre 16, section 4
et en particulier 4.1 et 4.5.

Compétences. – Construire et utiliser des démarches pour calculer des
aires. Effectuer le mesurage en utilisant des étalons familiers et convention-
nels et en exprimer le résultat. Dans un contexte de pliage, de découpage,
de pavage et de reproduction de dessins, relever la présence de régularités.

13 On peut trouver d’autres activités relatives au Tangram dans ERMEL [1982].
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De quoi a-t-on
besoin ?

Un Tangram par enfant.

Par enfant, une fiche avec une silhouette (voir en annexe les fiches 8 à 10,
aux pages 82 à 84).

Des feuilles et des crayons.

Comment s’y
prendre ?

Chaque enfant reçoit une silhouette et doit chercher son aire. Après un mo-
ment de reflexion individuelle, l’enseignant demande si une des pièces du
Tangram ne pourrait par servir d’unité de mesure. Le carré est commode
car son aire est facile à trouver. Il rappelle la notion de centimètre carré,
mais ne permet pas de paver les silhouettes reçues. Le choix du petit tri-
angle est plus judicieux, puisqu’il permet de recouvrir entièrement chaque
silhouette par pavage. On laisse alors de côté la notion de centimètre carré
et on se donne comme unité le petit triangle. Chaque enfant doit exprimer
l’aire de sa silhouette en ✭✭ unité-triangle ✮✮. Il indique son résultat sur son
dessin. La mise en commun révèle que toutes les silhouettes ont la même
aire, quelle que soit leur forme, puisqu’elles se composent du même nombre
d’unités.

On passe alors à l’unité conventionnelle du centimètre carré : comment
transformer en centimètres carrés l’aire exprimée en ✭✭ unité-triangle ✮✮ ?
Les élèves font une recherche individuelle, puis on partage les idées. La
solution est de transformer les 16 ✭✭ unités-triangle ✮✮ en centimètres carrés
en passant par l’aire d’un seul triangle. Plus facile encore : on évoque ce
qui a été découvert à l’activité précédente, à savoir que la pièce carrée
du Tangram vaut deux triangles. Ceci amène à dire que les 16 ✭✭ unités-
triangle ✮✮ sont égales à 8 ✭✭ unités-carré ✮✮. On calcule l’aire du petit carré,
par exemple 4 centimètres carrés, et on multiplie le résultat par huit pour
obtenir l’aire totale de la silhouette, 32 centimètres carrés dans ce cas-ci.

Enfin, les enfants recherchent l’aire de chaque pièce du Tangram en passant
par les équivalences avec le petit triangle. Si par exemple le carré a une
aire de 4 centimètres carrés, le parallélogramme et le triangle moyen aussi.
Le grand triangle a une aire de 8 centimètres carrés et le petit triangle de
2 centimètres carrés.

Prolongements
possibles

Trouver l’aire d’une autre surface que le Tangram en choisissant une pièce
que nous appellerons ✭✭ figure-unité ✮✮ qui permet de la paver entièrement.

Échos des classes Les élèves ont vite fait le rapport entre cette activité et celle sur les frac-
tions. Le pavage de la silhouette par le petit triangle a été assez naturel,
ainsi que le rapport avec le carré. Ils ont trouvé l’aire de toutes les pièces,
bien que, contrairement à notre exemple ci-dessus, les nombres qu’ils ont
eu à utiliser comportaient une virgule (le carré avait 3,4 centimètres de
côté).
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Les mesures de capacité

1 Comparer des récipients (de 6 à 10 ans)

De quoi s’agit-il ? Comparer la capacité de récipients, les sérier en fonction de leur capacité.

Mesurer un récipient avec un autre qui sert d’étalon.

Enjeux Discerner la capacité comme grandeur.

Comparaison et sériation des capacités. Voir chapitre 16, section 3.1.

Mesure en nombres entiers. Voir section 4.2.

Compétences. – Comparer des grandeurs de même nature et concevoir
la grandeur comme une propriété de l’objet, la reconnâıtre et la nommer.

De quoi a-t-on
besoin ?

Des récipients pouvant contenir de l’eau, de formes les plus variées pos-
sibles, par exemple : vase, cube, bôıte à conserve, flacon à parfum, petit
seau, bôıte à biscuits, bouteille opaque, bouteille transparente, bocal, as-
siette creuse, bôıte à glace, . . .

Des bassines pour protéger les tables.

Comment s’y
prendre ?

Les élèves doivent apporter des récipients pouvant contenir de l’eau, les
plus spéciaux possibles (l’enseignant en prévoit aussi).

Première activité

Par groupes de deux, les élèves décrivent deux récipients et les comparent.
Si c’est possible, ils prennent note des caractéristiques relevées. Dans tous
les cas, l’enseignant fait une mise en commun orale des observations. La
question est ✭✭ que peut-on dire d’un récipient ? ✮✮ Au fur et à mesure l’en-
seignant écrit au tableau les caractéristiques données par les élèves et les
organise en deux colonnes sans annoncer le principe de répartition. La pre-
mière colonne contient les caractéristiques qualitatives des objets (matière,
usages, provenance, . . .) et la seconde, les informations du type quantita-
tif (grandeur, hauteur, éventuellement contenance, . . .). L’enseignant fait
préciser le vocabulaire, notamment les adjectifs. Par exemple ✭✭ le vase est
grand ✮✮ ne veut rien dire en soi, l’élève doit préciser ✭✭ le vase est plus
grand que le flacon ✮✮, et encore faut-il savoir ce qu’il entend par ✭✭ grand ✮✮.

57
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Finalement, l’enseignant demande pourquoi les informations sont en deux
colonnes. Il s’attend à ce que les élèves fassent la différence – même si
c’est dans leur langage – entre la description qualitative du récipient et sa
capacité, la quantité d’eau qu’il peut contenir. L’activité se poursuit sur
ce dernier point.

Synthèse

À la fin de la séance, l’enseignant met en évidence la distinction entre
la matière et la forme du récipient et la quantité de liquide qu’il peut
contenir. Cette idée doit sortir de l’expérience des enfants et les guider
vers les manipulations suivantes.

Deuxième activité

On propose de s’intéresser à la capacité des récipients. Les élèves se mettent
par groupes de trois ou quatre avec quelques récipients (quatre ou cinq),
choisis par l’enseignant pour que le classement des capacités ne se calque
pas sur celui de la hauteur des récipients1.

La première consigne est de comparer les capacités deux à deux. Ex-
primer les comparaisons en termes de ✭✭ dans tel ou tel, on peut mettre
plus/moins/autant d’eau que dans tel autre ✮✮. Les élèves disposent d’eau
et organisent les comparaisons à leur guise.

La deuxième consigne est de mettre tous les récipients dans l’ordre (les
sérier), en partant de celui où on peut mettre le moins d’eau jusqu’à celui
où on peut en mettre le plus. Faire un premier classement à l’œil, puis
vérifier au-dessus d’une bassine. Les procédures sont laissées aux élèves
(ils n’ont pas de récipients intermédiaires autres que ceux à classer).

Nous montrons ci-après un exemple de méthode pour déterminer le réci-
pient qui contient le moins d’eau et deux exemples de méthode pour classer
les récipients en fonction de leur capacité2.

1 Si les élèves lisent des capacités sur des étiquettes, on remet la question à plus tard,
car elle mérite une activité à part entière (voir activité 4 à la page 67).

2 Pour la clarté des photos, nous avons coloré l’eau.
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TROUVER LE RECIPIENT QUI CONTIENT LE MOINS D’EAU

A B C D

a) On choisit celui qui a l’air le plus petit, par exemple le récipient A.
On le remplit d’eau et on verse le contenu de A dans chacun des autres.

A B C D

b) On voit que le récipient D déborde, donc il contient moins d’eau que A et que les deux
autres.

Vérification : on vide tous les récipients et on recommence à remplir chacun avec D.

A B C D
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CLASSER DES RECIPIENTS (I)

D E F G

a) Avec le récipient qui contient le moins d’eau (à vérifier), ici D, on remplit complètement les
autres, un par un. On note combien de fois on a versé D dans chaque récipient.

D E F G

b) On classe les récipients en commençant par celui qui peut contenir le moins d’eau jusqu’à
celui qui peut contenir le plus d’eau :

1. le récipient D ;

2. le récipient E = 3×D ;

3. le récipient F = entre 4 et 5×D ;

4. le récipient G = 5×D.
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CLASSER DES RECIPIENTS (II)

a) On prend le récipient qui contient le moins d’eau, ici le D, pour remplir les autres.

b) On verse le contenu de D
une fois dans chaque réci-
pient.

D H B I

c) Puis, on rajoute une
deuxième fois de l’eau avec D
dans chaque récipient.

D H B I
Le récipient B est rempli, donc c’est le deuxième récipient du classement.

d) On rajoute à nouveau la
même quantité d’eau dans les
récipients restants.

D H I
Le récipient I est rempli, donc c’est le troisième récipient du classement.

e) On peut alors classer les récipients dans l’ordre : D, B, I, H.

D B I H
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Synthèse

Il est important de relever en fin de séance ✭✭ qui sait quoi ✮✮ et comment les
acquis s’installent pour chaque enfant. En fonction de l’âge, on attendra
des résultats différents et plusieurs séances seront sans doute nécessaires
pour mettre au point une stratégie efficace.

L’objectif à terme est de faire une synthèse collective où chaque groupe
s’explique sur ses difficultés et sur les méthodes efficaces. Les enfants
doivent expliquer leurs manipulations et l’enseignant les amène à utili-
ser un vocabulaire adéquat. La description complète d’une résolution du
problème peut donner des idées à certains enfants et lors d’un autre essai,
chacun devrait être capable d’y arriver le plus ✭✭ économiquement ✮✮ pos-
sible. Ceci permettrait à l’enseignant de voir ceux pour qui un problème
de compréhension persiste. Il ne s’agit pas d’une évaluation notée, mais
d’une observation attentive des moyens que se donne chaque enfant pour
résoudre le problème qu’on lui a soumis.

On peut faire une synthèse reprenant en bref les procédures efficaces ac-
compagnées d’illustrations schématiques des situations, en adaptant ce qui
a été présenté ci-dessus en fonction de l’expérience de la classe.

Échos des classes En première et deuxième primaires, les enfants ne se sont pas préoccupés
d’éventuelles étiquettes, ni des indications de contenance. Ils ont décrit les
récipients en termes très généraux ✭✭ gros, petit, . . . ✮✮ Ils en sont restés
à de tels adjectifs et n’ont pas exprimé clairement des comparaisons sans
l’intervention de l’enseignant. La mise en commun s’est faite oralement
sans note au tableau. La consigne suivante (mettre tous les récipients dans
l’ordre en partant de celui où on peut mettre le moins d’eau jusqu’à celui
où on peut en mettre le plus) a été donnée par l’enseignant sans beaucoup
d’explications, pour voir les réactions des élèves.

Concernant la comparaison des capacités, les élèves se sont tout d’abord
fixés sur la hauteur des récipients : ✭✭ Le récipient le plus haut pourra
contenir le plus d’eau. ✮✮ Les manipulations avec l’eau leur ont permis
d’infirmer ce classement.

En troisième et quatrième primaires, les comportements ont été plus va-
riés. Les élèves ont été très inventifs dans le choix des récipients et stimulés
à travailler avec le matériel qu’ils avaient eux-mêmes apporté. C’est l’en-
seignant qui a sélectionné les deux récipients à comparer en fonction des
ressemblances et différences susceptibles de provoquer un apprentissage.
La description qualitative a été très riche, les élèves ont relevé des données
sur les étiquettes (nom du produit, provenance, contenance, . . .). Pour-
tant la comparaison des capacités n’a pas surgi tout de suite. Les enfants
formulaient les comparaisons quantitatives en disant : ✭✭ C’est plus pe-
tit/grand/haut/gros que. . ., la bouteille mesure 13 cm, c’est plus haut que
ma latte. . . ✮✮ Néanmoins, en quatrième année, les élèves ne s’attachaient
plus à la hauteur du récipient pour en caractériser la capacité.

En ce qui concerne les sériations, chaque groupe a travaillé différemment.
L’un est parti du récipient qui paraissait le plus petit et s’en est servi pour
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remplir les autres et les classer en fonction du nombre de transvasements
nécessaires pour remplir entièrement chaque récipient.

Un autre groupe a fait de même, mais à partir du récipient le plus grand
et de l’importance du débordement : ils ont estimé à vue si ça débordait
beaucoup ou un peu.

Un groupe a tenu compte de quelques indications données par les éti-
quettes.

Dans un des groupes, les élèves ont choisi un récipient au hasard, avec
lequel ils ont versé le contenu une seule fois dans chacun des autres réci-
pients et ils en sont restés là. Ils ne savaient que faire et ont fait appel à
l’enseignant. L’intervention d’un autre groupe qui avait réussi à résoudre
la question les a éclairés dans la manière de procéder.

Certains sont repassés par une comparaison des récipients deux par deux
pour arriver au classement général.

Un seul groupe n’est pas parvenu au bout de la tâche dans le temps imparti,
en raison d’une mauvaise organisation entre les élèves.

Dans une classe, après avoir sérié les récipients, chaque groupe a remis ses
bouteilles en désordre et tous les élèves sont passés de table en table. Ils
devaient proposer un classement en jugeant à l’œil (sans transvasement)
de la capacité des récipients. Le groupe qui avait effectué le classement par
transvasement faisait les corrections et justifiait ses choix en les expliquant.

2 Mesurer des capacités (de 8 à 10 ans)

De quoi s’agit-il ? Comparer des récipients gradués selon des étalons différents.

Enjeux Mesurer une capacité avec un étalon de rencontre imposé. Voir chapitre
16, section 4.2.

Rencontre, dans un cas extrêmement simple, avec un changement d’unité
(section 4.8 pour le cas général). La mesure avec un étalon deux fois plus
petit s’exprime par un nombre deux fois plus grand (c’est une application
de ce que l’on appelle le principe de compensation).

Compétences. – Effectuer le mesurage en utilisant des étalons familiers
et conventionnels et en exprimer le résultat.

De quoi a-t-on
besoin ?

Des récipients différents pour chaque groupe de quatre élèves.

Deux étalons dans le rapport 1/2 (ce seront les mêmes pour chaque groupe),
du genre louche, petit verre, etc.

Les fiches 12 à 15 (en annexe aux pages 86 à 89).
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Comment s’y
prendre ?

L’enseignant forme des groupes de quatre élèves maximum3. Chaque grou-
pe doit mesurer le contenu d’un récipient à l’aide de deux étalons donnés
(dans notre exemple, un petit vase à long col et un pot). Il procède aux
transvasements et les résultats sont inscrits sur une fiche prévue à cet effet4.

Fiche 12 (page 86)

GROUPE 1

a) Voici le récipient à
mesurer avec le petit
étalon :

Chaque fois que tu as versé
le petit étalon dans ce ré-
cipient, tu colories un petit
dessin.

b) Voici le même réci-
pient à mesurer avec
le grand étalon :

Chaque fois que tu as versé
le grand étalon dans ce ré-
cipient, tu colories un petit
dessin.

Fiche 13 (page 87)

GROUPE 2

a) Voici le récipient à
mesurer avec le petit
étalon :

Chaque fois que tu as versé
le petit étalon dans ce ré-
cipient, tu colories un petit
dessin.

b) Voici le même réci-
pient à mesurer avec
le grand étalon :

Chaque fois que tu as versé
le grand étalon dans ce ré-
cipient, tu colories un petit
dessin.

Lorsque tous les groupes ont effectué les mesures, on fait une synthèse
collective dans le but de comparer les résultats. Tout d’abord, on place
au tableau les résultats obtenus par chaque équipe pour les deux étalons.
Ensuite, on se questionne sur le lien entre la mesure obtenue avec le premier
étalon et la mesure obtenue avec le deuxième, c’est-à-dire le passage du
simple au double (relation ✭✭ fois 2 ✮✮). Enfin, on essaie d’en tirer comme
conclusion que le petit étalon ✭✭ va deux fois ✮✮ dans le grand ou autrement
dit, que ✭✭ le grand étalon contient deux fois le petit ✮✮. Voici un exemple
de fiche de synthèse :

3 Pour ne pas multiplier le matériel, on peut faire travailler les groupes à tour de rôle.
4 Nous proposons des exemples de fiches que l’enseignant peut adapter à la classe,

l’idée étant d’être le plus concret possible dans les représentations proposées (photos de
récipients).
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Fiche 14 (page 88)

SYNTHÈSE DES GROUPES

Groupe 1, le petit étalon Groupe 1, le grand étalon

❄

va 8 fois
dans

❄

va 4 fois
dans

————————————————————————————————-
Groupe 2, le petit étalon Groupe 2, le grand étalon

❄

va 6 fois
dans

❄

va 3 fois
dans

————————————————————————————————-

DONC

Le petit
étalon

va combien de fois dans

✲
2 fois

le grand
étalon ?

Pour terminer, on propose l’exercice individuel de la fiche 15, où il s’agit
de mettre les découvertes en application sans passer par le transvasement
réel.

La consigne est de découper les images de récipients, de les classer en
deux groupes en fonction de l’étalon choisi pour les mesurer, puis, de faire
un classement général en collant les images de récipients depuis celui qui
contient le moins jusqu’à celui qui contient le plus. Pour connâıtre la capa-
cité de chaque récipient, il faut se référer à la règle encadrée dans le haut
de la page, qui indique que le grand étalon vaut deux fois le petit étalon.
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3 Vers le système décimal : comparer deux éta-
lons (de 8 à 10 ans)

De quoi s’agit-il ? Utiliser deux étalons différents pour mesurer un même contenu, ces étalons
ayant entre eux un rapport de 1/10.

Enjeux Une première approche du système décimal de mesures, par l’utilisation
du litre et du décilitre. Voir chapitre 16, section 4.5.

Le principe de compensation est en jeu ici comme à l’activité précédente,
avec en l’occurrence un rapport de 1 à 10 entre les étalons (cf. section 4.8
pour le cas général).

Compétences. – Faire des estimations en utilisant des étalons familiers
et conventionnels. Effectuer le mesurage en utilisant des étalons familiers
et conventionnels et en exprimer le résultat. Connâıtre le sens du préfixe
déci.

De quoi a-t-on
besoin ?

Deux étalons : l’un d’un litre et l’autre d’un décilitre.

Plusieurs récipients de 2, 3, 4 et 5 litres (nombres entiers de litres5) tels
que saladier, bôıte à glace, petit seau, arrosoir, etc.

Les fiches 16 et 17 (en annexe aux pages 90 et 91).

Comment s’y
prendre ?

Les élèves travaillent par petits groupes. Chaque groupe doit avoir deux
étalons (1 l et 1 dl) et deux récipients à mesurer. Tout d’abord, ils doivent
comparer les deux étalons par transvasements et arriver à la conclusion
que le grand contient dix fois le petit et donc que le petit vaut le dixième
du grand. Sachant que le grand vaut un litre, on nomme le petit décilitre.

Ensuite, il s’agit de mesurer un des récipients reçus en utilisant pour com-
mencer le litre, puis de prévoir la mesure en décilitres et finalement de
la vérifier. Pour le second récipient, on mesure d’abord avec l’étalon d’un
décilitre, puis on prévoit la mesure en litres avant de la vérifier par trans-
vasements (chaque fois aussi soigneusement que possible). Chaque groupe
complète la fiche 16.

Enfin, l’enseignant récolte les résultats pour une synthèse, par exemple le
tableau ci-après.

Pour terminer, on propose l’exercice individuel de la fiche 17 où il s’agit
de mettre les découvertes en application sans passer par le transvasement
réel.

La consigne est de classer les images de récipients depuis celui qui contient
le moins jusqu’à celui qui contient le plus. Pour connâıtre la capacité de
chaque récipient, il faut se référer à la règle encadrée dans le haut de la
page qui indique que le grand étalon vaut 10 fois le petit étalon.

5 On peut déterminer un nombre entier de litres en faisant une marque sur le récipient
et en prévenant les élèves de s’y arrêter lors du remplissage.
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Expérience mesure en litres mesure en décilitres
groupe 1 : saladier 2 litres 20 décilitres
groupe 2 : caisse 3 litres 30 décilitres
groupe 3 : seau 4 litres 40 décilitres
groupe 4 : arrosoir 5 litres 50 décilitres

CONCLUSION
Pour un litre, on a dix fois un décilitre. On écrit 1 l = 10 dl.
Un décilitre est le dixième d’un litre. On écrit 1 dl = 1

10 l ou encore 1 dl = 0,1 l.

4 Lecture d’étiquettes de récipients (de 10 à 12
ans)

De quoi s’agit-il ? Expérimenter les rapports entre litre, décilitre, centilitre et millilitre. At-
tribuer à des récipients des étiquettes indiquant leur capacité. Classer des
récipients en fonction de leurs étiquettes.

Enjeux Quatre unités décimales de capacité : le litre, le décilitre, le centilitre et le
millilitre. Voir chapitre 16, section 4.5.

Sériations de capacités basées non plus sur une comparaison directe des
capacités (par transvasements), mais bien sur des mesures. Voir section 5.

Changements d’unités dans le système décimal. Voir section 4.8.

Compétences. – Effectuer le mesurage en utilisant des étalons familiers
et conventionnels et en exprimer le résultat. Établir des relations dans un
système pour donner du sens à la lecture et à l’écriture d’une mesure.
Connâıtre le sens des préfixes déci, centi, milli.

De quoi a-t-on
besoin ?

Des récipients gradués qui permettent d’établir les relations entre un litre,
un décilitre, un centilitre et un millilitre.

Des récipients de la vie courante étiquetés dans des unités différentes (par
exemple des berlingots avec mention en ml, cl, dl, l pour une même capa-
cité).

Diverses bouteilles et bôıtes avec indication de la capacité.

La fiche 18 à la page 92 à découper.

Comment s’y
prendre ?

Tout d’abord, les élèves établissent les relations entre les différentes unités
(le litre, le décilitre, le centilitre et le millilitre).

Ensuite, on présente aux élèves des récipients de la vie courante (bouteille,
flacon, bôıte, etc.) avec mention de la capacité sur l’étiquette. Les enfants
doivent grouper les récipients qui ont la même capacité en fonction de la
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lecture des étiquettes. On souligne à nouveau les rapports entre unités et
sous-unités. Voici un exemple de récipients :

un flacon de shampooing avec la mention 250 ml

une bouteille avec la mention 25 cl

une canette avec la mention 0,25 l

une bouteille de grenadine avec la mention 0,75 l

une bouteille d’huile avec la mention 75 cl

un bocal de mayonnaise avec la mention 1000 ml

une bouteille d’eau avec la mention 1 l

une bôıte de lait avec la mention 1 l

Puis, on donne à des groupes d’élèves des récipients étiquetés et une série
de mesures (en l, dl, cl, ml) à attribuer à chaque récipient. On place égale-
ment des intrus dans les étiquettes, pour que les élèves ne se réfèrent pas
uniquement aux chiffres qui composent le nombre (exemple, fiche 18).

Enfin, les élèves doivent classer par ordre croissant de capacités des réci-
pients étiquetés dans des unités différentes. Ils notent les méthodes qu’ils
utilisent pour y parvenir. L’enseignant rassemble les données pour une syn-
thèse collective portant principalement sur le principe de compensation et
l’écriture décimale.
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Grandeurs, pourcentages et
représentations graphiques

Dans le cadre d’un travail sur le thème de l’eau, on se propose de traiter
certaines questions concernant les pourcentages et les conversions d’unités
de grandeurs. Au préalable, on aura suscité chez les élèves des questions
d’ordre général et fait avec eux des recherches documentaires très larges
sur le sujet. De nombreuses données à l’usage des classes peuvent être
recueillies auprès des compagnies de distribution d’eau1.

1 Quelle part d’eau dans nos organes ? (de 10 à
12 ans)

De quoi s’agit-il ? Compléter un graphique en bâtonnets pour représenter des pourcentages
d’eau dans divers organes du corps humain.

Enjeux Familiarisation avec des données en pourcents. Représenter des données
chiffrées graphiquement, l’échelle à utiliser pour le graphique étant donnée.
Voir chapitre 16, section 4.9.

De quoi a-t-on
besoin ?

Fiche 19 à la page 93 : graphique sur papier millimétré à compléter par
l’élève.

Comment s’y
prendre ?

On présente des données concernant le pourcentage d’eau dans divers or-
ganes du corps humain (dents, os, . . .) : voir fiche 19. On donne un modèle
de graphique en bâtonnets que l’élève doit compléter en fonction de ces
données avec le plus de précision possible. Il doit tracer un trait à l’endroit
du pourcentage à représenter, puis colorier la zone qui illustre la part d’eau
dans l’organe considéré.

L’idée est d’obtenir une image qui permette de se représenter facilement
la situation en pourcentages et de comparer les données entre elles.

1 Une documentation pédagogique peut être demandée auprès de la Société Wallonne
des Distributions d’Eau (SWDE : 065/385211).
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2 Quelle consommation d’eau par famille ? (de 10
à 12 ans)

De quoi s’agit-il ? Lire des factures et en extraire des données, rechercher des données chiffrées
et les traiter graphiquement.

Enjeux Analyser des documents réels et en extraire des données concernant des
unités de mesure, des prix.

Représentation graphique de mesures (en l’occurrence des volumes) par
des rectangles de même base, reconnaissance de l’échelle, confection d’une
sous-graduation. Voir chapitre 16, section 5.3.

Ramener des mesures que l’on veut comparer à une base de comparaison
unique. Il s’agit d’abord de ramener des consommations d’une famille à une
personne. Il s’agit ensuite de pourcentages à calculer à partir de données
brutes, puis à mettre en correspondance avec des secteurs circulaires d’un
disque gradué en cent parties égales.

De quoi a-t-on
besoin ?

Des calculatrices.

Fiche 20 à la page 94 : un exemple de facture d’eau.

Fiche 21 à la page 95 : graphique en bâtonnets de la consommation moyen-
ne par famille et par an2.

Fiche 22 à la page 96 : graphique circulaire de consommation moyenne par
personne et par jour3.

Fiche 23 à la page 97 : enquête sur la consommation.

Fiches 24 et 25 aux pages 98 et 99 : transformer les données et représenter.

Fiche 27 à la page 182 : cercles transparents prégradués en pourcentages4.

Comment s’y
prendre ?

Première activité

Tout d’abord, analysons des factures d’eau reçues dans les familles (exem-
ple à la fiche 20). Les élèves travaillent par groupes et doivent répertorier
sur une feuille toutes les informations qui figurent sur une facture d’eau
et essayer de comprendre les façons de calculer les prix (avec l’aide de
calculatrices si nécessaire). Lors de la mise en commun, l’enseignant note
au tableau les informations principales et questionne les élèves sur le m3 :
que vaut-il en litres ? Pourquoi l’utilise-t-on dans les factures ? Voici, à titre
d’exemple, les données que l’on peut obtenir :

– nom et adresse de la société de distribution ;

– nom et adresse du consommateur ;

– numéro et date de la facture ;
2 Société Wallonne des Distributions d’Eau [2000]
3 R. Depamelaere [sans date]
4 L’idée vient de l’ouvrage de School Mathematics Project [1997]
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– relevé de l’index en m3 : on trouve la consommation en faisant la diffé-
rence entre le nouveau relevé et le précédent ;

– consommation facturée en francs : plusieurs tarifs en fonction des tran-
ches de consommation ;

– redevance annuelle d’abonnement : frais fixes ;

– TVA sur le total de la consommation et de l’abonnement : 6 % du total
en francs ;

– taxe régionale (pas de TVA) : autant de francs par m3 ;

– montant total à payer avant une certaine date.

On peut proposer une facture où l’on a introduit une erreur, pour que les
élèves refassent tous les calculs nécessaires.

Deuxième activité

Ensuite, on s’intéresse à la consommation moyenne5 des familles à partir
du document de la fiche 21. Sur base de ce document, que peut-on dire de
la consommation de 1999 ? Calculer la différence de consommation entre
l’année où l’on a consommé le moins et l’année où l’on a consommé le
plus6.

Pour lire le graphique, les élèves doivent reporter le sommet des bâton-
nets coloriés vers l’axe des m3. Celui-ci comporte peu de divisions. Il y a
1,5 cm entre deux graduations successives. Donc 1,5 cm sur l’axe verti-
cal représentent 5 m3 et les élèves doivent tracer une sous-graduation à
chaque mètre cube. Ils utilisent les sous-graduations de l’axe vertical pour
déterminer la quantité d’eau à laquelle correspond chaque bâtonnet.

D’après ce graphique, peut-on savoir combien d’eau consomme chaque fa-
mille ? Non, parce qu’il s’agit d’une valeur moyenne qui ne montre pas les
différences individuelles.

Troisième activité

Quel est la consommation d’eau des familles de la classe pour les catégories
suivantes d’utilisation ?

– boisson et alimentation ;

– vaisselle ;

– lessive ;

– entretien ;

– bain ou douche ;

– toilettes.

5 Expliquer ce qu’est une consommation moyenne.
6 Il est intéressant de se poser avec les élèves des questions complémentaires sur les

informations que nous apportent ce graphique (voir commentaires à la page 72).
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Il serait bien de mettre à la disposition des élèves des publicités sur les
machines à laver, les lave-vaisselle, . . . afin qu’ils puissent déterminer les
quantités d’eau utilisées. Les élèves doivent faire quelques recherches et
questionner leur entourage sur les consommations d’eau par jour et com-
pléter chacun la fiche 23. Ils inscrivent soit les données par jour, soit les
données par semaine en fonction des catégories et complètent ensuite le
tableau par calculs.

Puis, on compare les données, on se questionne sur les raisons des diffé-
rences et sur les consommations exagérées.

Ensuite, chaque élève recherche les données de chaque catégorie pour une
seule personne. Il s’agit d’une consommation moyenne, car les membres de
la famille ne consomment pas tous des quantités égales. De plus, certaines
catégories ne correspondent pas à des consommations individuelles (par
exemple l’entretien et la lessive). Par ailleurs, ramener les consommations
à une seule personne permet de comparer les familles, qui n’ont pas toutes
le même nombre de membres. Les élèves complètent la fiche 24 en repar-
tant des données de la première fiche (concernant seulement la deuxième
colonne).

Enfin, les élèves doivent faire un graphique circulaire tel que celui de la
fiche 22 qui présente un exemple7.

Pour cela, les élèves vont tout d’abord trouver quel pourcentage repré-
sente chaque catégorie par rapport à la quantité totale d’eau utilisée : ils
complètent la fiche 25. Ils font leur graphique à l’aide du cercle prégradué
transparent (fiche 27) qu’ils appliquent sur leur feuille comme une sorte de
rapporteur.

Commentaires

Le graphique de la fiche 21 appelle deux réflexions.

Premièrement, pourquoi la consommation a-t-elle diminué depuis 1990 ? C’est sans doute
d’abord parce que le prix de l’eau en nette augmentation incite à réduire la consom-
mation. D’autre part, les aménagements domestiques tels que les toilettes à réservoir
économique, les douches, les machines à laver, les lave-vaisselle demandent de moins en
moins d’eau. Les appareils ménagers utilisent souvent moins d’eau que si l’on effectue
les mêmes tâches à la main. Enfin les installations de distribution d’eau à domicile se
modernisent et les pertes d’eau principalement aux robinets sont moins grandes (par
exemple, un robinet qui goutte pourra consommer 35 m3 par an et une toilette qui fonc-
tionne mal 220 m3 par an8 !). Ce sont là quelques raisons possibles de la diminution de
la consommation des ménages.

La seconde réflexion concerne l’aspect visuel trompeur du graphique. Sans y regarder
de près, on a l’impression que la consommation d’eau a chuté de moitié entre 1990
et 1999, car la hauteur des rectangles diminue de moitié sur cette période. Or, si l’on
regarde l’axe vertical, on constate qu’il ne démarre pas à 0 m3 mais à 100 m3, ce qui
laisse la majeure partie du graphique invisible. Donc une diminution de moitié de la
consommation concernant la tranche allant de 100 m3 à 130 m3 n’est en fait qu’une
diminution d’environ 12% sur la consommation totale.

7 Extrait de R. Depamelaere [sans date]
8 Données recueillies dans l’ouvrage R. Depamelaere [sans date].
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GROUPE 1

a) Voici le récipient à mesurer
avec le petit étalon :

Chaque fois que tu as versé le petit étalon dans ce
récipient, tu colories un petit dessin.

b) Voici le même récipient à mesurer
avec le grand étalon :

Chaque fois que tu as versé le grand étalon dans ce
récipient, tu colories un petit dessin.
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GROUPE 2

a) Voici le récipient à mesurer
avec le petit étalon :

Chaque fois que tu as versé le petit étalon dans ce
récipient, tu colories un petit dessin.

b) Voici le même récipient à mesurer
avec le grand étalon :

Chaque fois que tu as versé le grand étalon dans ce
récipient, tu colories un petit dessin.
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SYNTHÈSE DES GROUPES

Groupe 1, le petit étalon Groupe 1, le grand étalon

❄

va 8 fois
dans

❄

va 4 fois
dans

————————————————————————————————————————–
Groupe 2, le petit étalon Groupe 2, le grand étalon

❄

va 6 fois
dans

❄

va 3 fois
dans

————————————————————————————————————————–

DONC

Le petit étalon

va combien de fois dans
✲

2 fois

le grand étalon ?
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CLASSER DES RÉCIPIENTS (I)

Le premier cadre nous montre que 1 bol vaut 2 petites louches .

Les récipients en dessous ont été mesurés soit avec les bols, soit avec les louches. À toi de retrouver
ceux qui peuvent contenir le moins et ceux qui peuvent contenir le plus. Attention, il est possible
que plusieurs récipients puissent contenir autant d’eau.

Découpe ces images de récipients et colle-les sur la fiche suivante dans l’ordre croissant.

=

=

=

=

=

=

=
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MESURER EN LITRES ET EN DÉCILITRES

Mesure la capacité du récipient avec le litre, puis devine la mesure en décilitres.

ESSAIE :

1 l

va combien de fois dans
✲

. . .

DEVINE :

1 dl

va combien de fois dans
✲

. . .

Mesure la capacité du récipient avec le décilitre, puis devine la mesure en litres.

ESSAIE :

1 dl

va combien de fois dans
✲

. . .

DEVINE :

1 l

va combien de fois dans
✲

. . .
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CLASSER DES RÉCIPIENTS (II)

Le cadre noir nous montre que 1 bocal gradué vaut 10 verres à apéritif .

Les récipients en dessous ont été mesurés soit avec les bocaux gradués, soit avec les verres à apéritif.
À toi de retrouver ceux qui peuvent contenir le moins et ceux qui peuvent contenir le plus. Attention,
il est possible que plusieurs récipients puissent contenir autant d’eau.

=10

= 2 = 4

=3

=30

=40

=10

= 1

G.

=20

B.
A.

C.
D.

E.
F.

H.

Note ici l’ordre des images A, B, C, D, E, F, G, H : . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . .
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1,75 l 0,75 l 0,5 l 0,25 l

0,025 l 7,5 l 2,5 l 0,33 l

1 dl 0,75 dl 5 dl 2,5 dl

7,5 dl 0,5 dl 0,25 dl 3 dl

10 cl 0,75 cl 7,5 cl 50 cl

25 cl 20 cl 3 cl 0,5 cl

200 ml 0,2 ml 75 ml 1000 ml

0,75 ml 500 ml 50 ml 330 ml
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Représenter ces données en pourcentages sur le graphique

- Dents : 10% d’eau - Sang : 83% d’eau
- Os : 22% d’eau - Cœur : 79% d’eau
- Peau : 72% d’eau - Poumons : 80% d’eau
- Muscles : 73% d’eau - Cerveau : 75% d’eau

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

DENTS OS PEAU MUSCLES CERVEAU CÍUR POUMONS SANG

PARTIES
DU CORPS

POURCENTAGES
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Extrait du rapport annuel 1999 de la SWDE9

✭✭ La consommation moyenne en eau traitée, rapportée par raccordement et sur base d’un cycle de
12 mois, est de 111 m3, soit 2 m3 de moins qu’en 1998. La diminution de la consommation observée
depuis plusieurs années se confirme. ✮✮

Voici le graphique de l’évolution de la consommation d’eau moyenne par raccorde-
ment :

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
100

105

110

115

120

125

130

9 Voir Société Wallonne des Distributions d’Eau [2000]
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La consommation moyenne d’eau par les ménages en Belgique s’élève à environ 120
litres par personne et par jour10 :

pour la boisson et l’alimentation :

pour la vaisselle :

pour l’hygiène corporelle :

pour le WC :

pour la lessive :

pour l’entretien :

5 litres

8 litres

38 litres

43 litres

16 litres

10 litres

4 %

7 %

31 %

36 %

14 %

8 %

hygiène corporelle
31%

vaisselle
7%

boisson &
alimentation

4%

entretien
8%

lessive
14%

WC
36%

10 Extrait de R. Depamelaere [sans date]
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ENQUÊTE SUR LA CONSOMMATION D’EAU PAR FAMILLE

Nom et prénom :

La famille est composée de . . . personnes.

1) Recherche : Combien d’eau pour. . . ?

TOUTE LA FAMILLE LITRES LITRES
UTILISE L’EAU POUR . . . PAR JOUR PAR SEMAINE

1. Boisson, alimentation . . . . . . . . . . . .

2. Vaisselle . . . . . . . . . . . .

3. Lessive . . . . . . . . . . . .

4. Entretien, nettoyage . . . . . . . . . . . .

5. Bain, douche, évier . . . . . . . . . . . .

6. Toilettes . . . . . . . . . . . .

TOTAUX . . . . . . . . . . . .



98 Fiche 24

2) Consommation d’eau PAR PERSONNE, PAR JOUR

Reporter les données du tableau 1 et calculer.

: . . . personnes
� ✏✲

L’EAU POUR . . . LITRES PAR JOUR LITRES PAR JOUR
PAR FAMILLE PAR PERSONNE

1. Boisson, alimentation . . . = . . . . . .

2. Vaisselle . . . = . . . . . .

3. Lessive . . . = . . . . . .

4. Entretien, nettoyage . . . = . . . . . .

5. Bain, douche, évier . . . = . . . . . .

6. Toilettes . . . = . . . . . .

TOTAUX . . . = . . . . . .

✒ ✑✲
: . . . personnes
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3) Transformer les données PAR JOUR/PAR PERSONNE en POURCENTAGES

Reporter les données du tableau 2 et calculer.

POURCENTAGES LITRES PAR JOUR
/PAR PERSONNE

TOTAL

1. Boisson, alimentation
. . .

✞
✝❄

100 %

. . . %

. . .

. . .
. . .

�
✆❄

TOTAL

2. Vaisselle
. . .

✞
✝❄

100 %

. . . %

. . .

. . .
. . .

�
✆❄

TOTAL

3. Lessive
. . .

✞
✝❄

100 %

. . . %

. . .

. . .
. . .

�
✆❄

TOTAL

4. Entretien, nettoyage
. . .

✞
✝❄

100 %

. . . %

. . .

. . .
. . .

�
✆❄

TOTAL

5. Bain, douche, évier
. . .

✞
✝❄

100 %

. . . %

. . .

. . .
. . .

�
✆❄

TOTAL

6. Toilettes
. . .

✞
✝❄

100 %

. . . %

. . .

. . .
. . .

�
✆❄

4) Dessiner le graphique circulaire à l’aide du ✭✭ rapporteur en pourcents ✮✮

1. Boisson, alimentation : . . . %
2. Vaisselle : . . . %
3. Lessive : . . . %
4. Entretien, nettoyage : . . . %
5. Bain, douche, évier : . . . %
6. Toilettes : . . . %





Deuxième partie

Un aspect de la linéarité

de 12 à 15 ans
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Tableaux, graphiques, formules

1 Des abaques et des graphiques pour calculer

De quoi s’agit-il ? Les élèves recueillent des données, ils élaborent des diagrammes en bandes
et des diagrammes circulaires à l’aide d’abaques ; ils calculent des pour-
centages. Le terme ✭✭ abaque ✮✮ est employé ici dans le premier sens donné
par le Larousse : graphique permettant de résoudre de nombreux calculs.

Enjeux Représentation de données par des grandeurs géométriques (segments et
angles) et conversion des données en pourcentages, par voie graphique et
par calcul. Les instruments graphiques en question permettent d’appré-
hender les rapports et proportions de manière très visuelle.

Voir chapitre 16, sections 4.9 et 5.3.

Compétences

Représenter des données par un graphique, un diagramme. Dans une situa-
tion simple et concrète, estimer la fréquence d’un événement sous forme
de rapport.

Calculer des pourcentages.

Interpréter un graphique, un tableau, un diagramme.

De quoi a-t-on
besoin ?

Pour les diagrammes circulaires : des maquettes de ✭✭ bracelets de conver-
sion ✮✮ (voir la fiche 26 à la page 181), une paire de ciseaux, un bâton de
colle ou quelques trombones par groupe de trois ou quatre élèves.

Pour les pourcentages : le cercle gradué en centièmes (voir la fiche 27 à
la page 182) et les abaques de conversion de rapports de longueurs en
pourcentages (voir les fiches 28, 29 et 30 aux pages 183 à 185).

Comment s’y
prendre ?

L’activité commence par une question qui se rapporte à des données re-
cueillies par les élèves.

103
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On dispose, pour plusieurs classes d’une même école, des nombres
d’élèves pour les catégories suivantes : ceux qui rentrent à la maison à
midi, ceux qui mangent des sandwiches à l’école et ceux qui y prennent
un repas chaud. On demande de construire des diagrammes circulaires
afin de comparer rapidement les proportions d’élèves dans chaque caté-
gorie pour les différentes classes.
Pour chaque classe, déterminer le pourcentage que représente chacune
des catégories.

Le déroulement décrit ci-après part de données fictives à propos des repas
de midi. Les élèves peuvent recueillir des informations réelles en enquêtant
dans différentes classes ou en s’adressant à l’économat de l’école. Le pro-
fesseur répartit le travail entre les groupes de façon à ce que l’on puisse
dégager des méthodes et des propriétés à partir d’exemples qui comportent
des effectifs différents. Traitons par exemple deux relevés, l’un qui corres-
pond à une classe de 29 élèves et l’autre à une classe de 26 élèves.

Classe 1 Classe 2
Rentrent à la maison 11 5
Sandwiches 3 12
Dı̂ner chaud 15 9
Nombre total d’élèves de la classe 29 26

Avec un bracelet

Le support des bandelettes aide l’élève à construire un diagramme circu-
laire sans qu’il soit nécessaire de fournir au préalable une définition de
rapport ou une procédure. Pour faire apparâıtre un partage du disque en
29 parties égales, le professeur propose donc aux élèves de découper une
des bandelettes de la fiche 26 à la page 181 et de l’enrouler pour former un
cercle. En observant comment les élèves se débrouillent avec ce matériel,
le professeur veille à ce qu’ils traitent correctement les aspects suivants :

- l’ensemble de tous les élèves d’une classe est représenté par un disque
complet et chaque catégorie est représentée par une partie du disque
proportionnelle au nombre d’élèves,

- partager le disque revient à partager son contour et à relier les points
de partage au centre du disque.

Moyennant quelques indications (que le professeur dispensera de manière
parcimonieuse pour bien localiser les points de blocage et laisser aux élèves
le plaisir de la découverte), on élabore un mode d’emploi. On choisit une
bandelette qui comporte plus de 29 unités et l’on repère les longueurs qui
correspondent aux différentes catégories.
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21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

enrouler jusqu'ici

Fig. 1

On ferme, puis on colle ou on place un trombone pour obtenir un ✭✭ brace-
let ✮✮. On trace un cercle plus grand que le bracelet et on indique le centre
du cercle de manière très visible. Ceci permet de centrer le bracelet à vue
et de reporter les traits qui correspondent aux différentes catégories.

Fig. 2

On obtient un diagramme circulaire qui permet de visualiser la part de
chaque catégorie. Pour la classe 2, en utilisant une autre bandelette, on
obtient le deuxième diagramme de la figure 3. La comparaison des pro-
portions dans les différentes classes est plus aisée lorsque les cercles ont
même rayon. Dans le cas présent, on voit tout de suite que les proportions
d’élèves pour chaque catégorie sont très différentes d’une classe à l’autre.

1 Rentrent  la
maison

Mangent des
sandwiches

Prennent un
repas chaud

2

3
3

1

2

1
3

2

Fig. 3
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Pour convertir les données en pourcentages, les élèves disposent de quatre
outils : un disque transparent gradué en centièmes (fiche 27 à la page 182),
les abaques de conversion de rapports de longueurs en pourcentages (voir
fiches 28, 29 et 30 aux pages 183 à 185).

Tout en évitant les calculs, ces outils conduisent à percevoir cette conver-
sion comme un changement de graduation d’un cercle ou d’un segment :
un partage du tout en parties égales (ici en 29 ou en 26 parties) est rem-
placé par un partage en 100. Le professeur choisit les outils qu’il exploitera
pour traiter les données recueillies. Il organise la classe de façon à ce que
chaque élève n’utilise qu’un abaque, mais qu’il bénéficie des travaux des
autres élèves.

Avec le cercle gradué en centièmes

En déposant un cercle gradué transparent sur le disque comme indiqué par
la figure 4, on ✭✭ lit ✮✮ qu’à la fraction 15

29 correspond à peu près 52%.

.
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Fig. 4

Il faut ensuite tourner le rapporteur de manière à ajuster la flèche qui
pointe 0 sur le premier côté du secteur représentant la catégorie de 3 élèves
et de même pour le troisième secteur.

Avec l’abaque de conversion des longueurs en pourcentages

Cet abaque (voir figure 5) ressemble au faisceau lumineux d’un projecteur
de diapositives ou d’un agrandisseur. Les segments parallèles à la ligne
graduée sont partagés par le faisceau en 10 (ou 100) parties égales.
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Si la perception de ce phénomène géométrique n’est pas immédiate pour
les élèves, on procèdera à des expériences pour des partages plus simples :
observer par exemple où se trouve le milieu d’un segment que l’on place
tantôt dans une position parallèle à la ligne graduée, tantôt dans une autre
position (voir figures 6 et 7).
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La figure 8 montre comment disposer la bandelette sur l’abaque pour gra-
duer un segment de 29 unités en centièmes.

0
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40
50
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70

80
90

10
0

Fig. 8

On y ✭✭ lit ✮✮ :

- qu’à la graduation 3 sur la bandelette de 29 unités, correspond à peu
près la graduation 10 sur le segment de 100 unités,

- qu’à la graduation 11 sur la bandelette de 29 unités, correspond à
peu près la graduation 38 sur le segment de 100 unités,

- qu’à la graduation 15 sur la bandelette de 29 unités, correspond à
peu près la graduation 52 sur le segment de 100 unités.

Avec le guide ligné

Pour que les élèves découvrent comment utiliser ce réseau de lignes, on peut
d’abord leur montrer comment partager une bandelette en deux, trois ou
quatre parties égales en la déposant sur une feuille lignée (voir figure 9).
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Fig. 9

La figure 10 montre comment déterminer le pourcentage qui correspond à
3 élèves sur 29 ; 11 élèves sur 29 et 15 élèves sur 29.
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Avec le repère rectangulaire

0 5 10 15 20 25 30

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Fig. 11

Le repère fourni aux élèves (figure 11) est prévu pour
opérer les conversions relatives à un groupe de 26
élèves. Il montre comment indiquer qu’à 26 sur 26
correspond le rapport 100% et qu’à 13 sur 26 corres-
pond le rapport 50%. Les élèves ont à découvrir com-
ment convertir les autres rapports (5 sur 26, 12 sur
26 et 9 sur 26) en pourcents de la grandeur de réfé-
rence choisie. L’image du partage en deux qui s’effec-
tue dans trois directions, celles des côtés du rectangle
et celle de sa diagonale, donne l’idée de la construc-
tion : pour convertir 5 sur 26, on part de la graduation
5 (voir figure 12), on trace un segment vertical, on re-
père l’intersection de cette verticale avec la diagonale
du rectangle, on trace un segment horizontal et on lit
le nombre de pourcents correspondant. La figure 13
montre les conversions pour la classe de 29 élèves.
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Fig. 12
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Fig. 13

Ces deux graphiques peuvent servir de supports pour réaliser des dia-
grammes en bâtons. Il suffit pour chaque donnée, de prendre comme hau-
teur du bâton, la longueur du segment correspondant sur le graphique. On
obtient ainsi le diagramme de la figure 14.
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Fig. 14

Les abaques de conversion fournissent des pourcentages approximatifs qui
bien souvent suffisent pour construire des diagrammes. On réalise cepen-
dant que si l’on veut traiter les données avec plus de précision, on ne peut
pas recourir à de tels supports. Le professeur peut tabler sur les images vi-
suelles suscitées par l’activité pour mettre en place une méthode de calcul
des pourcentages.

Calculons d’abord le pourcentage exact que représentent 3 élèves d’une
classe de 29. Pour ce faire, on remplace les correspondances lues sur les
abaques par un tableau de proportionnalité dans lequel 29 correspond à
100.

Nombre d’élèves Pourcentage
29 100
3 ?

Chaque élève est 1/29 de ce tout, trois élèves en constituent trois fois plus
c’est à dire 3/29. C’est ce que montre le tableau

Nombre Pourcentage
d’élèves

: 29

✞
✝❄

×3

✞
✝❄

29

1

3

100

100
29

100×3
29

: 29

�
✆❄
×3

�
✆❄

On procède de manière analogue pour calculer quel pourcentage de la classe
représentent 11 élèves sur 29 puis 15 élèves sur 29.
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Nombre d’élèves Pourcentage

29 100

1 3,448. . .

3 10,344. . . soit 10,3%

11 37,931. . . soit 37,9%

15 51,724. . . soit 51,7%

À ce stade, le professeur pose une nouvelle question.

Déterminer l’opération qui permet de passer d’un nombre de la première
colonne du tableau au nombre correspondant de la seconde. Écrire une
formule qui généralise cette relation entre le ✭✭ nombre d’élèves ✮✮ et le
✭✭ pourcentage ✮✮.

On retourne au tableau pour y déceler par quelles opérations (toujours
les mêmes) on passe de la première à la deuxième colonne. Il s’agit d’une
division par 29 et d’une multiplication par 100. Les élèves utilisent ensuite
un aspect de la notion de fraction : elle remplace la succession de deux
opérations par une seule opération : une multiplication par la fraction
100
29

.

Nombre d’élèves Pourcentage Opérations

29 100

1 3,448. . . 1× 100
29

3 10,344. . . 3× 100
29

11 37,931. . . 11× 100
29

15 51,724. . . 15× 100
29

Il faut ensuite traduire ce calcul par une formule. Si on appelle x le nombre
d’élèves de la catégorie, et si y est le pourcentage qui exprime le rapport
entre ce nombre et le nombre total d’élèves de la classe, on a

y = x× 100
29

ou y =
100
29

x.

2 Proportionnalité : divers contextes

Nous présentons ici une suite de situations qui éclairent les différentes pro-
priétés d’un tableau de proportionnalité et du graphique qui lui correspond.

La richesse d’un tableau de proportionnalité est telle que les élèves ne
peuvent en apercevoir toutes les propriétés sur un seul exemple : le choix
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de chaque situation est donc particulièrement important pour favoriser
l’émergence de telle ou telle propriété. Nous essayons pour chaque acti-
vité de bien préciser quelle facette de la proportionnalité est visée afin
de permettre aux enseignants de modifier le contexte de l’activité, s’ils le
souhaitent, tout en conservant les objectifs précis qu’elle doit atteindre.
Les contextes choisis ici nous permettent simplement de réactiver des no-
tions acquises à l’école primaire, telles que multiples, échelles, conversions
d’unités, . . .

De quoi s’agit-il ? Les élèves créent des tableaux de nombres, étudient des régularités dans
ces tableaux, étendent des tableaux de proportionnalité, établissent les gra-
phiques ou les formules qui leur correspondent, explorent des graphiques.
On les confronte également à des situations de non-proportionnalité.

Enjeux Mettre en évidence les différentes facettes de la proportionnalité.
Identifier, à partir d’un tableau de nombres, d’un graphique ou d’une for-
mule, une situation de proportionnalité parmi d’autres.
Pour une situation donnée, faire le va-et-vient entre le tableau de nombres,
le graphique et la formule. Voir à ce sujet le chapitre 16, sections 2 et 5.3.

Compétences

Résoudre des problèmes simples de proportionnalité directe.

Dans une situation de proportionnalité directe, compléter, construire, ex-
ploiter un tableau qui met en relation deux grandeurs.

Reconnâıtre un tableau de proportionnalité directe parmi d’autres.

Déterminer le rapport entre deux grandeurs, passer au rapport inverse.

De quoi a-t-on
besoin ?

Matériel. – Des feuilles de papier, des crayons, des feuilles préparées
pour la réalisation des graphiques, éventuellement une calculatrice.

2.1 Un problème de troc

Comment s’y
prendre ?

Dans la cour de récréation, les enfants font du troc : cinq petites billes
s’échangent contre deux grosses. Représenter les échanges possibles dans
un tableau.

Après un temps de recherche libre, le professeur examine les résultats des
élèves. Il nous semble qu’une première étape dans l’apprentissage de la
proportionnalité consiste à repérer dans un tableau figuratif (sans nombres)
les premières propriétés de proportionnalité. C’est la raison pour laquelle
l’analyse d’un tableau comme celui présenté ci-dessous est importante,
même s’il semble un peu simpliste pour des élèves de 12 ans1.

1 On peut susciter la réalisation de ce type de tableau en distribuant aux élèves des
petits cartons sur lesquels seront dessinés des paquets de deux billes et des paquets de
cinq billes qu’ils n’ont plus qu’à placer dans les colonnes du tableau.
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Nombre de petites billes Nombre de grosses billes

❤ ❤ ❤❤ ❤
✍✌
✎


✍✌
✎


❤ ❤ ❤❤ ❤ ❤ ❤ ❤❤ ❤
✍✌
✎


✍✌
✎


✍✌
✎


✍✌
✎


❤ ❤ ❤❤ ❤ ❤ ❤ ❤❤ ❤ ❤ ❤ ❤❤ ❤
✍✌
✎


✍✌
✎


✍✌
✎


✍✌
✎


✍✌
✎


✍✌
✎


❤ ❤ ❤❤ ❤ ❤ ❤ ❤❤ ❤ ❤ ❤ ❤❤ ❤ ❤ ❤ ❤❤ ❤
✍✌
✎


✍✌
✎


✍✌
✎


✍✌
✎


✍✌
✎


✍✌
✎


✍✌
✎


✍✌
✎


Dans ce type de représentation, visuellement plus parlant, certaines pro-
priétés apparaissent de façon plus évidente que dans un tableau de nombres.
Chaque fois qu’on ajoute cinq billes dans la colonne de gauche, on ajoute
deux billes dans la colonne de droite. Si on double le nombre de billes dans
la colonne de gauche, on le double aussi dans la colonne de droite, etc.
Il est ensuite plus simple de retrouver ces propriétés dans les tableaux de
nombres réalisés dans un deuxième temps.

On arrive à l’élaboration d’un tableau de nombres dans lequel les élèves
reportent les observations faites précédemment.

Nombre de Nombre de
petites billes grosses billes

+5

✞
✝❄

+5

✞
✝❄

+5

✞
✝❄

+5

✞
✝❄

5

10

15

20

25

2

4

6

8

10

+2

�
✆❄
+2

�
✆❄
+2

�
✆❄
+2

�
✆❄

...
...

Nombre de Nombre de
petites billes grosses billes

×2

✞

✝
❄

5

10

15

20

25

2

4

6

8

10

×2

�

✆
❄

...
...

On poursuit l’activité en posant les questions suivantes.

Combien de petites billes faut-il donner pour en recevoir 24 grosses, 35
grosses, . . . ? Combien de grosses billes recevra-t-on si on dispose de 15
petites billes, de 24 petites billes, . . . ?

Après un temps de recherche libre, les élèves comparent leurs résultats et
leurs démarches. Il est important de les laisser expliquer ces démarches, en
espérant évidemment que celles-ci seront suffisamment variées pour per-
mettre de dégager plusieurs propriétés de la proportionnalité. Le choix
des nombres dans l’énoncé induit ici la découverte des propriétés liées aux
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facteurs2 internes à une colonne. Par contre, le facteur externe, qui per-
mettrait de passer directement de la première à la deuxième colonne du
tableau (×2

5), ne viendra pas spontanément à l’esprit des élèves de cet âge.
Voici quelques exemples de calculs que l’on peut voir surgir dans une classe
en réponse à la question ✭✭ combien de petites billes faut-il donner pour en
recevoir 24 grosses ? ✮✮

• Continuer de 2 en 2, dans la deuxième colonne, de 10 jusqu’à 24, et
donc de 5 en 5 dans la première colonne, de 25 jusqu’à 60.

• Accélérer en allant de 4 en 4 dans la deuxième colonne et donc de 10
en 10 dans la première.

• Remarquer que pour 10 grosses billes, il en faut 25 petites, en conclure
que pour 20 grosses, il en faudra 50 petites et enfin aller jusqu’à 24
en ajoutant 4 d’un côté et donc 10 de l’autre.

• Remarquer que pour 12 grosses billes, il en faut 30 petites, en conclure
que pour 24 grosses, il en faudrait deux fois plus, c’est-à-dire 60 pe-
tites.

• Remarquer que pour 14 grosses billes, il en faut 35 petites, que pour
10 grosses il en faut 25 petites, en conclure que pour 24 grosses il en
faudra 35 + 25 = 60 petites.

L’examen de chacune des méthodes de calcul permet de découvrir les diffé-
rentes propriétés liées aux rapports internes du tableau de proportionnalité.

Dans deux des exercices proposés, le nombre de billes dont on dispose ou
dont on souhaite disposer ne correspond pas exactement à un échange pos-
sible : combien de grosses billes peut-on obtenir si on dispose de 24 petites
billes ? Combien de petites billes faut-il pour en obtenir 35 grosses ? C’est
le moment, si ce n’est déjà fait, d’analyser les propriétés arithmétiques
des nombres contenus dans les deux colonnes du tableau : on trouve les
multiples de 5 dans la première et les multiples de 2 dans la deuxième.
Répondre aux deux questions précédentes revient donc à situer un nombre
entre deux multiples consécutifs, par exemple ici, 24 est compris entre 20
et 25 dans la liste des multiples de 5.

La découverte des multiples de 5 dans une colonne et des multiples de 2
dans l’autre permet d’établir le tableau suivant :

Nombre de Nombre de
petites billes grosses billes

5 2
2× 5 10 4 2× 2
3× 5 15 6 3× 2
4× 5 20 8 4× 2
5× 5 25 10 5× 2
. . . . . . . . . . . .

2 Nous préférons parler ici de ✭✭ facteur ✮✮ interne ou externe et non de ✭✭ rapport ✮✮,
car il s’agit ici de trouver le nombre par lequel on multiplie un résultat pour en obtenir
un autre (que ce soit au sein d’une même colonne ou d’une colonne à l’autre).
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C’est une étape importante qui fournit une méthode générale pour complé-
ter n’importe quelle ligne du tableau en posant simplement une division et
une multiplication. Les élèves vérifieront son efficacité sur des exercices où
la grandeur des nombres ne permet plus de travailler de proche en proche.

On peut ensuite passer à la réalisation du graphique associé à ce tableau
de nombres. On donne aux élèves une feuille de papier munie d’un système
d’axes prégradués, on leur demande de placer les points correspondant
aux nombres repris dans le tableau. Une simple observation du graphique
permet de voir que les points s’alignent avec l’origine des axes et que
chaque fois que l’on augmente de 5 sur l’axe horizontal, on augmente de 2
sur l’axe vertical, ce qui traduit bien les conclusions tirées des tableaux de
la page précédente. L’activité se termine par la recherche sur le graphique
de quelques valeurs non encore calculées.

0 5 10 15 20 25

2

4

6

8

10

Petites billes

Grosses billes

+5 +5 +5 +5 +5

+2

+2

+2

+2

+2

Fig. 15

2.2 Une épargne intéressante

Cette activité permet de fixer les acquis de la précédente, tout en faisant
découvrir de nouvelles propriétés. Elle peut parâıtre plus simple à certains
et il est tout à fait possible d’intervertir ces deux activités à condition de
bien garder à l’esprit les objectifs précis de chacune d’elles.

Comment s’y
prendre ?

À l’école, on organise une épargne pour financer le départ en classes de
neige. Chaque fois qu’un élève a apporté 400 francs, la caisse de l’ami-
cale de l’école en ajoute 80. Établir un tableau qui montre l’évolution
de l’épargne de l’élève, la participation correspondante de l’amicale et
l’épargne totale de l’élève.
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Après un temps de recherche libre, le professeur regroupe les résultats des
élèves dans un tableau comme ci-dessous.

Épargne de Bonus de Épargne
l’élève en BEF l’amicale en BEF totale en BEF

400 80 480
800 160 960

1 200 240 1 440
1 600 320 1 920
2 000 400 2 400
. . . . . . . . .

Les objectifs de cette activité sont doubles : susciter l’apparition du facteur
externe et montrer que les méthodes de calcul mises en évidence dans la
première situation sont encore efficaces.

Le facteur externe, c’est-à-dire le coefficient de proportionnalité, lié à cette
activité est donc volontairement plus simple que dans la situation précé-
dente : il suffit de diviser les nombres de la première colonne par 5 pour
obtenir ceux de la deuxième. Il sera intéressant de voir comment les élèves
réagiront à cette situation après avoir résolu la première. Vont-ils repro-
duire les mêmes automatismes et calculer avec les facteurs internes ou
vont-ils directement recourir au facteur externe ? Il faut espérer que les
deux méthodes apparaissent dans la classe et permettent de découvrir une
nouvelle propriété qui vienne s’ajouter à celles déjà dégagées. Si les élèves
n’évoquent pas spontanément le facteur externe, il appartiendra au pro-
fesseur de le faire émerger.

De même, au niveau du graphique, il convient de faire remarquer que les
points sont toujours alignés avec l’origine et que chaque fois que l’on avance
de 400 horizontalement, on monte de 80 verticalement.
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Fig. 16
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Les similitudes évidentes entre les deux situations imposent un bref retour
à la première. N’existe-t-il pas aussi dans le premier cas une opération
qui permette de passer directement d’une colonne à l’autre ? Les élèves
feront sans doute une première proposition sous la forme d’une composée
d’opérateurs, comme par exemple : on divise par 5 et puis on multiplie
par 2. Il appartiendra au professeur de juger du moment où il convient de
rapprocher les deux situations en passant aux facteurs multiplicatifs ×1

5
et ×2

5 . Cette étape représente un véritable seuil épistémologique pour les
élèves de cet âge. Peut-être faudra-t-il attendre la synthèse finale pour le
franchir.

2.3 Une situation non proportionnelle

Cette question amène une situation de non-proportionnalité qui permet de
contraster les propriétés du tableau de nombres et du graphique avec celles
des deux situations précédentes.

Comment s’y
prendre ? Sur une feuille quadrillée, tracer des carrés de 1, 2, 3, 4, 5, . . .unités3

de côté. Calculer le nombre total de petits carrés de chaque figure.
Compléter le tableau ci-dessous. Faire la représentation graphique. Que
remarque-t-on ?

Les élèves travaillent d’abord sur du papier quadrillé pour dessiner les car-
rés successifs et déterminer le nombre de petits carrés des figures, ensuite
ils établissent le tableau de nombres suivant.

Nombre d’unités Nombre de petits carrés
du côté de la figure

2 4
3 9
4 16
5 25
6 36
7 49
. . . . . .

L’analyse du tableau fait ressortir l’absence d’un facteur commun qui per-
mettrait de passer d’une colonne à l’autre et la difficulté de prévoir un
résultat en se référant à d’autres lignes du tableau, puisque les méthodes
de calcul mises en évidence lors des situations précédentes se révèlent ici
inefficaces. Par exemple,

si le côté vaut 2 unités, le carré compte 4 petits carrés,
si le côté vaut 3 unités, le carré compte 9 petits carrés,
si le côté vaut 5 unités, le carré compte 25 petits carrés.

Or, si 2 + 3 = 5, il est clair que 4 + 9 �= 25.
3 L’unité de longueur du côté est celle induite par le quadrillage du papier.
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De même, si on multiple par 2 un nombre de la première colonne, on ne
multiplie pas par 2, mais par 4, le résultat correspondant de la deuxième
colonne.

Nombre d’unités Nombre de petits
du côté carrés de la figure

×2

✞

✝
❄

1

2

3

4

5

1

4

9

16

25

×4

�

✆
❄

...
...

Il est aussi intéressant d’étudier les écarts entre deux lignes successives du
tableau et de voir que, contrairement aux situations précédentes, si l’écart
est toujours constant dans la colonne de gauche, il ne l’est pas dans la
colonne de droite. On peut se demander si cela va influencer l’allure du
graphique. Certains émettront l’idée que les points ne sont sans doute plus
alignés.

Nombre d’unités Nombre de petits
du côté carrés de la figure

+1

✞
✝❄

+1

✞
✝❄

+1

✞
✝❄

+1

✞
✝❄

1

2

3

4

5

1

4

9

16

25

+3

�
✆❄
+5

�
✆❄
+7

�
✆❄
+9

�
✆❄

...
...

Les élèves élaborent ensuite, sur une feuille quadrillée, le graphique qui
correspond à la situation.
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Fig. 17

Dans ce cas-ci, on peut les laisser se débrouiller seuls pour placer et graduer
le système d’axes. Une fois les points dessinés sur le graphique, ils vérifient
leur conjecture, à savoir que les points ne s’alignent pas. Ce n’est pas
pour autant que les élèves pourront tracer seuls la courbe qui relient les
différents points du graphique. En effet, si on les laisse faire, la plupart
d’entre eux relient, deux par deux, les différents points du graphique par
un segment de droite. Dans ce cas, on peut choisir une valeur intermédiaire
calculée entre deux points présents sur le graphique et montrer que le point
correspondant ne se trouve pas sur le segment qu’ils ont tracé et donc que
leur graphique n’est pas correct.

2.4 Le plan de la classe

Cette situation introduit deux sous-unités d’une même grandeur et de ce
fait, entrâıne à l’utilisation de nombres décimaux. Elle permet également
d’apprendre à écrire une formule à partir d’un tableau de proportionnalité.

Comment s’y
prendre ?

On veut faire le plan de la classe. Pour cela, on décide de représenter
une longueur de 1 m dans la classe par 4 cm sur la feuille. Voici des
mesures relevées dans la classe : 8 m ; 6,4 m ; 1,2 m ; 3 m. Quelles sont
les mesures correspondantes sur le plan ? Si on trouvait sur le plan les
dimensions 5 cm ; 6,8 cm ; 25 cm ; 40 cm, à quoi correspondraient-elles
dans la réalité ?
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On laisse les élèves chercher librement. Dans un premier temps, ils né-
gligent les unités de mesure et construisent spontanément leur tableau en
multipliant par 4 les nombres de la colonne de gauche pour obtenir ceux
de la colonne de droite, comme ci-dessous.

Longueurs en m Longueurs en cm
dans la classe sur le plan

1 4
8 32

6,4 25,6
1,2 4,8
3 12

1,25 5
1,7 6,8
6,25 25
10 40

Il est indispensable d’attirer l’attention des élèves sur le problème que pose
le rapport externe. En effet, si on considère le tableau de nombres sans se
préoccuper des mesures (reprises seulement dans les titres de colonnes),
on peut dire que le facteur externe est 4. Par contre, si on tient compte
des unités de mesure, les nombres de la première colonne représentent des
mètres et ceux de la deuxième colonne des centimètres. Dans ce cas, 4 ne
peut être considéré comme le facteur externe du tableau, car en multipliant
1 mètre par 4, on n’obtient pas 4 centimètres. Il faut donc travailler avec
des longueurs exprimées dans la même unité dans les deux colonnes et
élaborer un autre tableau qui tienne compte de l’échelle : à 1 m dans la
classe correspond 4 cm, c’est-à-dire 0,04 m. L’échelle du plan est donc de
1
25 .

× 1
25✎ 
✲

Longueurs en m Longueurs en m
dans la classe sur le plan

1 0,04
8 0,32

6,4 0,256
1,2 0,048
3 0,12

1,25 0,05
1,7 0,068
6,25 0,25
10 0,4

On demande ensuite aux élèves d’écrire les opérations qui permettent de
passer d’un nombre de la première colonne au nombre correspondant de la
deuxième. Par exemple

6, 4 : 25 = 0, 256 ou 6, 4× 1
25

= 0, 256.
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On les encourage ensuite à généraliser ces calculs pour obtenir les formules
suivantes ; si x représente la longueur en mètres dans la réalité, y la lon-
gueur en mètres sur le plan, il vient

y = x : 25 ou y =
1
25
× x.

L’échelle d’une carte est donc le rapport externe d’un tableau de propor-
tionnalité. Ainsi, ce tableau permet-il de répondre aussi bien à une question
relative à une mesure réelle, à une mesure sur le plan ou à l’échelle de ce
plan.

2.5 Remplir un réservoir d’essence

Les objectifs de cette activité sont doubles. Premièrement, elle introduit
des grandeurs de types différents (masse et capacité) et donc une grandeur
composée comme facteur externe (kg/l). Deuxièmement, elle débouche sur
l’étude de deux fonctions, l’une linéaire, l’autre affine. Cette dernière per-
met de mettre en évidence le fait qu’un tableau de nombres non propor-
tionnels peut donner un graphique dont les points sont alignés entre eux,
mais pas avec l’origine des axes.

Comment s’y
prendre ?

Un réservoir d’essence a une masse à vide de 8 kg. On le remplit d’es-
sence. La masse volumique de l’essence est de 0,75 kg/l. Calcule la masse
du réservoir au fur et à mesure du remplissage.

Il est probable que certains élèves aient besoin d’éclaircissements sur la
notion de masse volumique. Le professeur veillera donc à donner les expli-
cations indispensables à la bonne compréhension de l’énoncé.

Il invitera ensuite les élèves à calculer la masse d’essence correspondant à
4, 8, 12, 14, 36, 50 litres et la masse totale du réservoir à chaque étape.
Après un temps de recherche libre, on regroupe les résultats des élèves dans
le tableau suivant.

Nombre de Masse du Masse
litres contenu totale
V en l M en kg T en kg

4 3 11
8 6 14
12 9 17
14 10,5 18,5
36 27 35
50 37,5 45,5

L’analyse du tableau se fait en deux temps. On se concentre d’abord sur
les deux premières colonnes, ce qui permet de mettre en évidence la pro-
portionnalité des grandeurs V et M . Les différents volumes n’ont pas été
choisis au hasard, ils permettent d’insister une nouvelle fois sur quelques
propriétés d’un tableau de proportionnalité.
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Nombre de Masse du
litres contenu
V en l M en kg

4 3
8 6
12 9
14 10,5
36 27
50 37,5

Le professeur demande alors aux élèves d’élaborer la formule qui lie les
deux grandeurs, à savoir M = 0, 75 × V , et de réaliser le graphique cor-
respondant à cette fonction (le choix de l’échelle est laissé à l’initiative des
élèves). Ils constatent une fois de plus que le graphique de la figure 18 est
une droite passant par l’origine des axes.
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Fig. 18

On examine dans un deuxième temps la relation qui lie le volume d’essence
et la masse totale du réservoir. L’analyse du tableau de nombres permet de
constater rapidement que ces deux grandeurs ne sont pas proportionnelles.

Nombre de Masse
litres totale
V en l T en kg

4 11
8 14
12 17
14 18,5
36 35
50 45,5
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Peut-on néanmoins trouver une formule qui permette de calculer la masse
totale du réservoir en fonction du nombre de litres d’essence ? Si les élèves
ne proposent pas spontanément la formule, le professeur les aidera en met-
tant en évidence les opérateurs qui permettent de passer d’une colonne à
l’autre du tableau.

Nombre de Masse du Masse
litres contenu totale
V en l M en kg T en kg

4 3 11
8 6 14
V 0, 75× V 0, 75× V + 8

Les élèves réalisent ensuite le graphique correspondant à cette situation.
Ils constatent que, même si la masse totale n’est pas proportionnelle au
volume d’essence, les points du graphique de la figure 19 sont alignés.
Néanmoins, la droite qui joint ces points ne passe pas par l’origine des
axes.
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Fig. 19

Ces deux caractéristiques de la fonction affine méritent d’être analysées un
peu plus profondément. Pourquoi les points du graphique s’alignent-ils ?
Pour répondre à cette question, on demande aux élèves de compléter le
tableau suivant en calculant systématiquement litre après litre les masses
totales du réservoir, puis de relever, dans chaque colonne, les écarts entre
deux lignes successives du tableau.
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Nombre de Masse
litres totale
V en l T en kg

1 8,75
2 9,5
3 10,25
4 11
5 11,75
6 12,5

Chaque fois que l’on augmente de 1 dans la colonne de gauche, on aug-
mente de 0,75 dans la colonne de droite. C’est normal puisque chaque litre
d’essence ajouté dans le réservoir a une masse de 0,75 kg. Comment cela
se traduit-il graphiquement ? Si on reprend le graphique 19 en graduant
les axes en unités, la densité des points obtenus ne permet pas d’analyser
clairement la situation. Pour mieux voir, on effectue un zoom sur la partie
du grahique concernée par les nombres repris dans le tableau ci-dessus.
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On se place alors en un point du graphique, on avance de 1 cm horizontale-
ment, puis de 0,75 cm verticalement, et on arrive bien au point suivant du
graphique. En répétant cette opération de proche en proche, on construit
ce que les élèves appellent un ✭✭ escalier ✮✮. L’image d’une planche posée sur
cet escalier suffit à les convaincre de l’alignement des points du graphique.
Il reste à régler le problème de l’ordonnée à l’origine. Pour ce faire, on pose
deux questions : quelle est l’ordonnée du point d’intersection du graphique
avec l’axe des y ? Quel rapport a l’ordonnée de ce point avec l’énoncé du
problème ?

On peut d’ailleurs envisager la question de manière plus générale en com-
parant toutes les ordonnées des points du graphique de la figure 19 aux
ordonnées des points d’abscisses correspondantes sur le graphique de la
figure 18. On en conclut rapidement que la différence des ordonnées est
constante et vaut 8. Si on superpose les deux graphiques, on s’aperçoit que
le graphique de la figure 19 est l’image de celui de la figure 18 par une
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translation verticale de huit unités.

litre

kilo

0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 10AAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAA 15AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 20AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 25AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 35AAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAA 40AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 45AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 50AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 55AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

10AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

15AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

20AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

25AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

35AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

40AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Fig. 22

Toute fonction dont le graphique est constitué de points alignés est dite
affine ; si de plus les points sont alignés avec l’origine, elle est dite linéaire.

Prolongements
possibles

On peut introduire quelques transformations de formules en posant, par
exemple, les questions suivantes.

• Quel est le volume d’essence qui correspond à une masse d’essence
de 40,5 kg ?

• Quel est le volume d’essence qui correspond à une masse totale du
réservoir de 38 kg ?

2.6 Proportionnel ou non proportionnel ?

Cette dernière activité a pour objectif de faire le point sur les différentes
images mentales que les élèves se sont forgées tout au long des activités
précédentes. Nous leur présentons donc volontairement divers types de
représentation : textes, tableaux, graphiques, photos, dessins. Nous avons
également pris soin de varier les contextes.

Comment s’y
prendre ?

Observe attentivement les différents textes, tableaux et graphiques qui
suivent. Classe chacune des situations ainsi décrites dans le tableau
vierge de la page 128. Indique dans la colonne de gauche les situations
proportionnelles, et dans la colonne de droite celles qui ne le sont pas.
Justifie soigneusement ton choix dans chacun des cas.
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Situation 1
Distance de freinage d’un véhicule

V

d

(km/h)

(m)

0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 20AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 40AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 60AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 80AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 100AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

20AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

40AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

60AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

80AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

100AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Situation 2

Prix en EUR Prix en BEF
10 403.399
50 2016.995
100 4033.99
200 8067.98
500 20169.95
1000 40339.9

Situation 3
Agrandissements photos

10 × 15 cm 0,20 EUR
13 × 18 cm 0,71 EUR
20 × 23 cm 2,45 EUR
30 × 45 cm 4,93 EUR
40 × 60 cm 6,17 EUR

Situation 4
Longueur du Pointure de
pied en cm la chaussure

18 27
22 33
26 39
28 42

Situation 5
Jean court le 100 m en 13 secondes et
le 200 m en 29 secondes.

Situation 6
Pour la rentrée scolaire, un supermar-
ché annonce des prix sacrifiés sur les
fournitures scolaires :
1 bloc de feuilles pour 1,50 EUR
5 blocs de feuilles pour 6 EUR
10 blocs de feuilles pour 12 EUR

Situation 7
Pierre et Marc sont deux frères ; on a
indiqué dans le tableau ci-dessous leurs
âges respectifs à différentes dates

âge de Pierre 1 3 8 15
âge de Marc 4 6 11 18

Situation 8
Course en taxi

km

EUR

0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 10AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 20AAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAA 30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Situation 9
On roule à bicyclette. Notons N le
nombre de tours de roue et d la dis-
tance parcourue en mètres,

N 5 10 23 30
d 11 22 50,6 66

Situation 10
Triangles rectangles

20

40
10

20 50

30
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Situations proportionnelles Situations non proportionnelles

À ce stade, les élèves reconnaissent pratiquement une situation de propor-
tionalité lorsque

• dans un tableau présenté en colonnes, les nombres de la deuxième
colonne s’obtiennent en multipliant ceux de la première par un même
nombre,

• sur un graphique, les points sont tous alignés avec l’origine des axes.

Si la situation de départ ne présente ni tableau de nombres, ni graphique
de fonctions, les élèves élaborent spontanément leur propre tableau de
nombres, ils recourent très rarement au graphique.
Au terme de cette activité, une petite synthèse reprendra donc ces deux
propriétés essentielles qui devraient faire partie du bagage minimum d’un
élève à l’issue du premier degré du secondaire.

3 Patterns de cubes et proportionnalité

Nous avons emprunté le terme ✭✭ pattern ✮✮ à la langue anglaise, faute de
lui avoir trouvé un équivalent français qui exprime la même chose de façon
aussi brève. On appelle ✭✭ pattern ✮✮, toute régularité, tout rythme que l’on
découvre dans des formes diverses, qu’elles soient numériques ou géomé-
triques et qui invitent l’esprit à conjecturer des propriétés mathématiques,
des lois.

Les propriétés que l’on découvre dans cette section se rapportent à des
tableaux de nombres et à des graphiques. Les lois d’engendrement des
différents patterns sont écrites sous la forme d’expressions algébriques.

De quoi s’agit-il ? Les élèves sont mis en présence de patterns faits d’assemblages de cubes qui
s’enchâınent selon une loi de progression qui n’est pas énoncée. Ils doivent
imaginer les solides qui suivent ✭✭ logiquement ✮✮ ceux qui sont donnés et
déterminer le nombre de cubes d’un tel solide en fonction de sa position
dans la suite.

Ils examinent ensuite les propriétés des tableaux de nombres et des gra-
phiques qui correspondent à chacune des suites.

Enjeux L’enjeu de cette activité est la capacité de circuler, selon les besoins, entre
les représentations imagées des objets, les graphiques et les formules.

La construction de formules est au centre de l’activité : c’est ainsi que les
élèves expriment la loi d’engendrement d’un pattern.
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Les graphiques qui représentent les lois d’engendrement des différents pat-
terns sont des ensembles de points alignés. Un des enjeux de cette activité
réside dans la façon dont on explique l’alignement des points du graphique,
au départ de propriétés du rectangle, sans faire appel au théorème de Tha-
lès, ni aux similitudes.

Sur les diverses opérations qui sont nécessaires pour construire un gra-
phique, voir chapitre 16, section 5.3.

Compétences. – Représenter des données par un graphique, un dia-
gramme.

Interpréter un graphique, un tableau, un diagramme.

Relever des régularités dans des suites de nombres.

Identifier et effectuer des opérations dans des situations variées.

Utiliser les conventions d’écriture mathématique.

Calculer les valeurs numériques d’expressions littérales.

De quoi a-t-on
besoin ?

Des fiches de travail 31, 32 et 33, proposées en annexe (voir pages 186 à
188).

Pour la troisième activité, il est utile de disposer en classe, d’au moins
vingt cubes de même dimension.

Prérequis. – Les élèves doivent savoir construire un tableau de nombres
qui met en relation deux grandeurs et être capables de réaliser un graphique
qui correspond au tableau.

3.1 Des cubes et une table

Comment s’y
prendre ?

Chacun des solides de la figure 23 est formé de cubes identiques. Com-
bien faudrait-il de cubes pour construire le quatrième solide, le dixième,
le centième ?
Réaliser un tableau qui mette en relation le nombre de cubes avec le
numéro d’ordre du solide dans la suite, puis le graphique qui montre le
nombre de cubes en fonction du numéro d’ordre du solide.

Fig. 23

Cette première situation est simple. Lors de la résolution, le professeur
met en place une méthode de travail et un langage utiles pour traiter les
questions suivantes.
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Huit cubes sont nécessaires pour construire le quatrième solide, vingt pour
le dixième, deux cents pour le centième. Les élèves associent rapidement
à cette suite de solides, une table de multiplication par 2. La formule qui
traduit le calcul est donc

c = 2n,

dans laquelle n est le numéro d’ordre et c le nombre de cubes.

Les propriétés d’une table de multiplication sont familières, ce sont celles-
là mêmes qui ont servi à mémoriser les tables et qui sont utiles en calcul
mental. Il se fait que ce sont aussi des propriétés d’un tableau de propor-
tionnalité. Ainsi par exemple, si on sait que 3 × 75 = 225, alors on sait
que 6 × 75, c’est 450, le double de 225 ; on peut aussi calculer 9 × 75 en
calculant 225+450. Ces propriétés seront mises en évidence dans l’activité
suivante, lorsqu’il s’agira de comparer ce tableau à un autre.

Pour faire un graphique, les élèves doivent réaliser que les abscisses sont
des numéros d’ordre et les ordonnées des nombres de cubes, que chaque
point du graphe condense les deux informations.

La figure 24 montre les premiers points du graphe. On constate qu’ils
s’alignent. On peut expliquer cet alignement en examinant les points trois
par trois et en se référant aux propriétés géométriques du graphique. C’est
ce que montre la figure 25.

Dans le rectangle ECFA, les segments [HG] et [KJ ] sont des médianes. Le
point d’intersection de ces médianes est aussi l’intersection des diagonales
du rectangle. Le point B appartient donc au segment [AC]. Ceci explique
pourquoi les points A, B et C sont alignés.

On explique de la même façon pourquoi les points B, C et D sont alignés.
De même pour tout autre ensemble de trois points consécutifs du graphe.

On attire ensuite l’attention des élèves sur le fait que la droite qui passe
par tous ces points, passe aussi par l’origine du repère (voir figure 26).
Pour expliquer ceci, on considère le rectangle EBFO dans lequel le point
A, intersection des médianes, est aussi l’intersection des diagonales.
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3.2 Une table décalée

Comment s’y
prendre ?

Chacun des solides de la figure 27 est formé de cubes identiques. Com-
bien faudrait-il de cubes pour construire le quatrième solide, le dixième,
le centième ? Réaliser un tableau qui mette en relation le nombre de
cubes avec le numéro d’ordre du solide dans la suite, puis le graphique
qui montre le nombre de cubes en fonction du numéro d’ordre du solide.
Comparer le tableau et le graphique à ceux qui ont été réalisés à propos
de la première question.

Fig. 27

Les élèves réalisent que pour passer d’un solide au suivant, il faut ajouter
trois cubes. Cela permet de calculer de proche en proche le nombre d’élé-
ments de chacun des solides suivants. Par contre, pour prévoir le nombre
de cubes du centième solide, il faut aborder les choses autrement. Cette
recherche est plus aisée au départ du tableau.

Numéro d’ordre Nombre de Accroissements
dans la suite cubes

1 1
2 4 3
3 7 3
4 10 3
5 13 3

n

Pour établir une loi de calcul qui permettrait de prévoir le nombre de cubes
de n’importe quel solide dont on connâıtrait le numéro d’ordre, plusieurs
démarches sont possibles. Nous en proposons deux.

1. Chercher quels sont les calculs (toujours les mêmes) qui permettent
de passer de la première à la deuxième colonne de calcul. On y arrive
en triplant le numéro d’ordre, puis en retranchant 2. Ce que l’on
traduit dans le langage de l’algèbre en écrivant la formule

c = 3n− 2,

où c est le nombre de cubes et n le numéro d’ordre.
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2. Partir du premier terme et ajouter l’accroissement un ✭✭ certain ✮✮

nombre de fois : une fois de moins que le numéro d’ordre. Ce qu’on
traduit par la formule

c = 1 + 3(n− 1).

C’est l’occasion d’attirer l’attention des élèves sur le sens de l’égalité pour
des expressions algébriques. Les expressions établies sont égales pour deux
raisons.

1. Elles prennent les mêmes valeurs pour chaque nombre n.

2. On peut passer d’une expression à l’autre en appliquant une propriété
de calcul. Ici, on passe de la seconde à la première par la distributivité
de la multiplication sur l’addition.

Le tableau et la formule expriment, dans des langages différents, le mode
d’engendrement du pattern. Comme dans la table de multiplication par 3,
à chaque étape, il y a trois unités de plus, mais cette table est ✭✭ décalée ✮✮

de deux unités.

Pour étudier les propriétés de ce tableau, on le compare au tableau de
l’activité précédente.

n 2n Accroissements
1 2
2 4 2
3 6 2
4 8 2
5 10 2

n 3n− 2 Accroissements
1 1
2 4 3
3 7 3
4 10 3
5 13 3

Dans la table de multiplication, on dégage les propriétés suivantes.

1. Chaque fois qu’une multiplication (ou une division) envoie un nombre
d’une colonne sur un autre de la même colonne, la même multiplica-
tion (ou division) envoie l’une sur l’autre les valeurs correspondantes
de l’autre colonne.

2. Une même multiplication (ici par 2) envoie un nombre quelconque de
la première colonne sur son correspondant dans la deuxième colonne.

3. À la somme de deux valeurs de la première colonne, correspond la
somme des valeurs correspondantes de l’autre colonne.

4. Lorsqu’un nombre de la première colonne augmente de 1, l’accroisse-
ment correspondant dans la deuxième colonne est toujours le même.

Les trois premières propriétés ne peuvent pas s’appliquer au deuxième
tableau, seule la quatrième propriété est commune.

Il reste à construire le graphique (voir figure 28 à la page suivante) et à le
comparer à un graphique qui représente une proportionnalité, par exemple
celui de la figure 24 à la page 130.



3. Patterns de cubes et proportionnalité 133
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La figure 28 montre que les points sont alignés, mais que la droite qui passe
par ces points ne passe pas par l’origine du repère.

La figure 29 montre pourquoi les points A,B et C sont alignés.

La figure 30 montre pourquoi les points O,A et B ne sont pas alignés : le
point A appartient à une médiane du rectangle EBHO mais pas à l’autre,
il n’appartient donc pas à la diagonale du rectangle.

3.3 Un escalier de cubes

Comment s’y
prendre ?

Chacun des solides de la figure 31 est formé de cubes identiques. Com-
bien faudrait-il de cubes pour construire le quatrième solide, le dixième,
le centième ? Réaliser un tableau qui mette en relation le nombre de
cubes avec le numéro du solide dans la suite, puis le graphique qui
montre le nombre de cubes en fonction du numéro d’ordre du solide.
Comparer le tableau et le graphique à ceux qui ont été réalisés à propos
des questions précédentes.

Fig. 31

Une première impression : d’étape en étape, pour passer d’un solide au
suivant, on ajoute de plus en plus de cubes. On sait déjà qu’on ne pourra
pas tabler sur des accroissements constants pour établir une formule.
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Pour y voir clair, la construction d’un tableau s’impose.

Numéro d’ordre Nombre de Accroissements
dans la suite cubes

1 1
2 3 2
3 6 3
4 10 4
5 15 5

n

Si l’on veut élaborer une formule au départ des accroissements, il faut
partir du nombre 1 et ajouter successivement 2, 3, 4, . . . Le dernier terme
de cette somme correspond chaque fois au numéro d’ordre du solide. On a
donc la formule

c = 1 + 2 + 3 + 4 + . . . + n.

Il existe une formule classique pour calculer rapidement une telle somme.
Elle peut être découverte par des élèves de 12-13 ans pour peu qu’on leur
suggère l’une ou l’autre méthode. Celle qui suit est très visuelle, et peut
être proposée aux élèves à partir d’une question.

Compléter chaque solide de la figure 31 pour former un parallélépipède
qui a un volume double. Trouver une relation entre le numéro d’ordre
du solide et le nombre de cubes du parallélépipède.

Les élèves réalisent d’abord l’un des parallélépipède demandé avec les cubes
dont ils diposent, ils complètent ensuite le dessin correspondant. La figure
32 montre trois parallélépipèdes construits de cette façon.

Fig. 32

Chaque solide repose sur une base qui comporte n cubes et a une hauteur
de (n + 1) cubes. Ce qui conduit à la formule

2c = n(n + 1).

On a donc

c =
n(n + 1)

2
(n est le numéro d’ordre et c le nombre de cubes).
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Il s’agit à présent de construire le graphique, puis de le comparer aux
graphiques précédents.
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Si l’on place une règle sur graphique de la figure 33, on constate qu’on ne
trouve jamais trois points sur une même droite.

La figure 34 montre pourquoi les points A,B et C ne sont pas alignés.

La figure 35 montre pourquoi les points O,A et B ne sont pas alignés.

Synthèse

Ces trois questions font progresser les élèves dans la mâıtrise du tryptique
tableau-graphique-formule. Lors de la synthèse, avec l’aide du professeur,
ils dégagent les méthodes qui ont été élaborées sur le tas et formulent les
propriétés établies de façon à ce qu’elles soient disponibles pour d’autres
situations.

Tableau de proportionnalité

Pour préparer cette partie de la synthèse, les élèves rassemblent les diffé-
rents tableaux réalisés sur une même feuille. Trois propriétés caractérisent
un tableau de proportionalité, il s’agit de les dégager.

Le professeur peut s’inspirer des énoncés ci-dessous4 pour examiner les
différents tableaux réalisés en classe : il demande aux élèves de représenter
par une flèche, dans chaque tableau qui s’y prête, l’un ou l’autre opérateur
qui correspond à la propriété.

S’il n’est pas utile de faire mémoriser ces énoncés, il importe par contre
que les élèves en saisissent la portée.

1. Chaque fois qu’une multiplication (ou une division) envoie un nombre
d’une colonne sur un autre de la même colonne, la même multiplication
(ou division) envoie l’une sur l’autre les valeurs correspondantes de l’autre
colonne.

4 Ce sont les formulations utilisées dans F. Van Dieren-Thomas et al. [1993]
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2. À la somme de deux valeurs de la première colonne, correspond la
somme des valeurs correspondantes de l’autre colonne.

3. Une même multiplication (ou une division) envoie un nombre quel-
conque de la première colonne sur son correspondant dans la deuxième
colonne.

Dès qu’on reconnâıt une de ces propriétés, on sait qu’on trouvera les deux
autres dans le tableau.

Par ailleurs,

lorsque dans un tableau de proportionnalité, on passe d’un terme au sui-
vant dans la première colonne en ajoutant toujours le même nombre, par
exemple 1, les accroissements correspondants dans la deuxième colonne
sont constants.

Cette dernière propriété apparâıt dans d’autres tableaux, elle ne permet
donc pas à elle seule de reconnâıtre un tableau de proportionnalité.

Formules

La formule c = 3n exprime qu’on calcule c en fonction de n. Pour établir le
tableau correspondant, on place dans la colonne de gauche, les valeurs de
n que l’on choisit de calculer et on place le résultat de chaque calcul dans
la colonne de droite. On exprime cela en disant que, dans cette formule, n
est la variable et que c est fonction de cette variable.

La suite engendrée par cette formule est une table de multiplication par
3. Cette table commence par 0 ou par 3, selon que les valeurs de n com-
mencent à 0 ou à 1.

Voici deux tableaux qui correspondent, l’un à la formule c = 3n (n est un
naturel) et l’autre à la formule y = 5x− 3 (x est un naturel).

n 3n
0 0
1 3
2 6
10 30

x 5x− 3
0 −3
1 2
2 7
3 12

Le premier tableau est un tableau de proportionnalité, le second n’en est
pas un.

Traitons à présent la situation inverse : écrire une formule à partir d’un
tableau de nombres. Nous nous limitons ici aux tableaux qui correspondent
à des fonctions affines et qui se présentent comme ceux qui ont été élaborés
en cours d’activité : ils présentent une liste de valeurs de la variable qui
commence par le nombre 1 et qui crôıt à chaque étape d’une unité.

Deux méthodes ont été dégagées. Rappelons-les au départ du tableau ci-
dessous. On calcule d’abord les accroissements et on vérifie qu’ils sont
constants.
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x y

1 5
2 7
3 9
4 11

x y Accroissements
1 5
2 7 2
3 9 2
4 11 2
5 13 2

Première méthode : partir de la première valeur de la fonction et ajouter
(x− 1) fois l’accroissement. On trouve la formule

y = 5 + 2(x− 1) (x est un naturel non nul).

Deuxième méthode : comparer la liste des valeurs de y à la table de mul-
tiplication par 2 (parce que 2 est l’accroissement).

x 2x y

1 2 5
2 4 7
3 6 9
4 8 11

On constate que y vaut chaque fois 3 unités de plus que 2x. D’où la formule :

y = 2x + 3 (x est un naturel non nul).

Un simple calcul algébrique montre l’équivalence de ces deux formules.

Graphiques
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Fig. 36

Pour construire le graphique, on place dans un repère
les points dont l’abscisse est une valeur de la variable
et dont l’ordonnée est la valeur correspondante de la
fonction. Voici le graphique qui correpond à la formule
y = 3x ( x est un naturel).
Tous les points d’un graphique qui correspond à un
tableau de proportionnalité appartiennent à une même
droite qui passe par l’origine du repère.

Prolongements
possibles

Le pattern qui est proposé dans la première question se prête à un prolonge-
ment intéressant lorsqu’on considère la suite des aires totales des différents
solides.
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Fig. 37

Un tableau, établi en observant l’aire totale de chacun des solides, met en
évidence les accroissements constants.

Numéro d’ordre Aire totale Accroissements
dans la suite en cm2

1 10
2 16 6
3 22 6
4 28 6

n

L’accroissement constant apparâıt aussi dans la figure 37 comme ceci :
lorsqu’on accole un nouveau module de deux cubes au solide précédent,
on perd 2 faces externes du solide et on ajoute 8 nouvelles faces externes.
l’aire est donc augmentée de 6 cm2. En appliquant la première méthode
indiquée dans la synthèse, on arrive à la formule

a = 10 + 6(n− 1) (n est un naturel non nul),

dans laquelle a représente l’aire et n le numéro d’ordre. La deuxième mé-
thode conduit plus directement à la formule

a = 6n + 4 (n est un naturel non nul).

Échos des classes Ces activités ont été expérimentées de nombreuses fois dans différentes
classes de première et de deuxième années du secondaire. Pour les élèves
de première, la construction de tableaux ne soulève aucune difficulté et
la plupart du temps, ils arrivent d’eux-mêmes à déterminer le nombre de
cubes d’un rang quelconque. Ce qui fait problème, c’est la transposition
de ces calculs dans le symbolisme algébrique. Ils n’y arrivent seuls que s’ils
ont déjà été confrontés à des situations dans lesquelles ils ont manipulé de
telles expressions. On ne s’attendra donc pas à ce qu’ils mâıtrisent tout à
fait cette compétence après cette seule activité.

La construction de graphiques de cette sorte fait franchir une étape : les
graphiques demandés ne montrent pas une relation entre deux grandeurs,
mais une relation entre un numéro d’ordre et une grandeur (un nombre de
cubes, c’est un volume). Les élèves ont de la peine à considérer le numéro
d’ordre comme une variable.

Les élèves de deuxième année résolvent les mêmes questions avec plus d’au-
tonomie.
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4 Points alignés et calcul avec les entiers

Préambule

Cette section parcourt toutes les règles de calcul avec des entiers dans un
même contexte : celui d’ensembles de points alignés, situés dans un repère
cartésien. À chaque étape, nous montrons en quoi les règles de calcul sont
nécessaires pour assurer que des points qui vérifient une formule du premier
degré, demeurent alignés lorsque leurs abscisses deviennent négatives. Ces
activités peuvent être proposées à des élèves de niveaux différents.

Une grande partie des activités s’adresse aux élèves de première année qui
découvrent le calcul avec des entiers. Le contexte est certes assez abstrait
(il est constitué de points dans un repère), mais les élèves sont mis devant
des configurations simples et les tâches sont agencées dans une progression
assez lente.

Dans ce cas le professeur doit orienter les élèves dans l’observation de
régularités numériques et géométriques ainsi que sur la mise en relation de
ces deux types de régularités. Vers 13 ans, les élèves sont capables de décrire
ce type de phénomème, ils peuvent en tirer des trucs qui leur permettent
de s’en tirer dans des situations analogues. Mais le plus souvent, ils ne
savent pas formuler les raisons qui lient leurs observations et leurs trucs.
Cette phase du travail est prise en charge par le professeur. Il s’agit alors,
pour les élèves d’une initiation à un mode de pensée et d’expression.

Chaque section doit être complétée par des exercices qui intègrent l’opéra-
tion nouvellement apprise dans d’autres contextes et qui illustrent les règles
au départ d’autres images mentales. La dernière section peut se situer bien
plus loin dans l’année scolaire, voire l’année suivante.

Toutes les sections de ce chapitre ne doivent pas être enseignées d’une
traite, le calcul avec des entiers est un seuil dans la formation, qui mérite
qu’on veille soigneusement à ce que chaque étape soit significative pour les
élèves et que ceux-ci dépassent la seule pratique du calcul pour s’approprier
les raisons de ces règles.

Pour faciliter la distinction entre nombre négatif et nombre soustrait, dis-
tinction essentielle pour saisir la construction des opérations avec les en-
tiers, nous avons adopté la notation qui consiste à placer le signe moins
au-dessus du nombre lorsqu’il est négatif. Il ne faut y voir qu’une faci-
lité d’écriture pour les plus jeunes. Cette distinction peut aussi bien être
signifiée par des parenthèses qui encadrent le nombre négatif.

Dans cette approche, le calcul avec des entiers est introduit dans un contexte
où il sert : celui de la géométrie analytique qui exhibe la cohérence glo-
bale de toutes les règles. C’est pourquoi, ces activités peuvent s’adresser,
moyennant quelque adaptations et des raccourcis, à des élèves de troisième
année. Ceux-ci découvriront, en même temps que les premières équations
de droites, des liens entre les raisons qui font que des points s’alignent sur
un graphique et les règles de signes qu’ils ont apprises précédemment.
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De quoi s’agit-il ? Les élèves caractérisent des ensembles de points alignés situés dans un
repère, en termes de relations entre abscisses et ordonnées. Ils écrivent ces
relations sous forme algébrique et ce faisant, ils construisent les lois de
calcul dans l’ensemble des entiers.

Enjeux Les lois de calcul dans l’ensemble des entiers et le lien entre ces lois et l’ali-
gnement pour des points qui vérifent y = ax+ b. L’extension des tableaux
de proportionnalité aux nombres négatifs. Voir aussi le chapitre 16 section
6.

Compétences

Les compétences socles visées par ces activités sont :

Interpréter un graphique, un tableau, un diagramme.

Classer, situer, ordonner, comparer des entiers.

Relever des régularités dans des suites de nombres.

Identifier et effectuer des opérations dans des situations variées.

Utiliser les conventions d’écriture mathématique.

Construire des expressions littérales dans lesquelles les lettres ont le statut
de variables.

Calculer les valeurs numériques d’une expression littérale.

Utiliser, dans leur contexte, les termes usuels et les notations propres aux
nombres et aux opérations.

Les activités et les questions s’enchâınent de façon à développer des com-
pétences transversales, notamment celles qui suivent.

Reconnâıtre des situations comme semblables ou dissemblables.

Se poser des questions pour étendre une propriété, une règle, une démarche.

Se servir dans un contexte neuf de connaissances acquises antérieurement
et les adapter à des situations différentes.

Procéder à des variations pour en analyser les effets sur le résultat et
dégager la permanence de liens logiques.

De quoi a-t-on
besoin ?

Les fiches de travail 34 à 41 proposées en annexe aux pages 189 à 196.

Prérequis

Situer un point de coordonnées positives dans un repère orthonormé.

Représenter graphiquement des fonctions de proportionnalité et des fonc-
tions du premier degré dans lesquelles variable et fonction ne prennent que
des valeurs positives.

Repérer un entier sur une droite munie d’un repère.

Repérer et écrire l’opposé d’un entier (un nombre et son opposé sont situés
à même distance de l’origine choisie sur la droite, de part et d’autre de cette
origine). Ordre dans l’ensemble des entiers.
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4.1 Ensembles de points, couples de nombres

Comment s’y
prendre ?

Fiche 34
Les questions ci-dessous se rapportent aux ensembles montrés par les
figures 38 et 39. Ces ensembles s’étendent implicitement au-delà de ce
que montrent les dessins.

1. Les points donnés par les couples

(8,9) ; (25,15) ; (13,36) ; (27,37) ;
(10,10) ; (100,13) ; (120,19) ; (119,73) ;
(45,20) ; (45,62) ; (17,105) ; (17,106) ;

sont-ils représentés dans la figure 38 par une croix, un point noir
ou un point blanc ?

2. Même question pour les mêmes couples, à propos cette fois de la
figure 39.

0 x

y

Fig. 38

0 x

y

Fig. 39

Les élèves écrivent une liste de couples pour chaque ensemble de points
de la figure 38. Ils constatent alors que ceux qui sont alignés ont la même
ordonnée, elle suffit donc pour caractériser chaque ensemble de points.

Ensuite, comme les coordonnées sont trop grandes et qu’ils ne peuvent
situer les points sur la figure elle-même, ils réalisent qu’il suffit de savoir
si l’ordonnée est un multiple de 3, un multiple de 3 plus 1 ou un multiple
de 3 moins 1 (ou plus 2).

Dans la deuxième figure, les rôles respectifs de l’abscisse et de l’ordonnée
sont échangés.
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Fiche 35
Les questions ci-dessous se rapportent aux ensembles montrés par les
figures 40 et 41. Chacun de ces ensembles s’étendent seulement dans
une seule direction, celle de la droite qui porte les points.

1. Les points donnés par les couples ci-dessous sont-ils ou non alignés
avec une suite de croix, de points noirs ou de points blancs de la
figure 40 ?

(7,8) ; (8,8) ; (8,7) ; (9,8) ; (9,10) ;
(25,24) ; (30,30) ; (30,29) ; (41,40) ; (40,40).

Comment caractériser les ensembles de points alignés ?

2. Même question à propos des couples ci-dessous, qui se rapportent
à la figure 41.

(7,14) ; (7,15) ; (7,13) ; (8,17) ; (8,15) ;
(20,50) ; (25,49) ; (30,61) ; (29,60) ; (29,59).

Comment caractériser les ensembles de points alignés ?

0 x

y

Fig. 40

0 x

y

Fig. 41

Une relation entre abscisse et ordonnée caractérise chaque fois des points
alignés. Après que les élèves aient énoncé cette relation dans le langage
courant, le professeur introduit la notation algébrique.

Les points alignés avec les croix de la question 1 ont leur abscisse égale à
leur ordonnée. À cet ensemble de points correspond la formule

y = x.

Ensuite, l’ordonnée de chaque point noir vaut chaque fois une unité de plus
que son abscisse ; on écrit la formule

y = x + 1.
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Enfin, l’ordonnée de chaque point blanc vaut chaque fois une unité de
moins que l’abscisse ; on écrit la formule

y = x− 1.

Dans ces trois formules, x et y sont des nombres naturels non nuls.

Trois autres formules caractérisent respectivement les ensembles de la fi-
gure 41, à savoir

y = 2x , y = 2x + 1 , y = 2x− 1,

les lettres x et y représentant des nombres naturels non nuls.

4.2 Points à coordonnées entières

Comment s’y
prendre ?

Fiche 36
Les points qui correspondent aux coordonnées ci-dessous sont-ils ou non
alignés avec une suite de croix, de points noirs ou de points blancs ?
Envisager successivement les figures 42, 43 et 44.

(3, 2) ; (2, 3) ; (3, 3) ; (3, 3) ;

(3, 3) ; (3, 2) ; (3, 4); (3, 2).

Comment caractériser les ensembles de points alignés ?

0 x

y

Fig. 42

0 x

y

Fig. 43

0 x

y

Fig. 44

Comme les coordonnées proposées sont des nombres petits, les élèves vé-
rifient l’alignement en plaçant les points sur le graphique. Ils s’entrâınent
ainsi à situer des points dans les quatre quadrants.

La caractérisation des points alignés dans les figures 42 et 43 se présente
de la même façon pour les points à coordonnées négatives que pour les
autres : elle n’engage à chaque fois qu’une seule coordonnée. Les élèves
écrivent les six équations

y = 1 ; y = 2 ; y = 3 ; x = 1 ; x = 3 ; x = 1.
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Dans ces six équations x et y sont des nombres entiers.

Lorsqu’ils situent des points qui se rapportent à la figure 44, ils réalisent
que les nouveaux points qui s’alignent avec les croix ont toujours la même
caractéristique : l’abscisse et l’ordonnée sont égales.

En caractérisant les points noirs et les points blancs qui appartiennent
à la figure 44, les élèves les situent par rapport aux croix. Ceci conduit
le professeur à leur montrer à partir de mouvements sur un axe orienté,
comment ajouter ou retrancher 1 à un entier.

0 x

y

2

3

4

-2

-3

-4

+1

-1

+1

-1

Fig. 45

À ces mouvements corres-
pondent les calculs

3 + 1 = 4,
3− 1 = 2,
3 + 1 = 2,
3− 1 = 4.

Nous retiendrons que

sur l’axe vertical, lorsqu’on ajoute 1, on monte et lorsqu’on retranche 1,
on descend.

On écrit ensuite les trois équations qui caractérisent ces ensembles de
points, à savoir

y = x ; y = x + 1 ; y = x− 1.

Lorsqu’on attire l’attention des élèves sur les nombres que les lettres re-
présentent, il faut envisager les points d’abscisse nulle. Ils noteront ensuite
que les lettres x et y représentent des entiers.

Le professeur propose alors une série d’exercices qui fixent, puis étendent
ces premiers acquis. Par exemple, repérer la température indiquée par un
thermomètre, imaginer qu’elle monte d’un degré, puis de deux, de trois
degrés ; repartir de la même valeur et imaginer qu’elle descende, écrire les
additions et les soustractions correspondantes. Partir ensuite d’une tem-
pérature négative. On pratique des exercices analogues de mouvements en
avant et en arrière, sur un axe horizontal.

Premier bilan de ce que les élèves savent faire : ajouter et retrancher un
nombre positif à un entier quelconque.

Cela introduit la suite : il faut apprendre à ajouter, puis à retrancher, un
entier quelconque à un entier quelconque.
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4.3 Alignement et addition d’entiers

Comment s’y
prendre ?

Fiche 37
Représenter sur le graphique quelques points dont les coordonnées vé-
rifient l’équation

y = 3 + x.

0 x

y

Fig. 46

Les élèves commencent par les additions qui leur sont familières ; ils com-
plètent donc le tableau en partant de valeurs positives de x.

Comme il s’agit ensuite de situer des points d’abscisse négative, le profes-
seur suggère de placer les couples dans un tableau ordonné par valeurs dé-
croissantes de x. C’est le tableau montré dans la marge. Les élèves placent
les points correspondants sur le graphique.

x y

3 6
2 5
1 4
0 3

Le professeur demande alors de lire l’ordonnée du point d’abscisse 1 qui
s’aligne avec les autres points, puis l’ordonnée du point d’abscisse 2 et ainsi
de suite. On complète ainsi le tableau sans faire aucun calcul. Le professeur
pose alors la question suivante.

Quelle est la règle d’addition qui fournit de tels résultats ?

Pour aider les élèves à y voir clair, le professeur place en regard du tableau,
la colonne d’additions suivante.
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x y 3 + x = y

3 6 3 + 3 = 6
2 5 3 + 2 = 5
1 4 3 + 1 = 4
0 3 3 + 0 = 3

1 2 3 + 1 = 2
2 1 3 + 2 = 1
3 0 3 + 3 = 0
4 1 3 + 4 = 1
5 2 3 + 5 = 2

Observons ce tableau : dans la première co-
lonne les nombres se succèdent comme sur
un thermomètre, ils diminuent chaque fois
d’une unité. En parallèle, dans les autres co-
lonnes, la somme 3 + x diminue aussi. On
note que ce principe persiste lorsque x est
négatif.

Attardons-nous à la deuxième partie de la troisième
colonne, qui montre ce que nous cherchions : une
série d’additions dans lesquelles il s’agit d’ajouter
un nombre négatif.
Les résultats de ces additions indiquent que cela
revient à retrancher un positif, ce que nous sa-
vions déjà faire. Ceci est illustré par les exemples
ci-contre.

3 + 1 = 2,
3− 1 = 2,
3 + 2 = 1,
3− 2 = 1,
3 + 1 = 4,
3− 1 = 4.

Le bilan est complété par l’énoncé qui suit.

Ajouter un négatif et retrancher le positif opposé, cela revient au même.

4.4 Alignement et soustraction d’entiers

Comment s’y
prendre ?

Fiche 38
Représenter sur le graphique quelques points dont les coordonnées vé-
rifient l’équation

y = 6− x.

0 x

y

Fig. 47
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Les élèves commencent par les soustractions qui leur sont familières : celles
dans lesquelles le nombre à retrancher est un positif, plus petit que le
premier terme. Au fur et à mesure qu’ils découvrent des points par calcul,
ils les placent sur le graphique et le professeur complète un tableau ordonné
par valeurs décroissantes de x.

x y

5 1
4 2
3 3
2 4
1 5
0 6

Le professeur demande ensuite de repérer sur le graphique, le point d’abs-
cisse 1 qui s’aligne avec les autres ; puis les points d’abscisse 2, 3, . . . Les
couples correspondants sont reportés dans le tableau.

0 x

y

Fig. 48

0 x

y

Fig. 49

On enchâıne avec la question :

Quelle est la règle de soustraction qui correspond à ce graphique et à ce
tableau de nombres ?

Voici les soustractions qui montrent la correspondance entre la formule et
les couples de nombres.

x 6− x = y

5 6− 5 = 1
4 6− 4 = 2
3 6− 3 = 3
2 6− 2 = 4
1 6− 1 = 5
0 6− 0 = 6

1 6− 1 = 7
2 6− 2 = 8
3 6− 3 = 9

L’analyse de la colonne de soustractions
montre la permanence d’un principe : plus
le nombre que l’on enlève diminue, plus le
résultat devient grand.
Les résultats des trois dernières soustrac-
tions montrent que retrancher un négatif
revient à ajouter un positif ! Ainsi,

6− 1 = 7
6 + 1 = 7,
6− 3 = 9,
6 + 3 = 9.

On conclut avec l’énoncé qui suit.

Retrancher un nombre revient à ajouter l’opposé de ce nombre.
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Fiche39

1. Qu’est-ce qui caractérise chacun des trois ensembles de points ali-
gnés de la figure 50 ?

2. Quel est le point d’abscisse 1 qui est aligné avec les croix, avec les
points blancs, avec les points noirs ?

3. Même question pour les points d’abscisse 3 et d’abscisse 7.

4. Dresser les tableaux de nombres qui correspondent au graphique
tel qu’il a été complété.

0 x

y

Fig. 50

1. Chacune des croix de la figure 50 est située à égale distance de l’axe
des x et de l’axe des y. Les abscisses de tous ces points sont néga-
tives, les ordonnées sont positives. Déterminer l’ordonnée d’une croix
revient donc à prendre l’opposé de son abscisse.
Pour trouver l’ordonnée d’un point noir, il faut ajouter 1 après avoir
pris l’opposé de l’abscisse.
Pour trouver l’ordonnée d’un point blanc, il faut retrancher 1 après
avoir pris l’opposé de l’abscisse.
Avant d’écrire les équations qui caractérisent ces ensembles de points,
le professeur explique comment noter l’opération qui consiste à pren-
dre l’opposé d’un nombre : puisque retrancher un nombre revient à
ajouter son opposé, on considère que prendre l’opposé d’un nombre
c’est comme soustraire ce nombre. Ainsi, l’opération ✭✭ prendre l’op-
posé ✮✮ se traduit-elle par le symbole ✭✭ − ✮✮, placé devant le nombre.
Par exemple, l’opposé de 3 est noté −3, l’opposé de 3 est noté −3 et
l’opposé de x, qui peut être aussi bien négatif que positif, est noté
−x. Les trois ensembles de points sont décrits par les équations

y = −x , y = −x + 1 , y = −x− 1.

2. Le point d’abscisse 1 aligné avec les croix a comme ordonnée 1 (voir
figure 51). Ici aussi, il suffit de changer le signe de l’abscisse pour
déterminer l’ordonnée.



4. Points alignés et calcul avec les entiers 149

Le point d’abscisse 1 aligné avec les points noirs a comme ordonnée
0. La règle de calcul est la même que celle utilisée avec les autres
points noirs.
Le point d’abscisse 1 aligné avec les points blancs a comme ordonnée
2. La règle de calcul est la même que celle des autres points blancs.

0 x

y

Fig. 51

3. On tire des conclusions analogues après avoir repéré les trois points
dont l’abscisse est 3, puis ceux dont l’abscisse est 7.

4. Les tableaux mettent en relation le graphique et les équations. Le
professeur incite les élèves à écrire dans la troisième colonne, les
opérations qui montrent ces relations. Les réponses confirment ce
qui a été abordé à partir de mouvements à la fiche 36.

x y y = −x
4 4 −4
3 3 −3
2 2 −2
1 1 −1
0 0 0

1 1 −1
3 3 −3
7 7 −7

x y y = −x + 1

4 5 −4 + 1 = 4 + 1
3 4 −3 + 1 = 3 + 1
2 3 −2 + 1 = 2 + 1
1 2 −1 + 1 = 1 + 1
0 1 0 + 1

1 0 −1 + 1 = 1 + 1
3 2 −3 + 1 = 3 + 1
7 6 −7 + 1 = 7 + 1

x y y = −x− 1

4 3 −4− 1 = 4− 1
3 2 −3− 1 = 3− 1
2 1 −2− 1 = 2− 1
1 0 −1− 1 = 1− 1
0 1 0− 1

1 2 −1− 1 = 1 + 1
3 2 −3− 1 = 3 + 1
7 8 −7− 1 = 7 + 1

Le professeur rassemble à présent les différentes significations du signe
✭✭ − ✮✮ et introduit les simplifications d’écriture habituelles. Ainsi ✭✭ −3 ✮✮

peut représenter le nombre négatif ✭✭ −3 ✮✮ ou signifier dans d’autres con-
textes

• retrancher 3,

• prendre l’opposé de 3.

Les simplifications d’écriture consistent à remplacer les soustractions par
des additions, à supprimer les signes d’addition et à placer le signe du
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nombre devant. L’expression obtenue est souvent appelée ✭✭ somme algé-
brique ✮✮. On l’effectue en considérant le signe qui précède chaque nombre
comme étant le signe du nombre et en appliquant les règles d’addition.
Exemple :

7− 5 + 3− 4 = 7 + 5 + 3 + 4 = 7 + 5− 3− 4

4.5 Alignement et multiplication par un entier

Comment s’y
prendre ?

Fiche 40
Les points qui correspondent aux couples ci-dessous sont-ils ou non ali-
gnés avec une suite de croix, de points noirs ou de points blancs ?

(0, 0) ; (0, 2) ; (1, 2) ; (1, 2) ;

(2, 4) ; (2, 4) ; (3, 6) ; (3, 6) ;

(3, 7) ; (3, 7) ; (3, 7) ; (3, 7).

Comment caractériser les ensembles de points alignés ?

0 x

y

Fig. 52

Les élèves vérifient l’alignement en plaçant, un à un, les points sur le gra-
phique. Pour écrire la formule, ils cherchent une relation entre abscisse
et ordonnée. Cette recherche est plus facile lorsqu’on rassemble dans un
tableau ordonné, tous les couples visibles sur le graphique.

x y

4 8
3 6
2 4
1 2
0 0

1 2
2 4
3 6

Les quatre premiers couples évoquent la table de multiplication par 2, mais
est-ce la même opération qui envoie 1 sur 2, 2 sur 4 et 3 sur 6 ?

Oui, si l’on considère la multiplication par un entier positif comme une
addition itérée et qu’on calcule :

1 + 1,

2 + 2,
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3 + 3.

On retrouve les résultats du tableau.

L’équation est donc
y = 2x.

La règle de la multiplication par un entier positif s’ensuit très naturelle-
ment :

Lorsqu’on multiplie un nombre par un entier positif, le produit a le même
signe que ce nombre.

La recherche des équations relatives aux deux autres ensembles de points
consiste à traduire dans une même expression algébrique l’enchâınement
de deux opérations : doubler puis ajouter 1, ou doubler puis retrancher 1.

Fiche 41
Les points qui correspondent aux couples ci-dessous sont-ils alignés avec
une suite de points noirs ?

(1, 2) ; (1, 2) ; (1, 2) ; (5, 10)

(3, 6) ; (3, 6) ; (3, 6) ; (7, 14)

(100, 200) ; (100, 200) ; (100, 200) ; (100, 200).

Comment caractériser les points alignés ?

0 x

y

Fig. 53

Les couples représentés sur le graphique ont cette fois une abscisse néga-
tive. Ainsi, la fiche n’induit-t-elle pas la construction d’un tableau partant
d’opérations sur des positifs qui conduisent, via les régularités de calcul, à
des abscisses négatives. Ici, ce qui est mis en avant, c’est l’alignement des
points. Le travail est donc amorcé par l’observation du graphique. Pour
des élèves plus jeunes, il est évidemment plus facile d’aborder la question
au départ d’un graphique qui montre des points d’abscisse positive et qui
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conduit à un tableau dont on observe les régularités (voir le tableau situé
dans la marge) .

x y

3 6
2 4
1 2
0 0
1 2
2 4
3 6

Les élèves plus âgés recourent donc au graphique pour traiter les sept ou
huit premiers couples. Ils observent que seuls ceux dont l’abscisse et l’or-
donnée sont de signes différents s’alignent avec les autres. Ils en concluent
que pour déterminer l’ordonnée, il faut doubler l’abscisse, puis prendre
l’opposé de ce produit. Ils font parfois ces deux opérations dans l’ordre
inverse et s’aperçoivent que cela revient au même. Ceci leur permet de
répondre à la question pour les derniers couples qu’ils n’ont pu situer dans
le repère.

Le professeur intervient ici pour introduire une définition de la multiplica-
tion par 2 : elle combine ces deux opérations.

L’équation est donc
y = 2x.

Pour mieux réaliser les effets de cette opération, on construit en parallèle
un tableau de nombres, une liste d’opérations et un graphique. Les couples
sont ordonnés par valeurs croissantes de x.

x y 2x = y

3 6 2× 3 = 6
2 4 2× 2 = 4
1 2 2× 1 = 2
0 0 2× 0 = 0

1 1 2× 1 = 2
2 2 2× 2 = 4
3 3 2× 3 = 6

0 x

y

+1

-2

+1

-2

Fig. 54

Les flèches qui figurent sur ce graphique attirent l’attention sur les varia-
tions : chaque fois que le multiplicateur augmente d’une unité, le produit
diminue de deux unités.

Synthèse

La synthèse est réalisée par les élèves avec l’aide du professeur qui donne
la consigne qui suit.
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Parmi les multiplications qui ont été amenées par les fiches 40 et 41,
constituer un échantillon qui comporte tous les cas qui peuvent se pré-
senter lorsqu’on multiplie deux entiers.
Conjecturer les règles de multiplication et vérifier si elles s’appliquent
aux autres produits que l’on peut ✭✭ voir ✮✮ sur les différents graphiques.

Voici quatre multiplications :

2× 3 = 6 , 2× 3 = 6 , 2× 3 = 6 , 2× 3 = 6.

Les élèves distinguent assez facilement deux cas : soit les deux nombres
ont même signe, soit ils ont des signes différents.

Dans le premier cas, le produit est positif ; dans le second, il est négatif.
Toutes les vérifications graphiques confirment ces règles.

4.6 Règle des signes et proportionnalité

Comment s’y
prendre ?

Cette activité suppose que les élèves connaissent les propriétés d’un tableau
de proportionnalité et savent que dans toute proportion, le produit des
moyens est égal au produit des extrêmes.

Le tableau qui correspond à y = 2x est-il un tableau de proportionna-
lité ?

On part du tableau situé dans la marge. Pour vérifier l’égalité entre rap-

x y

3 6
2 4
1 2
0 0
1 2
2 4
3 6

ports internes, les élèves écrivent un rapport entre deux nombres de la
première colonne et le rapport entre les nombres correspondants de la
deuxième, par exemple

2
1

et
4
2
.

Pour obtenir que ces rapports soient égaux, il faut étendre aux entiers la
propriété qui dit que

a

b
=

c

d
entrâıne ad = bc.

Après avoir vérifié de cette façon plusieurs égalités, on dispose de tous les
éléments nécessaires pour conjecturer la règle des signes d’un quotient de
deux entiers.

Pour déceler l’existence d’un rapport externe, il faut considérer les rapports
entre un nombre d’une colonne et son correspondant dans l’autre et vérifier
si ces rapports sont égaux. On vérifie par exemple que

1
2

=
2
4
.

Examinons à présent la propriété de la somme en partant des couples
(2, 4) et (1, 2). À la somme de deux termes de la première colonne, cor-
respond bien la somme des termes correspondants. En effet, le couple
(2 + 1, 4 + 2) est bien un couple du tableau.



6

Proportionnalité et non-proportionnalité
en géométrie

1 Quand un triangle rencontre un carré

De quoi s’agit-il ? Étudier des tableaux de nombres et les graphiques associés à ces tableaux à
partir de situations simples basées sur les périmètres de polygones. Établir
les formules associées aux tableaux de nombres. Établir les graphiques
correspondants.

Enjeux Étudier, à partir des tableaux de nombres, la proportionnalité des coor-
données et celle des accroissements et la linéarité du graphique associé.

Contraster une fonction linéaire et une fonction affine. Voir le chapitre 16,
section 6.4.

Associer proportionnalité des accroissements et alignement du graphique.

Prouver l’alignement des points du graphique d’une fonction linéaire ou
d’une fonction affine. Voir le chapitre 16, section 5.3.

Déterminer l’intersection de deux graphiques de fonctions.

Compétences

Savoir, connâıtre et définir les expressions relatives aux fonctions.

Modéliser des problèmes de manière à les traiter au moyen des fonctions
de référence.

Esquisser, construire un graphique pour mettre en évidence des caractéris-
tiques du phénomène traité.

Interpréter un graphique en le reliant au problème qu’il modélise.

Calculer l’ensemble des solutions d’une équation, d’un système d’équations
linéaires.

De quoi a-t-on
besoin ?

Matériel. – Du papier, un crayon et une calculatrice.

Prérequis

Les cas de similitude des triangles.

Les propriétés des tableaux de proportionnalité.

154
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Comment s’y
prendre ? Dessine un segment [AB] de 10 cm de long. Sur ce segment, place un

point X à 3 cm de A. Sur [AX], construis un triangle équilatéral, sur
[BX] un carré. Calcule les périmètres de ces deux figures.

A X B

Fig. 1

Lorsque les élèves ont terminé pour |AX| = 3, on leur demande de faire
varier la position du point X sur le segment [AB] et de calculer les péri-
mètres pour toutes les valeurs entières de |AX| (de 0 à 10). On en arrive
à élaborer le tableau suivant :

|AX| |XB| Périmètre triangle Périmètre carré
0 10 0 40
1 9 3 36
2 8 6 32
3 7 9 28
4 6 12 24
5 5 15 20
6 4 18 16
7 3 21 12
8 2 24 8
9 1 27 4
10 0 30 0

Lorsque tous les calculs sont terminés pour des valeurs entières de |AX|,
on observe les différents résultats. En comparant les deux colonnes de pé-
rimètres, on s’aperçoit que les valeurs du périmètre du triangle vont en
croissant de 0 à 30 et que celles du carré vont en décroissant de 40 à 0. On
peut alors poser la question qui suit.

Existe-t-il une valeur de |AX| pour laquelle les périmètres du triangle
et du carré sont égaux ?

L’intuition de continuité amènera sans doute les élèves à dire qu’il existe
nécessairement une valeur pour laquelle ces deux résultats sont égaux et
que cette égalité a lieu pour une valeur de |AX| comprise entre 5 et 6.
Pour la déterminer, certains proposent d’affiner les calculs au dixième,
puis au centième près. Si l’estimation devient de plus en plus précise, le
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résultat n’est toujours pas exact. Les calculs devenant fastidieux, certains
élèves demandent s’il n’est pas possible de trouver ce résultat autrement.
C’est le moment de les amener à mettre la situation en équation. S’ils ont
été habitués à élaborer des formules à partir de tableaux de nombres, ils
proposeront sans doute immédiatement d’appeler x le côté du triangle et
une brève analyse de la deuxième colonne du tableau devrait amener 10−x
pour le côté du carré. L’égalité des périmètres des deux figures se traduit
finalement par l’équation

3x = 4(10− x),

ce qui donne après résolution

x =
40
7
.

Le professeur pose ensuite cette question.

Pourrait-on visualiser les résultats obtenus en représentant dans un re-
père les périmètres des deux figures en fonction de la longueur |AX| ?

Les élèves commencent par placer les points correspondant au périmètre
du triangle. À première vue, ils sont alignés. Comment cela se fait-il ? Pour
répondre à cette question, on analyse le tableau de nombres correspondant.

accroissements x y accroissements
des x côté du triangle périmètre des y

0 0
+1 +3

1 3
+1 +3

2 6
+1 +3

3 9
+1 +3

4 12
· · · · · · · · · · · ·

On observe tout d’abord que l’on peut obtenir la colonne des y en multi-
pliant la colonne des x par 3. Les valeurs de y sont proportionnelles aux
valeurs de x. On peut donc associer à ce tableau de nombres la formule
y = 3x. On remarque ensuite que chaque fois que x augmente de 1 unité,
y augmente de 3 unités. Les accroissements des y sont proportionnels aux
accroissements des x. On traduit alors cette dernière constatation sur le
graphique : on se place en un point du graphique, on avance de 1 cm ho-
rizontalement et puis de 3 cm verticalement, on arrive bien ainsi au point
suivant du graphique. On poursuit de proche en proche et on construit de
cette façon ce que les élèves appellent spontanément un ✭✭ escalier ✮✮. On
retrouve une situation analogue à celle déjà traitée à la page 125.
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L’image d’une ✭✭ planche ✮✮ posée sur un
escalier suffira sans doute dans un pre-
mier temps pour convaincre les élèves que
les points du graphique sont bien alignés
comme le montre la figure 2. On peut
dans un deuxième temps, si le niveau de
la classe le permet, proposer une démons-
tration de cette propriété.

Comment justifier que les points du graphique sont alignés ?

Afin de rendre cette démonstration plus éclairante, nous raisonnerons sur
un graphique légèrement faux au départ (voir figure 3).

 E  DA

C

 B

Fig. 3

Soient A, B et C trois points quelconques du graphique. Par B
et C, menons les parallèles à l’axe OY . Par A, menons la paral-
lèle à l’axe OX. Soient E et D les points d’intersection de cette
droite avec les deux précédentes. Montrons que les triangles
ABE et ACD sont semblables. Les angles ÂDC et ÂEB ont
la même amplitude car ce sont des angles droits. Si (xA, 3xA),
(xB, 3xB), (xC , 3xC) sont les coordonnées des points A, B, C,
les segments [CD], [BE], [AD] et [AE] mesurent respective-
ment

3(xC−xA), 3(xB−xA), xC−xA, xB−xA unités de longueur.

On obtient ainsi

|CD|
|BE| =

|AD|
|AE| =

xC − xA

xB − xA
.

Les angles ÂEB et ÂDC sont adjacents à des côtés correspondants pro-
portionnels ; nous sommes donc en présence du cas de similitude : ✭✭ deux
triangles sont semblables lorsqu’ils ont un angle égal compris entre deux
côtés proportionnels. ✮✮ Les triangles ABE et ACD sont donc semblables.
Par conséquent, les angles ĈAD et B̂AE ont la même amplitude et les
points A, B, C sont alignés. On fera alors remarquer que la figure sur la-
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quelle on a raisonné n’est pas correcte. Un travail analogue se fait pour le
périmètre du carré, ce qui nous donne le tableau suivant.

Accroissements x y Accroissements
des x côté périmètre des y

0 40
+1 -4

1 36
+1 -4

2 32
+1 -4

3 28
+1 -4

4 24
· · · · · · · · · · · ·
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Fig. 4

Cette fois il n’est pas possible de trouver un facteur
multiplicatif pour passer de la colonne des x à la co-
lonne des y du tableau. On voit de cette façon que y
n’est pas proportionnel à x. Mais les accroissements
des y sont encore proportionnels aux accroissements
des x et on obtient donc de nouveau un escalier régu-
lier pour passer d’un point à l’autre du graphique. On
fera toutefois remarquer que, dans ce cas, chaque fois
que l’on avance de 1 unité horizontalement, on descend
de 4 unités verticalement et que l’escalier est incliné
dans l’autre sens. Il reste à noter que le graphique de
cette fonction ne comprend pas le point (0,0). On peut
de nouveau bien entendu démontrer l’alignement des
points du graphique en recourant au même cas de si-
militude.

À partir de ces constatations, on peut élaborer une première synthèse.
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Synthèse

Fonction Tableau de nombres Graphique

y = 3x Les ordonnées sont proportionnelles
aux abscisses.

Le graphique est une droite qui passe
par l’origine du repère.

Les accroissements sont proportion-
nels.

y = 40− 4x Les ordonnées ne sont pas propor-
tionnelles aux abscisses.

Le graphique est une droite qui ne
passe pas par l’origine du repère.

Les accroissements sont proportion-
nels.
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Les deux fonctions sont donc représentées par deux
droites. En affirmant cela, on conjecture que tous les
nouveaux points qu’on pourrait calculer seraient eux
aussi chaque fois sur la même droite. Il ne nous parâıt
pas nécessaire de nous appesantir sur ce fait, qui va
de soi pour les élèves à ce niveau. Les deux droites se
coupent en un point P . Il convient alors de faire réflé-
chir les élèves sur la signification de ce point d’intersec-
tion et de faire le lien avec l’équation 3x = 4(10− x).

Échos des classes Cette situation a été expérimentée dans deux classes de troisième technique
de transition à option scientifique. Le niveau des élèves était faible dans la
première classe et moyen dans la deuxième. Dans les deux classes, les élèves
se sont pris au jeu de la recherche d’une valeur exacte pour l’égalité des
périmètres. Certains ont poursuivi leur recherche jusqu’au dix-millième.
Dans la première classe, le professeur a dû interrompre ces recherches et
proposer lui-même d’algébriser ; dans la deuxième, les élèves ont demandé
si le professeur n’avait pas un truc pour aller plus vite. Par contre, dans
les deux classes, l’élaboration des formules a posé le problème du choix
des inconnues. Si tous les élèves ont immédiatement posé |AX| = x, peu
ont pensé à exprimer la longueur |BX| en fonction de x. Comme un des
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objectifs du professeur était l’élaboration d’équations à une inconnue, il
a incité les élèves à exprimer les deux longueurs en fonction de la même
variable. On pourrait envisager de les laisser introduire une deuxième va-
riable y pour la longueur |BX| et on obtiendrait alors un système de deux
équations à deux inconnues{

x + y = 10,
3x = 4y.

Il nous semble cependant que ce type de mise en équation est plus difficile
conceptuellement. En effet, la première traduit non pas une question mais
une donnée du problème et les élèves n’auront pas tendance à l’énoncer
spontanément. De plus, ces situations-problèmes ont été testées en début
d’année scolaire et il est difficile de confronter à ce moment les élèves à la
résolution d’un système de deux équations à deux inconnues.

Prolongements
possibles

On peut envisager une activité dont le déroulement serait semblable à
l’activité précédente, mais qui étudierait les aires des deux figures. On
obtient alors deux équations du deuxième degré

A = (10− x)2,

A =
√

3
4
· x2.

L’élaboration du graphique de ces deux fonctions amène naturellement
l’analyse du tableau de nombres associé à chacune d’elles et la découverte
de leur caractère non linéaire. Nous avons choisi ici d’expliquer la propriété
de non-linéarité à partir d’une autre situation.

2 Des rectangles de même périmètre

De quoi s’agit-il ? Étudier des tableaux de nombres et les graphiques associés à ces tableaux à
partir d’une situation faisant intervenir la base, la hauteur et l’aire de rec-
tangles isopérimétriques1. Établir les formules correspondant aux tableaux
de nombres. Établir les graphiques correspondants.

Enjeux Contraster les tableaux de nombres et les graphiques associés à une fonc-
tion affine et une à fonction du deuxième degré. Associer proportionnalité
des accroissements et alignement du graphique. Voir le chapitre 16, section
5.

Compétences

Savoir, connâıtre et définir les expressions relatives aux fonctions.

Modéliser des problèmes de manière à les traiter au moyen des fonctions
de référence.

1 Pour plus de détails J. Bretton et al. [1991].
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Esquisser, construire un graphique pour mettre en évidence des caractéris-
tiques du phénomène traité.

Interpréter un graphique en le reliant au problème qu’il modélise.

Calculer la solution d’une équation.

De quoi a-t-on
besoin ?

Matériel. – Du papier non tramé, un crayon, une calculatrice.

Comment s’y
prendre ?

Dessiner quelques rectangles dont le périmètre mesure 30 cm.
Dans un repère orthonormé, dessiner les points qui ont pour abscisse la
base des rectangles et pour ordonnée leur hauteur.
Comment ces points se disposent-ils les uns par rapport aux autres ?

Les élèves commencent par rechercher les dimensions des rectangles. Ils
doivent pour cela répondre à la question ✭✭ Comment calculer la hauteur
d’un rectangle quand on connâıt sa base ? ✮✮. Une simple transformation de
la formule du périmètre du rectangle permet de répondre à cette question.
On obtient successivement les équations

P = 2 · (x + y),
30 = 2x + 2y,
2y = 30− 2x,

y =
30− 2x

2
,

y = 15− x.

On aboutit à la construction du tableau suivant, où x désigne la base du
rectangle et y sa hauteur.

x y
base du rectangle hauteur du rectangle

1 14
2 13
3 12
. . . . . .
4,5 10,5
5 10

5,5 9,5
. . . . . .
7,2 7,8
7,3 7,7
. . . . . .
14 1

14,9 0,1
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Dans un repère orthonormé, le fait de dessiner les rectangles en portant
en abscisse les bases et en ordonnée les hauteurs fait clairement apparâıtre
l’alignement des sommets supérieurs droits. Cet alignement est-il lié au
périmètre choisi ? Si nous modifions celui-ci, la conclusion sera-t-elle la
même ? L’activité se poursuit en répétant la même procédure pour d’autres
données et, force est de constater que les sommets supérieurs droits des
rectangles s’alignent de nouveau. Pourquoi ?

Comment justifier que ces points sont alignés ?

L’analyse du tableau montre que la base et la hauteur ne sont pas pro-
portionnelles. Pour conserver un périmètre constant, il faut ajouter à la
hauteur ce que l’on enlève à la base ou réciproquement. On ne peut donc
passer de l’une à l’autre grâce à un facteur multiplicatif. Par contre, les ac-
croissements en x et en y sont proportionnels : on peut passer des premiers
aux seconds en les multipliant par −1. Ceci est confirmé par le graphique :
lorsqu’on se déplace d’une unité vers la droite sur l’axe des abscisses, on
se déplace d’une unité vers le bas sur l’axe des ordonnées.
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Accroissements x y Accroissements
des x Base Hauteur des y

1 14
+1 −1

2 13
+1 −1

3 12
. . . . . .
4,5 10,5

+0,5 −0, 5
5 10

+0,5 −0, 5
5,5 9,5
. . . . . .
7,2 7,8

+0,1 −0, 1
7,3 7,7
. . . . . .
14 1

+0,9 −0, 9
14,9 0,1

En retournant à la synthèse de l’activité précédente, on peut conclure
que cette fonction est du même type que y = 40− 4x. Il est donc normal
d’obtenir une droite qui ne passe pas par l’origine du repère ; en effet quand
x = 0, y �= 0.

On peut maintenant poser les questions suivantes.

Tous les rectangles ont-ils la même aire ?
Dans le cas contraire, comment peut-on décrire la situation ?
Quelles sont les dimensions du rectangle de 30 cm de périmètre ayant
la plus grande aire possible ?

Les élèves ont manipulé beaucoup de tableaux de nombres au cours du pre-
mier degré de l’enseignement secondaire. Il est naturel d’y recourir encore
et de compléter celui ci-dessous. Manifestement, les rectangles n’ont pas
la même aire. Le tableau semble indiquer un effet de symétrie. On passe
d’aires petites à des aires plus grandes pour revenir ensuite à des aires pe-
tites. Conjecturer qu’il existe un rectangle présentant une aire maximale
est raisonnable et on peut même penser qu’il s’agit d’un carré dont le côté
mesure entre 7 et 8 cm (les élèves annonceront probablement 7,5 cm spon-
tanément). Dessiner la situation dans un repère orthonormé conduira à
confirmer la conjecture.

On constate que le graphique prend cette fois l’allure d’une courbe (pa-
rabole) présentant un sommet correspondant à l’aire maximale, celle d’un
carré de 7,5 cm de côté.
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x y x · y
Base Hauteur Aire

1 14 14
2 13 26
3 12 36
. . . . . . . . .
4,5 10,5 47,25
5 10 50

5,5 9,5 52,25
. . . . . . . . .
7,2 7,8 56,16
7,3 7,7 56,21
. . . . . . . . .
12 3 36
13 2 26
14 1 14
. . . . . . . . .
14,9 0,1 1,49
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Le graphique confirme l’effet de symétrie (deux points symétriques du gra-
phique correspondent d’ailleurs à deux rectangles identiques, l’un ✭✭ posé ✮✮

sur sa longueur, l’autre sur sa largeur) ; il est d’ailleurs facile de dessiner
l’axe de cette symétrie. Il comprend évidemment le point milieu du seg-
ment déterminé par les points (0 , 0) et (15 , 0) – extrémités de l’intervalle
sur lequel le problème à un sens – c’est-à-dire le point (7,5 ; 0) où 7,5 est
la mesure de la base et de la hauteur du rectangle (et c’est un carré !) de
30 cm de périmètre et de plus grande aire.

Quelle est l’équation de cette courbe ?

Chacun de ses points a pour abscisse la base d’un rectangle et pour or-
donnée l’aire du même rectangle, donnée par l’équation A = x · (15 − x)
ou A = 15x− x2. Nous sommes maintenant en présence d’une fonction du
deuxième degré.

Le tableau de nombres montre que les accroissements en x et les accrois-
sements d’aire ne sont pas proportionnels. De même, la base et l’aire des
rectangles ne le sont pas non plus.
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Accroissements x x · y Accroissements
des x Base Aire des x · y

1 14
+1 +12

2 26
+1 +10

3 36
. . . . . .
4,5 47,25

+0,5 +2,75
5 50

+0,5 +2,25
5,5 52,25
. . . . . .
7,2 56,16

+0,1 +0,05
7,3 56,21
. . . . . .
12 36

+1 -10
13 26

+1 -12
14 14

+0,9 -12,51
14,9 1,49

Prolongements
possibles

On peut démontrer assez facilement que l’aire du carré est bien l’aire maxi-
male d’une famille de rectangles isopérimétriques. Si on appelle p le demi-
périmètre du carré, p

2 est la mesure du côté du carré. Tout autre rectangle
a comme dimensions p

2−α et p
2 +α avec α > 0. L’aire du rectangle devient

donc (p

2
− α

) (p

2
+ α

)
,

c’est-à-dire (p

2

)2
− α2,

ce qui est toujours strictement inférieur à (p2)2 qui représente l’aire du
carré.

3 Des rectangles de même aire

De quoi s’agit-il ? Étudier le tableau de nombres et le graphique associé à ce tableau à partir
d’une situation basée sur les rectangles de même aire.

Enjeux Établir le tableau de nombres, la formule et le graphique associés à la fonc-
tion x · y = k à partir de la situation géométrique des rectangles de même
aire. Comparer avec les fonctions découvertes lors des activités précédentes.
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Compétences

Savoir, connâıtre et définir les expressions relatives aux fonctions.

Modéliser des problèmes de manière à les traiter au moyen des fonctions
de référence.

Esquisser, construire un graphique pour mettre en évidence des caractéris-
tiques du phénomène traité.

Interpréter un graphique en le reliant au problème qu’il modélise.

Calculer la solution d’une équation.

De quoi a-t-on
besoin ?

Matériel. – Du papier, un crayon et une calculatrice.

Comment s’y
prendre ? Rechercher tous les rectangles dont l’aire vaut 24 cm2. Dans un repère

orthonormé, dessiner les points qui ont pour abscisse la mesure de la
base des rectangles et pour ordonnée celle de leur hauteur. Comment
ces points se disposent-ils les uns par rapport aux autres ?

Dans un premier temps, les élèves proposeront sans doute les rectangles
dont les dimensions sont des nombres entiers. En suggérant certaines va-
leurs particulières pour la base, on les amènera à proposer des valeurs
décimales ou fractionnaires et à élaborer la formule qui permet de calculer
la hauteur en fonction de la base. On aboutit finalement à la construction
d’un tableau du type suivant, où x désigne la base et y la hauteur. L’ana-
lyse du tableau permet de voir rapidement que la hauteur des rectangles
n’est pas proportionnelle à leur base. Pour les accroissements, une brève
observation du tableau reprenant les premières dimensions entières permet
de conclure qu’il n’y a pas non plus proportionnalité.

x y

1 24
2 12
3 8
4 6
5 4,8
6 4
7 24

7

. . . . . .
10 2,4
11 24

11

. . . . . .
24 1

Accroissements x y Accroissements
des x Base Hauteur des y

1 24
+1 −12

2 12
+1 −4

3 8
+1 −2

4 6
. . . . . .

On peut maintenant demander aux élèves s’ils pensent que les points du
graphique de cette fonction seront ou non alignés. La réalisation concrète
du graphique dans un repère permettra de vérifier leurs conjectures. Pour
donner une allure convenable à la courbe, il sera indispensable d’augmen-
ter le nombre de valeurs pour x dans le tableau de nombres. Le professeur
proposera éventuellement d’étendre le domaine de la fonction aux nombres
négatifs afin d’obtenir le graphique complet de la fonction y = 24

x . Il choi-
sira également, en fonction du niveau de sa classe, de parler ou non d’hy-
perbole, d’asymptote, de domaine de définition, . . .
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Synthèse. – On peut proposer à ce moment de rassembler les différentes
observations des trois activités afin de compléter le tableau de synthèse
ébauché à la page 159.

Fonction Tableau de nombres Graphique

y = 3x Les ordonnées sont proportionnelles aux
abscisses.

Le graphique est une droite qui
passe par l’origine du repère.

Les accroissements sont proportionnels.

y = 40− 4x
y = 15− x

Les ordonnées ne sont pas proportion-
nelles aux abscisses.
Les accroissements sont proportionnels.

Le graphique est une droite qui
ne passe pas par l’origine du re-
père.

y = 15x− x2 Les ordonnées ne sont pas proportion-
nelles aux abscisses.

Le graphique n’est pas une droite

Les accroissements ne sont pas proportion-
nels.

Il s’agit ici d’une parabole.

y = k
x Les ordonnées ne sont pas proportion-

nelles aux abscisses.
Le graphique n’est pas une
droite.

Les accroissements ne sont pas proportion-
nels.

Il s’agit ici d’une hyperbole.
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4 De la perspective au théorème de Thalès

De quoi s’agit-il ? Dessiner, en perspective parallèle, un cube dont les faces sont munies d’un
quadrillage régulier.

Enjeux Découvrir le théorème de Thalès par le biais du partage d’un segment
par un réseau de parallèles équidistantes, dans le contexte du dessin en
perspective.

Voir chapitre 16, section 3.3.

Compétences

Savoir, connâıtre, définir les théorèmes de la géométrie classique relatifs
aux rapports de longueurs.

Choisir des propriétés, organiser une démarche en vue de déterminer des
éléments d’une figure, dégager de nouvelles propriétés géométriques, ré-
soudre des problèmes de construction.

Effectuer et interpréter des représentations planes de figures de l’espace en
se fondant sur les propriétés de telles représentations.

De quoi a-t-on
besoin ?

Matériel. – Une copie par élève des fiches 42 à 44. Règle et équerre pour
chacun.

Prérequis. – La perspective parallèle conserve le parallélisme, l’incidence
et le milieu (cf. par exemple les six premières activités du chapitre 7 de
CREM [2001b] qui sont centrées sur le dessin de cubes et d’assemblages
de cubes en perspective parallèle).

4.1 Dessiner un cube de Rubik

Le cube de Rubik est un casse-tête en trois dimensions. Il est formé de 27
petites cubes colorés, articulés de manière astucieuse pour se prêter à des
mouvements de rotation. Le jeu consiste à faire pivoter ces cubes de façon
à ce que chacune des 6 faces du cube 3×3 qu’ils forment, soit d’une même
couleur. Le cube de Rubik porte le nom de son inventeur Erno Rubik,
un architecte hongrois, passionné de géométrie. Créé en 1974, ce jeu a
rencontré très rapidement un vif succès dans de nombreux pays.

Nous ne nous intéressons pas ici au jeu lui-même mais seulement aux ques-
tions que soulève le dessin d’un tel cube.

Comment s’y
prendre ?

Fig. 9

La figure 9 constitue une figure de référence
pour passer du partage en deux à un partage
en n parties égales : elle rappelle l’ensemble
des propriétés des médianes et des diagonales
des parallélogrammes qui apparaissent dans
la perspective parallèle d’un cube.
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Les élèves reçoivent la fiche 42.

Fiche 42 (page 197)

Un dessin d’un cube de Rubik est ébauché ci-dessous ; achever ce dessin sans procé-
der à aucune mesure. Utiliser une règle non graduée et une équerre pour tracer les
parallèles nécessaires. Décrire les différentes étapes de la construction.

Fig. 10

En un premier temps, les élèves travaillent
seuls, ils tracent les parallèles aux fuyantes
comme le montre la figure 10. Mais comment
partager ces fuyantes sans recourir à des me-
sures ?

La difficulté vient de ce que le milieu des diagonales n’est pas un élément
de la figure. Mais dès qu’une diagonale de la face frontale est tracée (avec
ou sans l’aide du professeur), la situation s’éclaire : cette diagonale passe
par les nœuds du quadrillage et est partagée ainsi en trois parties égales
(figure 11a). La familiarité des élèves avec les tracés sur papier quadrillé
est telle qu’il n’est pas opportun de soulever, pour le carré, la question de
l’alignement des nœuds, ni celle du partage en trois de la diagonale. On y
reviendra à propos des autres faces.

Fig. 11 (a,b,c,d)

Comme les autres faces sont des images de carrés, l’idée vient de tracer la
diagonale de la face supérieure et celle de la face de gauche (figure 11b),
ensuite, de transposer sur ces faces les propriétés d’incidence. La figure 11
montre une correspondance entre ce qui se passe sur la face frontale et les
autres faces. On poursuit en traçant les parallèles aux arêtes (figures 11c
et d).

À l’issue de cette construction, une question théorique peut être soulevée.
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Les arêtes fuyantes sont-elles partagées par ces parallèles en trois seg-
ments de même longueur ?

Il arrive en effet souvent que les mesures que l’on prend pour vérifier ré-
vèlent des différences de longueurs entre les trois parties déterminées sur
l’arête fuyante. Sont-elles dues à des imprécisions dans le tracé ou faut-il
incriminer le procédé ?

Pour amorcer une réponse à la question, le professeur attire l’attention des
élèves sur le fait que, s’ils ne disposent d’aucune propriété sur le partage
en trois, ils en connaissent par contre à propos du milieu de segments
dans les parallélogrammes. Il rappelle aussi qu’ils disposent d’une figure
de référence (figure 9 à la page 168). Les propriétés utiles ici sont :

– dans un parallélogramme, diagonales et médianes se coupent en un même
point, milieu de chacune d’elles ;

– dans un parallélogramme, chaque médiane est parallèle à une paire de
côtés.

On revient au dessin du cube, on observe d’abord les carrés de la face
frontale qui sont ombrés sur les figures 12 a et b.

Fig. 12 (a,b)

Bien sûr, les élèves savent que la diagonale de la face frontale passe par deux
nœuds du quadrillage et est partagée en trois parties égales, néanmoins en
conjuguant les figures 12 a et b, ils comprennent pourquoi les égalités sur
une arête de la face frontale se propagent sur la diagonale de cette face. Par
ailleurs, cette première étape met en évidence les sous-figures qui seront
en jeu pour aborder les égalités sur les fuyantes.

Considérons à présent les parallélogrammes ombrés des figures 13.

Fig. 13 (a,b)
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– Le quadrilatère ABCD est un parallélogramme (puisque ses côtés sont
deux à deux parallèles par construction) ;

– le segment [DB] est une diagonale de ce parallélogramme et le segment
[NP ] est une médiane (par construction N est le milieu de [DC] et NP
est parallèle à AD, ainsi donc cette médiane est déterminée par un de
ses points et sa direction) ;

– le point E, intersection de cette diagonale et de cette médiane est donc
le milieu de la diagonale, c’est à dire :

|DE| = |EB| ;

– le même point E appartient à l’autre médiane FE, par conséquent F
partage [AD] en deux segments de même longueur. On a donc :

|FD| = |FA|.

On montre de même que dans le parallélogramme GHIE,

|EB| = |BH|,

que le segment [PK] est une médiane et que

|GP | = |PE|.

Comme
|GP | = |JA| et |PE| = |AF |,

on a aussi
|JA| = |AF |.

Ceci achève la démonstration.

La construction terminée, il importe de sortir du contexte du dessin en
perspective et de mettre en évidence un procédé plus général. La figure 14
et son commentaire montrent comment partager le segment [AC] en trois
parties égales, sans mesurer.

Fig. 14
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Pour partager un segment [AC] en trois, on peut le considérer comme une
diagonale d’un parallélogramme :

(a) on trace à partir de A, une demi-droite non alignée avec [AC] ;

(b) à partir du point A, on gradue la demi-droite en y portant trois seg-
ments de même longueur, on détermine ainsi [AB], premier côté d’un
parallélogramme ;

(c) on joint les points B et C, on détermine ainsi le second côté du paral-
lélogramme ;

(d) par chacun des points de graduation du premier côté, on mène une
parallèle au second côté ;

chaque point d’intersection d’une de ces parallèles avec la diagonale est un
point de division de celle-ci.

4.2 Partager les arêtes d’un cube

Comment s’y
prendre ?

Dans cette deuxième activité, il s’agit d’adapter le procédé mis au point à
propos du partage en trois, au partage en cinq, et ensuite au partage en n
parties égales. Les élèves reçoivent la fiche 43.

Fiche 43 (page 198)

L’arête verticale de ce cube est partagée en cinq parties de même longueur ; partager
les autres arêtes en cinq, sans procéder à aucune mesure. Utiliser une règle non
graduée et une équerre pour tracer les parallèles nécessaires, décrire les différentes
étapes de la construction.

Dans cette activité comme dans la précédente, trois réseaux de parallèles
sont implicitement présents : les parallèles aux arêtes du cube. On s’attend
à ce que les élèves aient recours aux diagonales des faces.

La figure 15 montre une façon de procéder.

Fig. 15
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Le professeur pose à présent une nouvelle question.

Décrire comment partager un segment en n parties égales en utilisant
un réseau de parallèles. Énoncer les propriétés utilisées.

Le professeur veille à ce que chaque élève se donne un segment à partager
et prenne conscience des choix à faire, à savoir

– la direction de la demi-droite qui servira d’intermédiaire ;

– l’unité sur cette demi-droite.

Il s’ensuit un travail collectif pour dégager une méthode de partage et
pour la rattacher aux propriétés du parallélogramme. La figure 16 montre
les étapes d’une telle construction. La figure 17 avec ses commentaires en
donne une démonstration.

Fig. 16

Supposons qu’il s’agisse de partager le segment [OB] en six parties égales.

(a) Par O menons la demi-droite [OA et portons, à partir de O six seg-
ments de longueur égale ;

(b) joignons le point N (extrémité du dernier segment sur [OA) et le point
B. Par chacun des points de graduation, faisons passer la parallèle à
BN .

Montrons à présent que par ce procédé, le segment [OB] est bien partagé
en six parties égales.

Fig. 17
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(a) Par chaque point C, D, E, . . .déterminé sur [OB] par le premier réseau
de parallèles, menons la parallèle à [OA. Nous obtenons un réseau de
parallélogrammes.

(b) Sélectionnons les parallélogrammes ombrés. Une configuration appa-
râıt. Elle rappelle la figure 13 à la page 170 ; on applique donc de
proche en proche le raisonnement qui mobilise les propriétés des dia-
gonales et des médianes de ces parallélogrammes et on montre ainsi
l’égalité des segments déterminés sur [OB].

Fig. 18

Après cette mise au point, on peut revenir à
la fiche de travail et chercher un moyen de
partager les arêtes sans passer par le partage
des diagonales. La construction est illustrée
par la figure 18.

Tout en exerçant le procédé mis au point, cette construction constitue une
bonne préparation à l’activité suivante.

À présent, les élèves sont prêts à utiliser la conservation des rapports par
une projection parallèle. Notons au passage que, dans le contexte d’une
étude des propriétés de la projection parallèle (ce qui n’est pas le cas
ici), on montrerait que cette propriété assure le caractère linéaire de cette
transformation.

4.3 Dessiner sur une table

Comment s’y
prendre ?

Dans cette activité, on introduit la conservation des rapports rationnels.

Fiche 44 (page 199)

Voici une table sur laquelle on veut dessiner un triangle dont le modèle, vu en vraie
grandeur, est placé juste en-dessous. Dessiner le même triangle, dans la même posi-
tion, sur la table représentée en perspective parallèle. Décrire les étapes de la construc-
tion. Utiliser une équerre et une règle non graduée, ne rien mesurer.
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Fig. 19 (a,b)

Les bords de la table sont divisés en par-
ties égales sur le modèle. Commençons par
reporter ces graduations sur [D1C1] qui est
vu en vraie grandeur. Le point Y1 est situé
aux deux septièmes de [D1C1] à partir de
D1.
Le point X (voir figure 19 b) est situé aux
six septièmes du segment [DA] à partir de
D. Il s’agit donc de partager le segment
[D1A1] en sept. On se sert évidemment des
graduations de [D1C1].

On joint C1 et A1, et on mène les parallèles à C1A1 qui passent par les
graduations de [D1C1]. On trouve X1. Les élèves réalisent a posteriori que
seule la parallèle qui passe par la sixième graduation (à partir de D1) est
utile !

Le point Z (voir figure 20a) est situé aux quatre septièmes du segment [CB]
à partir de C. Il s’agit donc de déterminer le point aux quatre septièmes
de [C1B1]. On se sert à nouveau des graduations de D1C1.

On joint D1 et B1 et on mène la parallèle à D1B1 qui passe par la quatrième
graduation de [D1C1] à partir C1. On trouve Z1 et on trace le triangle
Y1X1Z1 (figure 20 b).

Fig. 20 (a,b)

À l’issue de cette activité, le professeur met en évidence quelques expres-
sions et notations relatives aux rapports et proportions. Par exemple, l’éga-

lité |DY | = 2
7
|DC|,
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signifie que le segment [DY ] vaut les deux septièmes du segment [DC].

Cette égalité est équivalente à
|DY |
|DC| =

2
7
, qu’on traduit souvent par l’ex-

pression : |DY | est à |DC| comme 2 est à 7.

À partir des égalités

|DX|
|DA| =

6
7

et
|D1X1|
|D1A1|

=
6
7
,

on en écrit une autre :
|DX|
|DA| =

|D1X1|
|D1A1|

.

Une telle égalité entre deux rapports est appelée proportion. On dit que
les segments [DX], [DA], [D1X1] et [D1A1] sont proportionnels ou encore
que |DX| est à |DA| comme |D1X1| est à |D1A1|.

Prolongements
possibles

L’exploration du théorème de Thalès et de sa réciproque se poursuit pour
des rapports de longueurs à propos desquels il faut imaginer des gradua-
tions de plus en plus fines. Le lecteur trouvera dans FESeC [1996b], sous
le titre Une toile d’araignée autour de Thalès, une suite d’activités qui
poursuivent cet objectif.

4.4 Synthèse

Comment s’y
prendre ?

La synthèse est préparée par une fiche qui apprend aux élèves à traduire
les propriétés de différentes configurations de Thalès par des égalités de
rapports.

Fiche 45 (page 200)

Pour chaque figure, écrire l’une ou l’autre proportion qui fait intervenir le rapport
|OC|
|OA| .

O

A

B

C

D

O

B

A

D

C

O

O′
E

A

F

C

O
B

A
D

C

Même question à propos des rapports |OD|
|OB| ; |EB|

|BA| ; |EB|
|EA| .

O

C

D

B

A

E O

C

D B

A

E



4. De la perspective au théorème de Thalès 177

La figure 21 sert de référence lorsque les élèves n’arrivent pas à imaginer
le réseau de parallèles équidistantes. On y revient aussi pour réaliser la
translation qui permet d’analyser la troisième figure, ou encore la rotation
de 180◦ qui permet d’analyser la quatrième.

Ensuite, on rédige des énoncés qui couvrent l’ensemble de ces situations.

Fig. 21
Voici des exemples de tels énoncés. Leur formulation peut varier selon les
classes et selon la culture mathématique des élèves (s’ils sont familiers des
projections parallèles, la formulation sera plus concise).

Énoncé 1. – Dessinons une graduation régulière sur une droite. Traçons
des parallèles par les points de cette graduation. Dans ces conditions, toute
droite qui coupe les parallèles est partagée en parties égales.

Énoncé 2. – Si dans un triangle on mène une parallèle à un côté, cette
parallèle détermine sur les deux autres côtés des segments proportionnels.
De plus, dans les notations de la figure 22, on peut aussi écrire que

|OX|
|OA| =

|OY |
|OB| =

|XY |
|AB| .

O

A

B

X

Y

Fig. 22
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Documents à photocopier
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Fiche 26 : Bracelets de conversion 181



182 Fiche 27 : ✭✭ Rapporteurs en pourcents ✮✮ à photocopier sur transparent
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184 Fiche 29 : conversion d’un rapport de longueurs en un pourcentage : abaque 2
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186 Fiche 31 : Patterns de cubes 1

Chacun des solides de la figure est formé de cubes identiques. Combien faudrait-il de cubes pour
construire le quatrième solide, le dixième, le centième ?
Réaliser un tableau qui mette en relation le nombre de cubes avec la position du solide dans la
suite, puis le graphique qui montre le nombre de cubes en fonction du numéro d’ordre du solide.

Tableau et graphique

Numéro d’ordre Nombre de
dans la suite cubes

1

1
n

c

0

Formule
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Chacun des solides de la figure est formé de cubes identiques. Combien faudrait-il de cubes pour
construire le quatrième solide, le dixième, le centième ? Réaliser un tableau qui mette en relation
le nombre de cubes avec la position du solide dans la suite, puis le graphique qui montre le
nombre de cubes en fonction du numéro d’ordre du solide.
Comparer le tableau et le graphique à ceux qui ont été réalisés à propos de la première question.

Tableau et graphique

Numéro d’ordre Nombre de
dans la suite cubes

1

1
n

c

0

Formule



188 Fiche 33 : Patterns de cubes 3

Chacun des solides de la figure est formé de cubes identiques. Combien faudrait-il de cubes pour
construire le quatrième solide, le dixième, le centième ? Réaliser un tableau qui mette en relation
le nombre de cubes avec la position du solide dans la suite, puis le graphique qui montre le
nombre de cubes en fonction du numéro d’ordre du solide.
Comparer le tableau et le graphique à ceux qui ont été réalisés à propos de la première question.

Tableau et graphique

Numéro d’ordre Nombre de
dans la suite cubes

1

1
n

c

0

Formule
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Les questions ci-dessous se rapportent aux ensembles montrés par les figures 38 et 39. Ces
ensembles s’étendent implicitement au-delà de ce que montrent les dessins.

1. Les points donnés par les couples

(8, 9) ; (25, 15) ; (13, 36) ; (27, 37) ;
(10, 10) ; (100, 13) ; (120, 19) ; (119, 73) ;
(45, 20) ; (45, 62) ; (17, 105) ; (17, 106);

sont-ils représentés dans la première figure par une croix, un point noir ou un point blanc ?

2. Même question pour les mêmes couples, à propos cette fois de la deuxième figure.

0 x

y

0 x

y



190 Fiche 35 : Ensembles de points, couples de nombres, suite

Les ensembles montrés par les figures ci-dessous s’étendent seulement dans une seule direction :
celle de la droite qui porte les points.

1. Les points donnés par les couples ci-dessous sont-ils ou non alignés avec une suite de croix,
de points noirs ou de points blancs de la première figure ?

(7, 8) ; (8, 8) ; (8, 7) ; (9, 8) ; (9, 10)
(25, 24) ; (30, 30) ; (30, 29) ; (41, 40) ; (40, 40).

Comment caractériser les ensembles de points alignés ?

2. Même question à propos des couples ci-dessous, qui se rapportent à la deuxième figure.

(7, 14) ; (7, 15) ; (7, 13) ; (8, 17) ; (8, 15) ;
(20, 50) ; (25, 49) ; (30, 61) ; (29, 60) ; (29, 59).

Comment caractériser les ensembles de points alignés ?

0 x

y

0 x

y
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Les points qui correspondent aux coordonnées ci-dessous sont-ils ou non alignés avec une suite
de croix, de points noirs ou de points blancs ?
Envisager successivement les trois figures ci-dessous.

(3, 2) ; (2, 3) ; (3, 3) ; (3, 3) ;

(3, 3) ; (3, 2) ; (3, 4); (3, 2).

Comment caractériser les ensembles de points alignés ?

0 x

y

0 x

y

0 x

y



192 Fiche 37 : Alignement et addition d’entiers

Représenter sur le graphique quelques points dont les coordonnées vérifient l’équation

y = 3 + x.

0 x

y
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Représenter sur le graphique quelques points dont les coordonnées vérifient l’équation

y = 6− x.

0 x

y



194 Fiche 39 : Nombres opposés

1. Qu’est-ce qui caractérise chacun des trois ensembles de points alignés de la figure ci-
dessous ?

2. Quel est le point d’abscisse 1 qui est aligné avec les croix, avec les points blancs, avec les
points noirs ?

3. Même question pour les points d’abscisse 3 et d’abscisse 7.

4. Dresser les tableaux de nombres qui correspondent au graphique tel qu’il a été complété.

0 x

y
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Les points qui correspondent aux couples ci-dessous sont-ils ou non alignés avec une suite de
croix, de points noirs ou de points blancs ?

(0, 0) ; (0, 2) ; (1, 2) ; (1, 2) ;

(2, 4) ; (2, 4) ; (3, 6) ; (3, 6) ;

(3, 7) ; (3, 7) ; (3, 7) ; (3, 7).

Comment caractériser les ensembles de points alignés ?

0 x

y



196 Fiche 41 : Alignement et multiplication par un entier, suite

Les points qui correspondent aux couples ci-dessous sont-ils alignés avec une suite de points
noirs ?

(1, 2) ; (1, 2) ; (1, 2) ; (5, 10) ;

(3, 6) ; (3, 6) ; (3, 6) ; (7, 14)

(100, 200) ; (100, 200) ; (100, 200) ; (100, 200).

Comment caractériser les points alignés ?

0 x

y
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Un dessin d’un cube de Rubick est ébauché ci-dessous ; achever ce dessin sans procéder à aucune
mesure. Utiliser une règle non graduée et une équerre pour tracer les parallèles nécessaires. Décrire
les différentes étapes de la construction.



198 Fiche 43 : Partager toutes les arêtes d’un cube (page 172)

L’arête verticale de ce cube est partagée en cinq parties de même longueur ; partager les autres
arêtes en cinq, sans procéder à aucune mesure. Utiliser une règle non graduée et une équerre pour
tracer les parallèles nécessaires, décrire les différentes étapes de la construction.



Fiche 44 : Dessiner sur une table (page 174) 199

Voici une table sur laquelle on veut dessiner un triangle dont le modèle, vu en vraie grandeur, est
placé juste en-dessous. Dessiner le même triangle, dans la même position, sur la table représentée
en perspective parallèle. Décrire les étapes de la construction. Utiliser une équerre et une règle non
graduée, ne rien mesurer.



200 Fiche 45 : Déceler des égalités de rapports (page 176)

Pour chaque figure, écrire l’une ou l’autre proportion qui fait intervenir le rapport |OC|
|OA| .

O

A

B

C

D

O

B

A

D

C

O

O′
E

A

F

C

O
B

A
D

C

Même question à propos des rapports |OD|
|OB| ; |EB|

|BA| ; |EB|
|EA| .

O

C

D

B

A

E
O

C

D B

A

E
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les échos des classes du chapitre 7.
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La linéarité à travers quelques siècles

Avant-propos

Dans toutes les branches des mathématiques et de diverses autres sciences,
le problème qui se pose le plus souvent et le plus concrètement est de
trouver des solutions d’équations. C’est l’algèbre qui permet de réaliser
cela et, à ce titre, c’est une discipline fort ancienne. On trouve en effet des
résolutions d’équations dans des tablettes mésopotamiennes et des papyrus
égyptiens datant de plus de deux mille ans avant notre ère.

Dans les Éléments d’Euclide, qui datent du troisième siècle avant Jésus-
Christ, il y a également une forme d’algèbre en ce sens qu’on y trouve
des méthodes générales de résolution d’équations, par des procédés géo-
métriques. Chez Diophante d’Alexandrie, que les historiens situent
entre 250 et 350 de notre ère, on trouve également de l’algèbre ; mais, tout
comme les tablettes babyloniennes et les papyrus égyptiens, le texte de
Diophante consiste en un recueil de problèmes particuliers avec solutions
et ne peut donc être considéré comme un traité théorique qui aurait pour
souci de donner une méthode générale de résolution.

Quant aux méthodes dites ✭✭ de fausse position ✮✮ (simple ou double), qui ont
été utilisées pendant des siècles, elles fournissent des méthodes générales de
résolution des problèmes du premier degré, mais par des procédés purement
arithmétiques.

Il est admis par les spécialistes d’histoire des mathématiques que l’acte de
naissance officiel de l’algèbre en tant que discipline avec un nom, des objets,
des outils, des algorithmes, des preuves et des domaines d’application, a été
la publication d’un petit ouvrage intitulé Muh

¯
tas.ar f̄ı h. isāb al-jabr1 wa l-

muqābala (Abrégé de calcul par le jabr et la muqābala). Ce texte est l’œuvre
du savant d’origine persane Muh.ammad ibn Mūsā al-H

¯
ūwarizm̄ı2 (vers

780 - vers 850) qui travaillait à Baghdād, dans la Maison de la Sagesse,
fondée par le calife abbasside al-Ma’mūn. La dédicace au calife, qui régna
jusqu’en 833, permet de situer l’œuvre dans le temps.

1 Al-jabr (qui a donné naissance au mot algèbre) et al-muqābala sont les deux prin-
cipales opérations qui permettent de réduire les équations algébriques à une des formes
canoniques dont la solution est donnée dans le traité.

2 Comme son nom l’indique, il est originaire du H
¯
ūwarizm, région au sud de la mer

d’Aral.

203
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1 La fausse position simple chez les Égyptiens

De quoi s’agit-il ? Montrer comment les Égyptiens résolvaient des équations du premier degré
il y a quatre mille ans.

Analyser la méthode de fausse position simple et établir le lien avec les
tableaux de proportionnalité.

Enjeux Donner du sens au concept de linéarité en situant son émergence dans un
contexte historique et culturel.

Montrer par contraste la commodité de la méthode algébrique d’aujour-
d’hui. Cette méthode nécessitait une longue élaboration, comme en té-
moigne le chapitre 16.

De quoi a-t-on
besoin ?

Le problème 24 du Papyrus mathématique Rhind repris ci-après et proposé
en annexe à la page 469 sous une forme photocopiable pour les élèves.
Les quelques hiéroglyphes qu’il faut pouvoir décrypter pour comprendre le
problème sont donnés dans un petit lexique à la page 206 et en annexe à
la page 470.

Prérequis. – La résolution des équations du premier degré.

1.1 Introduction

L’une des méthodes utilisées depuis la plus haute Antiquité est ce qu’on
appelle la méthode de fausse position (simple). Elle consiste à donner une
valeur à l’inconnue, à opérer les calculs décrits dans l’énoncé puis, en fonc-
tion de l’erreur qui apparâıt, à ajuster la valeur donnée a priori à l’incon-
nue.

Nous nous proposons ici d’analyser cette méthode à partir du problème
24 du Papyrus mathématique Rhind conservé au British Museum (où il
est catalogué sous les numéros BM 10057 et BM 10058). Ce papyrus est
l’une des principales sources d’information sur les connaissances mathéma-
tiques égyptiennes. Outre des tables de multiplication, on y trouve quelque
quatre-vingt sept problèmes d’arithmétique et de géométrie, avec les solu-
tions.

1.2 Quelques caractéristiques des mathématiques
égyptiennes

Le système numérique utilisé par les Égyptiens de l’Antiquité est purement
décimal mais non positionnel.

Qu’il s’agisse de n’importe quelle opération, tout est ramené à des addi-
tions. Les mathématiques égyptiennes ont ainsi un caractère nettement
additif et linéaire.

Les Égyptiens emploient presque exclusivement les fractions de numérateur
1 (fractions unitaires). La technique qu’ils utilisent pour opérer les divisions
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favorise l’apparition de ce type de fractions. Il y a cependant une exception

pour la fraction
2
3

et le scribe semble avoir une certaine facilité à trouver les
deux tiers de n’importe quel nombre. En fait, les tables de multiplication
qui se trouvent au début du document sont des tables de multiplication
par deux des fractions unitaires à dénominateurs impairs (de 3 à 101).
Comme nous le verrons ci-dessous, la technique utilisée par le scribe lors

des multiplications est la ✭✭ duplication ✮✮. Pour dupliquer la fraction
1
5
, par

exemple, le scribe ne peut se satisfaire d’une réponse du type
2
5
. Il utilise

alors les tables qui lui donnent le résultat de l’opération exprimé en termes

de fractions unitaires : 2× 1
5

=
1
3

+
1
15

.

1.3 Quelques hiéroglyphes

En ce qui concerne l’écriture des nombres, il existe un symbole pour toute
puissance de 10, symbole qui se répète autant de fois qu’il est nécessaire
lors de l’écriture du nombre.

Ainsi, par exemple, 12 345 s’écrit de droite à gauche

Pour désigner une fraction (unitaire, rappelons-le), on utilise le symbole
qui se prononce rè et signifie bouche, ouverture.

1
3

s’écrit : et
1

123
: .

Il existe cependant deux exceptions, l’une pour
1
2

: et l’autre,

pour la fameuse fraction
2
3

: .
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Voici encore quelques hiéroglyphes utiles :

1.4 Opérations

Le scribe égyptien décrit en détail la technique qu’il utilise pour opérer
les multiplications et les divisions. Nous en verrons un exemple ci-après.
Par contre, il est totalement muet en ce qui concerne les additions et sous-
tractions. Le peu d’erreurs commises dans ces dernières opérations laisse
supposer qu’il disposait de tables, mais aucune n’est arrivée jusqu’à nous
et ce n’est donc là qu’une hypothèse. Peut-être apprenait-il des tables d’ad-
dition par cœur dès son plus jeune âge ?

La multiplication s’effectue par duplications successives. Par exemple, pour
effectuer 37× 47, le scribe procède ainsi :

\ 1 47
2 94

\ 4 188
8 376

16 752
\ 32 1 504
Total 37 1 739

Le scribe coche les termes qui interviennent effectivement dans le calcul.
Remarquons que ce tableau est un tableau de proportionnalité dans lequel
les lignes sont obtenues, soit en multipliant la ligne précédente par deux,
soit en additionnant des lignes sélectionnées en vue d’obtenir un résultat
bien déterminé (37 dans cet exemple).
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La division est traitée comme opération inverse de la multiplication. Ainsi,
pour diviser 133 par 9 1

2 , le scribe se demande par quoi il faut multiplier
9 1

2 pour obtenir 133.

1 9 1
2

\ 2 19
\ 4 38
\ 8 76
Total 14 133

1.5 Problème 24

Fig. 1 : Problème 24 du papyrus Rhind

Seule la partie supérieure de la figure 1 se trouve sur le papyrus. Il s’agit
d’un texte en écriture hiératique qui est l’écriture cursive du scribe. Les
égyptologues qui ont étudié le manuscrit l’ont transcrit en hiéroglyphes,
plus faciles à décrypter. Cette transcription apparâıt dans la partie infé-
rieure de la figure. Notons que le texte du papyrus Rhind est écrit de droite
à gauche.
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L’énoncé du problème apparâıt à la première ligne à droite. Le voici en
écriture hiératique :

et en hiéroglyphes :

Une traduction littérale en est :

Une quantité, un septième d’elle sur elle devenir elle en tant que 19,

ce que nous écririons aujourd’hui

x +
1
7
x = 19.

\ 1 7
\ 1

7 1

Total 11
7 8

Le scribe suppose au départ que la quantité cherchée vaut 7. Il
utilise la méthode de fausse position simple. Il choisit un nombre
qui permet d’éviter l’apparition trop rapide de fractions. Il calcule
alors la quantité et son septième : 7 + 1 = 8 (voir lignes 2 et 4 à
l’extrême droite de la figure 1).

1 8
\ 2 16

1
2 4

\ 1
4 2

\ 1
8 1

Total 21
4

1
8 19

Ce résultat est faux puisqu’il aurait dû trouver 19. Le raisonnement
qu’il tient alors est le suivant : la proportion de 19 à 8 est la même
que celle de la quantité cherchée à 7, nombre qu’il avait choisi au
départ pour des raisons de facilité. Il est ainsi amené à diviser 19
par 8 selon la méthode que nous avons exposée ci-dessus, c’est-à-
dire qu’il recherche par combien il faut multiplier 8 pour obtenir
19. Nous lisons cela à la colonne 2 (à partir de la droite), lignes 2,
3 et 4 et à la colonne 3, lignes 2 et 3.

\ 1 21
4

1
8

\ 2 41
2

1
4

\ 4 91
2

Total 7 161
2

1
8

Il obtient 2 1
4

1
8 , rapport de la proportion qu’il doit maintenant

multiplier par 7 (quatrième colonne, lignes 2, 3 et 4). Notons que
le scribe multiplie 2 1

4
1
8 par 7 et non 7 par 2 1

4
1
8 . Or, dans l’esprit

de la méthode de fausse position, lorsqu’on a trouvé le coefficient
de proportionnalité qui permet de passer de 8 à 19 (dans le se-
cond membre), il serait logique de multiplier ensuite 7 (la fausse
position) par ce même coefficient. Cette inversion de l’ordre des
facteurs, qui simplifie le calcul, semble indiquer que les Égyptiens
avaient une connaissance intuitive de la commutativité de la mul-
tiplication.
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\ 1 161
2

1
8

\ 1
7 21

4
1
8

Total 71
7 19

Dans la partie gauche du fragment, nous trouvons à la ligne 1 le
hiéroglyphe signifiant ✭✭ la quantité ✮✮, à la ligne 2, sa valeur, à
savoir 16 1

2
1
8 . À la ligne 3, le scribe ajoute son septième et vérifie

que cela fait bien un total de 19.

Le raisonnement qui sous-tend cette méthode de résolution peut être condensé
dans le tableau de proportionnalité suivant

x x +
x

7

×2
1

4

1

8

✞
✝❄

7

16
1
2

1
8

8

19
×2

1

4

1

8

�
✆❄

où on passe de la deuxième à la troisième ligne en multipliant par le facteur

2
1
4

1
8
. Le principe de la méthode se base sur la proportionnalité de x et x+x

7 .

La fausse position simple a été utilisée très longtemps. On la retrouve
notamment dans les textes arabes, dans le Liber abaci de Leonardo Fibo-
nacci (XIIIe siècle) et dans La summa de Luca Pacioli (XVe siècle).
Notons que l’inconnue peut être calculée à partir d’un rapport interne du
tableau, comme c’est le cas ici, mais également à partir du rapport externe,
comme nous le verrons à la page 213.

Échos des classes Les élèves ont été stupéfaits d’apprendre que les méthodes de résolution
anciennes n’étaient pas ✭✭ exactes ✮✮. Le fait qu’il fallait supposer une valeur
(qui avait toutes les chances d’être fausse) pour la réponse afin de la cor-
riger ensuite leur parâıt une démarche beaucoup plus lourde que l’algèbre
d’aujourd’hui.

Ils sont étonnés d’apprendre que les méthodes de résolution des équations
sont le fruit d’une évolution, qu’on n’a pas toujours procédé comme ac-
tuellement.

Ils estiment qu’il faudrait plus souvent introduire les chapitres du cours de
mathématique par un peu d’histoire, pour mieux en percevoir la portée.

Prolongements
possibles

Nous proposons en annexe à la page 471 les problèmes 25 et 27 du papyrus
Rhind, qui peuvent être traités de la même manière.

2 La double fausse position chez les Arabes

De quoi s’agit-il ? Comprendre la méthode de double fausse position à partir d’un exemple
extrait d’un texte attribué au juif espagnol Abraham ibn Ezra (Tolède,
vers 1089 – Rome, vers 1167).

Justifier la méthode en interprétant les différents éléments qui interviennent
dans la formule sur le graphique de la fonction linéaire liée au problème.
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Enjeux Voir les enjeux de la section 1 à la page 204. Cette activité illustre en
outre le pouvoir éclairant des graphiques linéaires (voir la section 5.3 à la
page 581).

De quoi a-t-on
besoin ?

Le texte attribué à Abraham ibn Ezra proposé ci-après et repris en
annexe à la page 473.

Prérequis. – La résolution des équations du premier degré et la repré-
sentation graphique des fonctions linéaires.

2.1 Introduction

Ying buzu (excédent et déficit), al-h
¯
at.a’ayn (l’erreur), regula duarum fal-

sarum positionum, regola delle doi false positioni, règle des plateaux de la
balance. Ce sont là quelques appellations qui toutes, désignent un même
procédé permettant de résoudre des problèmes exprimables par des équa-
tions linéaires à une inconnue ou par des systèmes linéaires à deux incon-
nues.

Cette fameuse règle des deux fausses positions était sans doute connue à
Baghdād à l’époque de l’algébriste al-H

¯
uwarizm̄ı dans la première moi-

tié du neuvième siècle. Nous l’illustrerons par un extrait d’un manuscrit
traduit de l’arabe en latin, intitulé Liber augmenti et diminutionis vocatus
numeratio divinationis ex eo quod sapientes Indi posuerunt quem Abraham
compilavit et secundum librum qui Indorum dictus est composuit, c’est-à-
dire le Livre sur l’agrandissement et la diminution nommé le calcul de la
conjecture d’après ce que les sages de l’Inde ont établi et qu’Abraham a
rassemblé et composé selon le livre appelé indien.

L’auteur arabe de cet ouvrage est inconnu ; certains historiens pensent
ou ont pensé qu’il pourrait s’agir d’Abū Kāmil Šuga ibn Aslam ibn
Muh.ammad al-h

¯
āsib al-Misr̄ı, qui florissait vers les années 900. D’autres

attribuent le texte, ou du moins sa traduction en latin, au juif espagnol
Abraham ibn Ezra. Le titre pourrait laisser croire que la paternité de
la règle revient aux savants indiens. Cependant la ressemblance de la ter-
minologie avec les expressions chinoises ying (excédent) et buzu (déficit)
donne à penser que cette règle, connue bien avant en Chine – voir à ce sujet
le chapitre sept du Jiuzhang Suanshu, titre généralement traduit par les
Neuf Chapitres sur l’Art du Calcul, qu’on peut dater d’un peu avant le dé-
but de notre ère –, ait pénétré dans la littérature arabe par un chemin qui
est passé par l’Inde ou par la ✭✭ route de la soie ✮✮. Il faut en effet constater
que, dans les ouvrages mathématiques indiens connus à ce jour, qui sont
antérieurs au douzième siècle, on ne trouve pas trace de cette règle.

Ce procédé de résolution d’équations linéaires se perpétue chez de nom-
breux auteurs arabes comme al-Karaǧ̄ı (mort vers 1025) et en Europe,
chez Leonardo Pisano Fibonacci au treizième siècle et chez Luca Pacioli
au quinzième.
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Le principe en est le suivant. On donne à l’inconnue deux valeurs ✭✭ quel-
conques3 ✮✮ qui se révèlent le plus souvent être de fausses valeurs et, à partir
de là, il est possible de calculer la solution vraie. Trois cas évidemment se
présentent :

– Les deux fausses valeurs sont plus petites que l’inconnue.

– Les deux fausses valeurs sont plus grandes que l’inconnue.

– L’inconnue se situe entre les deux fausses valeurs.

Le texte qui suit illustre la résolution d’un problème par la méthode de
double fausse position dans le cas où l’inconnue se situe entre les deux
fausses valeurs.

2.2 Un problème linéaire

Voici une traduction d’un extrait de l’ouvrage attribué à Abraham ibn
Ezra. Le texte original en latin est disponible en annexe à la page 472.

Après la louange à Dieu, voici ce qu’il est dit. J’ai écrit ce livre selon ce que les sages de l’Inde
ont découvert à propos du calcul de la conjecture, en examinant attentivement et en étudiant ce
qui est utile en soi, en persévérant dans cette direction et en en saisissant l’application pratique.
De cela donc, voici ce qu’il vient : soit un census4 duquel on ôte un tiers et un quart et il reste
huit. Que vaut le census ? Pour aborder son calcul, suppose un plateau de balance de douze
dont on considère un tiers et un quart ; tu ôtes ce tiers et ce quart qui font sept, il restera cinq.
Compare alors à huit, à savoir le reste du census et il t’apparâıtra clairement que tu as fait une
erreur de trois en déficit : mets cela de côté et suppose ensuite que tu places sur le plateau de la
balance une seconde quantité, qui est divisée par la première, que ce soit vingt-quatre, et ôte le
tiers et le quart qui font quatorze, il restera dix. Compare alors cela à huit, à savoir le reste du
census. Et c’est ainsi qu’il t’apparâıtra clairement que tu as commis une erreur de deux en plus.
Multiplie donc l’erreur du dernier plateau de la balance qui vaut deux par le premier plateau
qui vaut douze et il viendra 24. Et multiplie l’erreur du premier plateau, erreur qui vaut trois,
par le dernier plateau, qui vaut 24, et on obtiendra 72. Additionne donc 24 et 72, et cela car
l’une des erreurs est par défaut et l’autre par excès. Mais si les deux étaient par défaut ou par
excès, tu soustrairais la plus petite de la plus grande. Donc après avoir ajouté vingt-quatre et
septante-deux, le résultat sera nonante-six ; ensuite ajoute les deux erreurs qui valent trois et
deux, il viendra cinq ; ensuite donc nonante-six par cinq qui est ce à quoi on est arrivé, il te
viendra dix-neuf drachmes et un cinquième de drachme.
Par cette règle, il s’ensuit que tu poses douze pour la chose inconnue et tu ôtes son tiers et son
quart et il restera cinq ; comment récupérer douze ? La chose effectivement inconnue. Il faut en
fait deux et deux cinquièmes : multiplie donc deux et deux cinquièmes par huit et il viendra
dix-neuf et un cinquième.

Remarquons tout d’abord que, même s’il est question de census, ce pro-
blème est en fait un problème du premier degré. L’auteur nous explique la
règle des plateaux de la balance (figure 2).

3 En fait, elles sont généralement ✭✭ bien choisies ✮✮ pour simplifier les calculs.
4 Terme désignant le carré de l’inconnue recherchée.
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12

3

8

24

2

Fig. 2

La première fausse position qu’il choisit est 12. C’est une valeur dont il est
facile de soustraire le tiers et le quart. On trouve 5, c’est-à-dire qu’il y a
un déficit de 3 par rapport à la valeur 8 qu’il faudrait obtenir. On place
ce 3 en-dessous du plateau de la balance qui contient la valeur 12, comme
le montre la figure 2. On recommence l’opération pour la seconde fausse
position, dont la valeur choisie est 24. Le résultat 10 présente un excès de
2 par rapport à la valeur attendue 8. Cette valeur 2 est placée au-dessus
du deuxième plateau. Il faut ensuite effectuer l’opération suivante :

2× 12 + 3× 24
2 + 3

=
96
5
.

La traduction moderne du problème nous donne l’équation

x− x

3
− x

4
= 8 ou

5x
12

= 8 (*) c’est-à-dire x =
96
5
.

Nous constatons que la réponse obtenue par la méthode de fausse position
est bien celle que nous trouvons en résolvant l’équation (*). Comment
pouvons-nous expliquer cela ?

Représentons graphiquement la fonction linéaire y =
5x
12

qui correspond
au premier membre de l’équation (*). La valeur de cette fonction est

5 pour x = 12,
10 pour x = 24,

comme le montre la figure 3.

0 12 X 24

5

8

10

X ± 12

24 ± X

3

2

x

y

Fig. 3
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La valeur cherchée est celle, notée X, pour laquelle la fonction prend la
valeur 8. La figure montre deux triangles rectangles semblables, dont les
bases sont respectivement X − 12 et 24 − X, et dont les hauteurs sont 3
et 2. Les relations de proportionnalité entre les mesures des côtés de deux
figures semblables nous permettent d’écrire

X− 12
24−X

=
3
2
.

Résolvons cette équation sans effectuer les multiplications,

2 · (X− 12) = 3 · (24−X),

2X− 2× 12 = 3× 24− 3X,

2X + 3X = 2× 12 + 3× 24 (3 + 2)X = 2× 12 + 3× 24,

et finalement
X =

2× 12 + 3× 24
2 + 3

.

Nous retrouvons ainsi la formule de la double fausse position.

L’auteur tente de convaincre le lecteur de la généralité de sa méthode en
multipliant les exemples. Il justifie à chaque fois le résultat obtenu en trai-
tant le problème d’une autre manière. Ainsi, dans le dernier paragraphe,
il termine son exposé en résolvant l’équation par la méthode de fausse
position simple.

La fausse position choisie est 12, ce qui donne 5 pour la valeur de x− x

3
− x

4
.

Il se demande alors par combien il faut multiplier 5 pour retrouver 12 ; il
cherche donc le facteur qui permet de passer de la deuxième colonne du
tableau ci-dessous à la première. Il trouve 22

5 , qu’il multiplie par 8 pour

trouver la solution 19
1
5
. Remarquons que comme dans le problème 24 du

papyrus Rhind, l’ordre des facteurs est inversé.

x x− x

3
− x

4
12 5

19
1
5

8

×22
5

←−

Voici donc un exemple de fausse position simple où l’inconnue est calculée
à partir du rapport externe du tableau de proportionnalité.

Prolongement
possible

La règle peut être appliquée aux problèmes généraux du premier degré.
Soit l’équation

ax + b = y.

Considérons les deux fausses positions x1 et x2 qui produisent les deux
valeurs y1 et y2.
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xx x

y

y

y

∆

∆

1 2

1

2

1

2

Fig. 4

ax1 + b = y1

ax2 + b = y2

∆1 = |y1 − y|
∆2 = |y2 − y|

Dans la figure ci-dessus, qui illustre le cas où la valeur cherchée est située
entre les deux fausses positions, nous avons

∆1 = |y1 − y| = y − y1 = a(x− x1),

∆2 = |y2 − y| = y2 − y = a(x2 − x).

De l’expression de la proportion
∆1

∆2
=

x− x1

x2 − x
, on peut tirer la valeur de

x qui vaut

x =
x2∆1 + x1∆2

∆1 + ∆2
.

Ceci montre que la valeur de x obtenue par la règle de la balance peut
encore être interprétée comme le barycentre des deux fausses positions x1

et x2, munies des poids ∆2 et ∆1.

Un raisonnement similaire permet d’établir la formule dans les cas où les
deux fausses positions sont, soit plus petites, soit plus grandes que l’incon-
nue. Nous obtenons

x =
x2∆1 − x1∆2

∆1 −∆2
ou x =

x1∆2 − x2∆1

∆2 −∆1
,

en tenant compte du fait que toutes les quantités qui interviennent dans le
calcul sont nécessairement positives (✭✭ Mais si les deux étaient par défaut
ou par excès, tu soustrairais la plus petite de la plus grande. . . ✮✮, nous
indique Abraham ibn Ezra).

Échos des classes Les élèves ont été surpris de voir que les problèmes de mathématique pou-
vaient être résolus en langage courant, par un texte dépourvu de formules,
mais que c’était ✭✭ encore plus compliqué qu’avec des maths ✮✮. Après avoir
constaté les difficultés et la lourdeur de ce mode d’expression, ils acceptent
mieux le formalisme actuel dont l’utilité leur parâıt plus évidente, et sur-
tout perçoivent que ✭✭ ce n’est qu’une question de convention ✮✮.
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3 Les combinaisons linéaires chez Léonard de Pise

De quoi s’agit-il ? Montrer comment Léonard de Pise, dit Fibonacci résout un système li-
néaire indéterminé.

Enjeux Introduire et travailler la notion de combinaison linéaire. Celle-ci est une
généralisation du rapport interne (voir la section 7.3 à la page 589).

De quoi a-t-on
besoin ?

Le texte du problème des oiseaux ci-dessous, repris en annexe à la page
475.

3.1 Introduction

On possède peu de renseignements sur Léonard de Pise, autres que ceux
qu’il nous livre dans le prologue du Liber abaci : son père était publicus
scriba, scribe pour les commerçants de Pise, à la douane de Bougie, en
Algérie. Il fit venir auprès de lui le jeune Léonard afin de lui faire ap-
prendre au contact des Arabes, les méthodes de calcul au moyen de figures
indiennes (ce que nous appelons ✭✭ chiffres arabes ✮✮). Plus tard, Fibonacci
parcourra tout le bassin méditerranéen (Égypte, Syrie, Grèce, Sicile, Pro-
vence) pour étancher sa soif de savoir. Il a contribué à répandre en Occident
l’arithmétique basée sur la numération de position (chiffres indo-arabes).

Dans le chapitre onze du Liber abaci, Fibonacci introduit la notion de
✭✭ compensation ✮✮ des monnaies ; ce sont des problèmes de proportion-
nalité qui montrent comment calculer le nombre de livres-monnaie qu’on
peut battre à partir d’un certain nombre de livres-poids d’argent, lorsqu’on
se fixe un taux d’argent dans l’alliage de la livre-monnaie. La technique
de résolution qu’il expose à cette occasion lui permet, plus loin dans le
chapitre, de résoudre des équations diophantiennes (dans l’ensemble des
fractions positives) indéterminées. Voici le texte d’un de ces problèmes où
l’auteur utilise des combinaisons linéaires pour rechercher des solutions.
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3.2 Le problème des oiseaux

De homine qui emit aves triginta trium generum pro denariis 30

Le texte original en latin est disponible en annexe à la page 474. En voici
la traduction.

De l’homme qui a acheté trente oiseaux de trois espèces pour 30 deniers

Quelqu’un a acheté 30 oiseaux pour 30 deniers, parmi lesquels il y a des perdrix, des colombes et
des moineaux. En fait, il a acheté les perdrix pour 3 deniers, les colombes pour 2 et 2 moineaux
pour 1 denier, à savoir 1 moineau pour 1

2 denier. On demande combien d’oiseaux de chaque
espèce il a achetés. Divise 30 deniers par 30 oiseaux, il viendra 1 denier. Je dis donc que j’ai de
l’argent-monnaie à 1

2 et à 2 et à 3 ; et je veux faire de l’argent-monnaie à 1. En effet, dans de
semblables questions, nous devons procéder par la méthode des compensations, puisque nous
avons un nombre entier d’oiseaux. C’est pourquoi, pour que l’espèce des oiseaux les moins chers
soit compensée en nombre par les espèces plus chères, tu dois dire : j’ai de l’argent-monnaie à 1

2
et à 2 et à 3 et je veux faire de l’argent-monnaie à 1, c’est-à-dire j’ai de l’argent-monnaie à 1 et
à 4 et à 6 et je veux faire de l’argent-monnaie à 2. Fais des moineaux et perdrix une première
compensation et il y aura 5 oiseaux pour 5 deniers, à savoir 4 moineaux et 1 perdrix ; et, des
moineaux avec les colombes, fais-en une seconde ; et tu auras 3 oiseaux pour 3 deniers, à savoir
2 moineaux et 1 colombe. Ensuite, pour avoir 30 oiseaux compensés, tu prendras trois fois la
première compensation dans laquelle il y aura 12 moineaux et 3 perdrix. Et il restera 15 oiseaux
compensés, pour lesquels tu prendras cinq fois la seconde compensation et tu auras 10 moineaux
et 5 colombes. Et ainsi, en ce qui concerne les 30 oiseaux dont il a été question auparavant, il y
aura 22 moineaux et 5 colombes et 3 perdrix, comme il est montré en marge. Et tu dois savoir
que, de ce qui est suscrit, tu peux avoir autant d’oiseaux qu’on voudra pour la même quantité
de deniers au-delà de 15, mais en deçà, ce n’est pas possible, si ce n’est pour 13 et 11 et 8. En
vérité, dans le cas des 13 oiseaux, la première compensation apparâıtra deux fois et la seconde,
une fois. Et pour 11 oiseaux, la seconde compensation apparâıtra deux fois et la première, une
fois. Et pour 8 oiseaux, chacune des compensations apparâıtra une fois.

Le système linéaire qui traduit ce problème est{
3x + 2y +

z

2
= 30,

x + y + z = 30.

Fibonacci observe tout d’abord que, pour acheter 30 oiseaux pour 30
deniers, il faut constituer des ensembles de n oiseaux pour n deniers de
manière que l’espèce des oiseaux les moins chers soit compensée en nombre
par les espèces plus chères. Réaliser une telle égalité avec trois espèces
d’oiseaux semble difficile ; une manière de simplifier le problème consiste
à rechercher des combinaisons de deux espèces d’oiseaux dans la même
proportion.

Fibonacci observe que

1× 3 + 4× 1
2

= 5,

ce qui lui fournit un ensemble de cinq oiseaux (une perdrix et quatre
moineaux) pour cinq deniers (ensemble E1 du tableau ci-dessous).
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Il observe encore que

1× 2 + 2× 1
2

= 3,

ce qui lui donne cette fois un ensemble de trois oiseaux (une colombe et
deux moineaux) pour trois deniers (ensemble E2 du tableau ci-dessous).

En considérant une combinaison linéaire convenable des deux relations
qui précèdent, il obtiendra alors trente oiseaux pour trente deniers. Cette
combinaison linéaire consiste à prendre trois fois le premier ensemble de
volatiles et cinq fois le second (E = 3E1 + 5E2).

perdrix colombes moineaux nombre coût
à 3 deniers à 2 deniers à 1/2 denier d’oiseaux

E1 1 4 1+4=5 1× 3 + 4× 1
2 = 5

E2 1 2 1+2=3 1× 2 + 2× 1
2 = 3

E 3 5 3× 4 + 5× 2 = 22 3+5+22=30 3× 3 + 5× 2 + 22× 1
2 = 30

L’ensemble E = 3E1+5E2 fournit bien une solution du problème, puisqu’il
s’agit d’un ensemble de 30 oiseaux, de trois espèces différentes pour une
somme de 30 deniers.

L’auteur termine en nous signalant qu’il est possible de trouver des com-
binaisons linéaires qui réalisent des ensembles de n’importe quel nombre n
d’oiseaux pour n deniers, si n est supérieur à 15. Mais pour n inférieur à
15, il affirme que le problème n’est possible que pour 8, 11 et 13 oiseaux,
et il décrit la combinaison qui fournit la solution dans chacun des cas.

Montrer qu’il y a une solution pour toute valeur de n supérieure à 15.
Fibonacci n’a-t-il pas oublié une possibilité pour n inférieur à 15 ?

On peut obtenir

16 oiseaux pour 16 deniers par la combinaison 2E1 + 2E2,

17 oiseaux pour 17 deniers par la combinaison 1E1 + 4E2,

18 oiseaux pour 18 deniers par la combinaison 3E1 + 1E2,

et à partir de là, on obtient 19, 20 et 21 oiseaux en ajoutant 1E2 à chacune
des combinaisons précédentes, et ainsi de suite.

On peut aussi obtenir 14 oiseaux pour 14 deniers par la combinaison 1E1+
3E2.
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Introduction au calcul vectoriel

Avant-propos

Au fil de leur parcours scolaire, les élèves ont calculé, d’abord avec des
nombres, ensuite avec des lettres qui représentent des nombres. Afin de les
motiver, on leur annonce qu’on va leur faire découvrir quelque chose de
nouveau sur le plan du calcul. Ce nouveau mode de calcul permettra de
traduire des problèmes géométriques sous forme algébrique. En troisième
année, les élèves ont déjà vu qu’ils peuvent associer une équation à toute
droite du plan. Ils ont vu l’intérêt de cette association et peuvent com-
prendre qu’un outil algébrique performant peut être utile pour faire de la
géométrie plus évoluée.

L’introduction au calcul vectoriel est conçue de manière très intuitive à
la section 1. Cependant, après ce démarrage en douceur, les problèmes
résolus à la section 2 exploitent de manière très profonde le concept de
combinaison linéaire.

Le lecteur intéressé par l’émergence du concept de vecteur et les débuts
du calcul vectoriel trouvera au chapitre 14 une brève anthologie de sources
historiques commentées.

1 Vers un nouveau mode de calcul

De quoi s’agit-il ? Montrer des objets mathématiques sur lesquels agissent l’addition vecto-
rielle et la multiplication par un scalaire : les vecteurs déplacements dans
le plan et dans l’espace, les polynômes et les suites arithmétiques.

Enjeux Faire apparâıtre une structure commune et dégager la notion d’espace vec-
toriel. On trouvera, à la section 7 du chapitre 16, des commentaires qui
permettent de situer les vecteurs et les combinaisons linéaires dans le dé-
veloppement global de l’idée de linéarité de la maternelle jusqu’à dix-huit
ans. Sur l’usage essentiel fait ci-dessous du plan quadrillé, voir au même
chapitre la section 7.6.

Matières couvertes

Vecteurs : composantes, somme, produit par un nombre, relation de Chasles,
propriétés du calcul vectoriel, combinaisons linéaires.

218
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Compétences

Décomposer un vecteur suivant deux directions et lui associer un couple
de nombres.

Construire la somme de vecteurs et lui associer un couple de nombres.

Utiliser le théorème de Thalès pour construire le produit d’un vecteur par
un nombre et lui associer un couple de nombres.

De quoi a-t-on
besoin ?

Un plan de Manhattan, ou de l’Ensanche à Barcelone, ou de tout autre
quartier dont les rues forment un quadrillage régulier.

Des feuilles A4 recouvertes d’un quadrillage de 1 cm de côté, d’autres
recouvertes d’un réseau de parallélogrammes, d’autres encore d’un réseau
de triangles. D’autres feuilles encore, où certains points sont marqués sur
le quadrillage. Ce matériel peut être obtenu par photocopie des documents
fournis en annexe aux pages 477 à 485 et reproduits en petit dans les figures
1 à 14.

Fig. 1 : quadrillage Fig. 2 : réseau de parallélogrammes

Fig. 3 : réseau de triangles
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1.1 Opérations sur les nombres réels

Comment s’y
prendre ?

Avant d’introduire ce nouveau mode de calcul portant sur des éléments
géométriques, le professeur peut commencer par faire un état des lieux des
connaissances des élèves concernant les règles du calcul sur les nombres.
Les élèves connaissent les règles de calcul et les propriétés de l’addition et
de la soustraction, de la multiplication et de la division des nombres réels,
mais ne sont pas forcément capables de leur donner un nom. Ils connaissent
le rôle du ✭✭ zéro ✮✮ pour l’addition et du ✭✭ un ✮✮ pour la multiplication, mais
n’ont peut-être pas la notion de ✭✭ neutre ✮✮. Il peut être intéressant de
commencer l’activité par une mise en ordre des propriétés de l’addition
et de la multiplication des réels ; la synthèse qui interviendra à la fin de
l’activité prendra plus de sens et plus de force si elle s’appuie sur une
comparaison avec les propriétés du calcul sur les nombres.

Le relevé de ces propriétés prend la forme d’une première étape de forma-
lisation et d’une mise en place du vocabulaire adéquat.

Les propriétés de l’addition des nombres réels

1. La somme de deux nombres réels existe toujours et est un nombre
réel.

2. La somme des réels est associative, cela signifie que, si on souhaite
additionner trois réels, on peut les associer de manières différentes
sans changer le résultat

(a + b) + c = a + (b + c).

3. Le nombre 0 est neutre pour l’addition, cela signifie que si on l’ajoute
à n’importe quel nombre réel (ou si on lui ajoute n’importe quel
nombre), le résultat de la somme est ce nombre lui-même

a + 0 = a = 0 + a.

4. Chaque réel a possède un opposé noté −a, c’est le nombre qu’il faut
lui ajouter pour obtenir le neutre 0

a + (−a) = 0 = (−a) + a.

5. La somme des réels est commutative, ce qui signifie que dans une
somme, on peut changer l’ordre des termes

a + b = b + a.

Ces cinq propriétés peuvent être résumées en disant que l’ensemble des
nombres réels, noté R, est un groupe commutatif pour l’addition.

Parmi les propriétés évoquées ci-dessus, quelles sont celles que possède
la soustraction des nombres réels ?

La soustraction n’est ni associative ni commutative. L’existence d’un neutre
soulève un problème plus subtil. Les élèves observent que

a− 0 = a mais que 0− a �= a.
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Le nombre 0 est donc neutre pour la soustraction lorsqu’il est placé à droite
de a, mais pas lorsqu’il est placé à gauche. Ceci ne peut se produire que
pour une opération non commutative, ce qui est le cas de la soustraction.
Tandis que dans l’addition (ou toute autre opération commutative), le
neutre à droite est forcément aussi neutre à gauche.

Tout ceci montre bien que l’addition fonctionne, en un certain sens, mieux
que la soustraction et c’est pourquoi la soustraction d’un nombre peut être
redéfinie comme l’addition de son opposé

a− b = a + (−b).

Les propriétés de la multiplication

1. Le produit de deux nombres réels existe toujours et est un nombre
réel1.

2. Le produit des réels est associatif, cela signifie que, si on souhaite
multiplier trois réels, on peut les associer de manières différentes
sans changer le résultat

(a · b) · c = a · (b · c).

3. Le nombre 1 est neutre pour la multiplication, cela signifie que si on
multiplie n’importe quel nombre réel par 1 (ou si on multiplie 1 par
ce nombre), le résultat du produit est ce nombre lui-même

a · 1 = a = 1 · a.

4. Chaque réel a �= 0 possède un inverse noté
1
a
, c’est le nombre par

lequel il faut le multiplier pour obtenir le neutre 1

a · 1
a

= 1 =
1
a
· a.

5. Le produit des réels est commutatif, ce qui signifie que dans un pro-
duit, on peut changer l’ordre des facteurs

a · b = b · a.

Ces cinq propriétés peuvent être résumées en disant que l’ensemble des
nombres réels non nuls, noté R0, est un groupe commutatif pour la multi-
plication.

Parmi les propriétés évoquées ci-dessus, quelles sont celles que possède
la division des nombres réels ?

Tout comme la soustraction des nombres réels, la division n’est ni associa-
tive, ni commutative. Le neutre 1 est neutre à droite mais pas à gauche.

1 Le quotient de deux nombres réels n’est pas toujours un réel. Il faut enlever 0 pour
que la division soit une opération interne. Les propriétés de la multiplication décrites
ici restent vraies dans l’ensemble des réels non nuls, y compris la première, puisque le
produit de deux réels ne peut être nul que si l’un des facteurs est nul.
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Comme pour la soustraction, on peut remplacer la division par un nombre
par la multiplication par son inverse

a : b = a · 1
b
.

Le professeur qui le souhaite peut formaliser davantage l’énoncé de ces
propriétés en introduisant les quantificateurs ∀ et ∃, qui peuvent être perçus
dans ce contexte comme des abréviations utiles. Il faudra cependant éviter
de rebuter les élèves par une formalisation exagérée, tout dépend de la
classe que l’on a devant soi. Il convient de garder à l’esprit que le but
premier de cette activité n’est pas d’arriver à une définition axiomatique
d’un espace vectoriel, mais bien d’en donner une approche intuitive et de
dégager les propriétés du calcul vectoriel pour les mettre en œuvre par la
suite.

Échos des classes Cette mise au point concernant les opérations sur les nombres réels s’est
imposée d’elle-même dès qu’on a voulu comparer les propriétés du calcul
sur les déplacements (ou sur les couples de composantes) aux propriétés
du calcul dans R.

1.2 Déplacements dans un plan

Comment s’y
prendre ?

Ces mises au point étant faites, plus ou moins rapidement suivant les
connaissances de la classe, le professeur annonce clairement la mise en
place d’un nouveau mode de calcul, sur des objets géométriques, avec des
opérations d’addition et de multiplication qu’il faudra comparer, du point
de vue de leurs propriétés, avec les opérations bien connues sur les nombres.

Le début de cette activité reprend des idées assez simples, qui sont sans
doute familières aux élèves depuis le premier degré. Une approche similaire
leur a probablement été proposée lors de l’introduction des repères et des
coordonnées. Même si la description du début de cette activité semble
longue, le travail initial sur le quadrillage ne devrait donc pas prendre
beaucoup de temps ; il est néanmoins nécessaire pour préparer la suite.

On montre aux élèves un plan de Manhattan (ou de Barcelone) et on leur
pose les questions suivantes.

Comment indiquer le chemin qui mène d’un point quelconque de cette
ville à un autre ?
Ce chemin est-il unique ?
Y a-t-il plusieurs chemins de même longueur ?
Y a-t-il des chemins plus courts que les autres ?

Après une première discussion, on fournit à chaque élève une feuille munie
d’un quadrillage sur lequel sont marqués quatre points A, B, C et D, les
mêmes pour tous les élèves (figure 4).
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A

B

C

D

Fig. 4 : 4 points sur un quadrillage

On leur demande de dessiner différents chemins qui mènent
de A à B sur le quadrillage, sans contrainte de longueur, et
de trouver ensuite une manière de décrire ces chemins à leurs
condisciples. Ils vont probablement imaginer un codage du type
droite, gauche, haut, bas ou encore nord, sud, est, ouest.
La plupart d’entre eux décriront leur chemin de l’une de ces
façons

• 7 à droite, 6 en haut,

• 2 à droite, 2 en haut, 3 à droite, 4 en haut, 2 à droite,

• 5 à droite, 2 en haut, 2 à droite, 4 en haut,

que nous noterons

• 7d, 6h,

• 2d, 2h, 3d, 4h, 2d,

• 5d, 2h, 2d, 4h.

Tous ces chemins sont de même longueur, mais il apparâıt
bien vite que les messages longs et compliqués sont susceptibles
d’être mal compris et entrâınent des erreurs.

La contrainte supplémentaire de simplifier les indications au maximum
s’impose alors d’elle-même. Ainsi, en regroupant les déplacements2 vers la
droite et vers le haut, on obtient pour tous ces chemins : 7d, 6h ou 6h, 7d.
Dans ce codage, l’ordre dans lequel on note les déplacements horizontaux
et verticaux n’a pas d’importance.

Certains élèves auront dessiné un chemin plus long, comme par exemple
1h, 1g, 2h, 6d, 1h, 2d, 2h, ce qui donne après regroupement des déplace-
ments dans le même sens 8d, 1g, 6h.

Le message peut encore être réduit en observant que le déplacement de 1
vers la droite est compensé par le déplacement de 1 vers la gauche, ainsi
on obtient également 7d, 6h.

Tous les chemins de A à B peuvent donc s’écrire 7d, 6h après regroupement
des déplacements dans une même direction et en soustrayant ceux qui vont
en sens contraires. Notons AB le déplacement de A à B obtenu après cette
réduction. De la même manière, le déplacement AC pourra s’écrire 4g, 3h
et AD, 1g, 6b. D’autres déplacements comme BC ou CD peuvent être
examinés si nécessaire. Inversement, les élèves constateront qu’il leur est
toujours possible de placer sans ambigüıté le point P tel que AP s’écrit
2d, 8b.

Une activité similaire est alors proposée sur une feuille munie d’un réseau
de parallélogrammes (figure 5).

2 Dans ce contexte, le mot déplacement utilisé tout d’abord dans un sens näıf, sera
précisé peu à peu au cours de l’activité.
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A

B

C

D

Fig. 5 : 4 points sur un réseau de parallélogrammes

S

N

O

E

Fig. 6 : codage

Les symboles de codage d, g, h, b ne conviendront sans doute plus pour dé-
crire les chemins sur cette figure. Les élèves ne manqueront pas de suggérer
un codage adéquat. Pour la suite de cette discussion, nous adopterons le
codage illustré par la figure 6, par analogie avec les plans des villes.

Les déplacements AB, AC et AD s’écrivent alors

• AB : 2E, 6N,

• AC : 6W, 2N,

• AD : 3E, 6S ;

et le point E tel que BE s’écrit 5W, 4S peut être placé sans ambigüıté.

On peut alors s’interroger sur la nécessité de disposer de quatre symboles
de codage puisqu’il n’y a en fait que deux directions, et sur chacune d’entre
elles deux sens. Les élèves, qui ont déjà manipulé des repères auparavant,
proposeront par exemple de garder d et h pour le quadrillage (E et N pour le
réseau de parallélogrammes) et de compter négativement les déplacements
vers la gauche et vers le bas (vers l’ouest et le sud). Ceci revient à orienter
chacune des deux directions privilégiées sur ces grilles. Dans cette nouvelle
optique, on écrira −3d, 5h au lieu de 3g, 5h et −5d,−8h au lieu de 5g, 8b.
C’est donc bien l’introduction des nombres négatifs qui nous permet de
réduire à deux le nombre des symboles de codage. Ainsi, tout déplacement
sur une de ces grilles pourra être représenté par une expression du type
αd, βh ou βh, αd, où α et β sont des nombres entiers, positifs ou négatifs.

Est-il possible de simplifier encore le codage pour ne garder que les deux
nombres ?

Le professeur amènera les élèves à la conclusion qu’il faut convenir d’un



1. Vers un nouveau mode de calcul 225

ordre pour énoncer ces nombres. Par exemple, si le premier nombre re-
présente le déplacement sur la direction gauche-droite, et le deuxième, le
déplacement sur la direction bas-haut, il n’y aura plus d’ambigüıté.

Ainsi, sur le quadrillage,

• 7d, 4h est noté
(

7
4

)
;

• 3g, 5h est noté
(
−3

5

)
;

• 5g, 8b est noté
(
−5
−8

)
.

Il convient d’insister sur l’importance de la convention à propos de la dis-
position des nombres. En effet, s’il est indifférent d’écrire 7d, 4h ou 4h, 7d

pour désigner univoquement le déplacement AB, le couple
(

7
4

)
repré-

sente le déplacement 7d, 4h, c’est-à-dire AB, tandis que le couple
(

4
7

)
représente le déplacement 4d, 7h, différent de AB.

Nous avons choisi de disposer les couples sous forme de colonnes pour
préparer le vecteur colonne du calcul matriciel et pour éviter la confusion
avec les couples de coordonnées (le lien sera explicité plus tard). De plus,
les différentes opérations sur les couples, qui se font terme à terme, se
voient mieux dans cette disposition où les termes correspondants sont sur
une même ligne.

Dans les deux cas qui viennent d’être examinés, il apparâıt que deux direc-
tions suffisent pour décrire un déplacement quelconque sur le réseau. Les
élèves reçoivent alors une feuille munie d’un réseau triangulaire et on leur
demande de décrire les déplacements de A à B et de A à C (figure 7).

Peut-on encore décrire ces déplacements au moyen de deux symboles ?

A

B

C

Fig. 7 : 3 points sur un réseau triangulaire

i

kj

Fig. 8 : orientation
des 3 directions

Trois directions privilégiées, que nous noterons i, j, k, se dégagent sur le
réseau de triangles. Munissons chacune d’une orientation : de gauche à
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droite pour la direction i, de bas en haut pour les directions j et k,
comme le montre la figure 8. Pour décrire le déplacement AB, les élèves
proposeront spontanément 2i, 4j qui semble le plus naturel, tandis que
pour AC, ils pourraient proposer 1i, 3k, ou 1j, 2k, ou encore −2i, 3j, ou
même−1i, 2j, 1k. Il apparâıt néanmoins que deux symboles suffisent encore
pour décrire les déplacements sur le réseau triangulaire ; une façon de s’en
convaincre est de remarquer que, si on supprime une des trois directions,
on ne modifie pas les nœuds du réseau. Cependant, il n’y a plus unicité
de l’écriture puisque les élèves proposent différentes solutions, suivant les
deux directions qu’ils ont choisies parmi les trois directions du réseau. Il
est cependant possible de passer d’une écriture à une autre si on remarque
que

• 1i, 1k peut remplacer 1j ;

• 1j,−1k peut remplacer 1i ;

• −1i, 1j peut remplacer 1k.

On demande aux élèves de le vérifier sur les différentes formes proposées
pour AC.

Peut-on écrire AB en utilisant seulement i, k ou j, k ?

AB peut s’écrire 6i, 4k ou 6j,−2k. Les déplacements sur le réseau trian-
gulaire peuvent donc également s’exprimer au moyen de deux directions,
mais il faudra faire un choix parmi i, j, k. Ils pourront donc être représentés
par des couples de différentes manières.

• Pour le choix des directions i, j, dans cet ordre,

– AB sera représenté par le couple
(

2
4

)
;

– AC sera représenté par le couple
(
−2

3

)
;

– BC sera représenté par le couple
(
−4
−1

)
.

• Pour le choix des directions i, k, dans cet ordre,

– AB sera représenté par le couple
(

6
4

)
;

– AC sera représenté par le couple
(

1
3

)
;

– BC sera représenté par le couple
(
−5
−1

)
.

• Pour le choix des directions j, k, dans cet ordre,

– AB sera représenté par le couple
(

6
−2

)
;

– AC sera représenté par le couple
(

1
2

)
;

– BC sera représenté par le couple
(
−5

4

)
.
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On peut à nouveau conclure que deux directions suffisent pour décrire
tous les déplacements, mais que les couples associés à chaque déplacement
dépendent du choix des deux directions. Cependant, dès que deux direc-
tions orientées ont été choisies dans un ordre déterminé, le couple associé
à chaque déplacement est unique.

Échos des classes Le travail sur le quadrillage et le réseau de parallélogrammes se fait rapide-
ment. Les élèves sont plongés dans le contexte familier du repérage dans le
plan. Ils conçoivent facilement que deux nombres suffisent pour décrire un
déplacement et qu’il est nécessaire d’adopter une convention pour l’ordre
de ces deux nombres.

Le travail sur le réseau triangulaire prend plus de temps (une période de
cours) mais permet de faire progresser considérablement toute une série
d’intuitions concernant l’expression des vecteurs dans une base.

Même si on ne prononce pas des expressions comme dépendance linéaire,
indépendance linéaire, famille libre, famille génératrice, les élèves perçoivent
intuitivement que, dès qu’on se donne deux déplacements de directions dif-
férentes, ils engendrent tous les déplacements du plan. De plus, l’activité
montre clairement que les deux déplacements ✭✭ de base ✮✮ déterminent uni-
voquement les composantes des déplacements, mais que ces composantes
sont différentes chaque fois que l’on change de base. Les élèves comprennent
aussi qu’il est possible de calculer les composantes des déplacements dans
une nouvelle base dès qu’on connâıt les composantes des déplacements
dans l’ancienne et les composantes des déplacements de l’ancienne base
dans la nouvelle (c’est ce que l’on fait quand on remarque que 1i, 1k peut
remplacer 1j, par exemple).

1.3 Opérations sur les déplacements

Comment s’y
prendre ?

Pour définir les opérations sur les déplacements, revenons dans le plan
muni d’un quadrillage et de quatre points comme dans la figure 9.

A

B
C

D

Fig. 9 : Addition de déplacements.
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Addition de déplacements

Premier cas : l’origine du second déplacement cöıncide avec l’extrémité
du premier.

Si après le déplacement AB noté
(

7
4

)
, on effectue le déplacement BC

noté
(
−10

1

)
, on s’est déplacé de A en C. On demande aux élèves de

décrire le déplacement AC. Deux modes de pensée peuvent guider leur
réflexion.

Certains d’entre eux penseront à regarder AC sur le dessin et diront que

AC se note
(
−3

5

)
. On leur pose alors la question suivante.

Une relation existe-t-elle entre les trois couples de nombres, et si oui,
laquelle ?

Les élèves constatent facilement que

−3 = 7 + (−10) et 5 = 4 + 1.

Cette observation nous incite à parler d’addition de déplacements. Cette
opération sera notée

AB + BC = AC

et pour les couples correspondants(
7
4

)
+

(
−10

1

)
=

(
−3

5

)
.

D’autres penseront à réinterpréter les couples en termes de déplacements
horizontaux et verticaux. En effectuant BC après AB, le déplacement ob-
tenu est 7 à droite suivi de 10 à gauche, et 4 vers le haut suivi de 1 vers
le haut. Ils concluront que le résultat est donc 3 à gauche et 5 en haut, ce

qui correspond au couple
(
−3

5

)
. L’opération qu’ils font spontanément

est l’addition terme à terme des couples
(

7
4

)
et

(
−10

1

)
. Il est donc

naturel d’interpréter cette opération comme une somme et on écrira(
7
4

)
+

(
−10

1

)
=

(
−3

5

)
.

Après avoir vérifié sur le dessin que
(
−3

5

)
est bien le couple qui repré-

sente AC on écrit aussi
AB + BC = AC.

Cette relation est connue sous le nom de ✭✭ relation de Chasles ✮✮.

Si après AB, on effectue le déplacement en sens contraire BA, on constate
que

AB + BA = AA.
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Le dessin montre que le couple associé à BA est
(
−7
−4

)
, l’écriture en

termes de couples de la relation précédente est alors(
7
4

)
+

(
−7
−4

)
=

(
0
0

)
.

On définit ainsi le déplacement nul, qui consiste à rester sur place, et BA
comme le déplacement opposé de AB, ce qui permet d’écrire

BA = −AB et
(
−7
−4

)
= −

(
7
4

)
.

Ceci nous permet d’établir le lien entre l’addition et la soustraction des
déplacements.

On exploite ces résultats pour répondre à la question ci-dessous.

Connaissant CD noté
(
−2
−13

)
et CA noté

(
3
−5

)
, quel est le dépla-

cement AD tel que CA + AD = CD ?

Des élèves cherchent le couple qui, additionné à
(

3
−5

)
, donne

(
−2
−13

)
,

et trouvent
(
−5
−8

)
pour AD. Ils écriront

CA + AD = CD et
(

3
−5

)
+

(
−5
−8

)
=

(
−2
−13

)
.

D’autres penseront à utiliser la relation de Chasles et écriront

AD = AC + CD ou AD = −CA + CD,

et pour les couples correspondants(
−5
−8

)
=

(
−3

5

)
+

(
−2
−13

)
ou (

−5
−8

)
= −

(
3
−5

)
+

(
−2
−13

)
.

Deuxième cas : l’origine du second déplacement ne cöıncide pas avec
l’extrémité du premier.

Dans un premier temps, on demande aux élèves de dessiner un déplace-

ment quelconque, par exemple le déplacement
(

5
−4

)
, sur un quadrillage

vierge. Ils le placeront évidemment en des endroits différents de la feuille.
Ce déplacement, noté AB, peut être visualisé en traçant le segment qui

joint son origine A à son extrémité B. Le couple
(

5
−4

)
détermine la

direction du déplacement, son sens et sa longueur, mais ne donne aucune
indication sur l’endroit où il faut le dessiner sur la feuille.
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A

 B

     

 

 

 

+5

- 45
- 4( )

Fig. 10

Une discussion au sein de la classe amène à la conclusion que tous les
dessins sont corrects, qu’ils représentent tous le même déplacement, ou
des déplacements égaux. Il apparâıt donc qu’un même déplacement peut
être dessiné en une infinité d’endroits dans le plan et qu’on pourra choisir
parmi toutes ces possibilités celle qui convient le mieux à chaque situation.
Les élèves évoqueront peut-être l’analogie avec les translations.

Ceci va permettre de définir l’addition de déplacements même si l’origine
du second déplacement ne cöıncide pas avec l’extrémité du premier sur le
dessin. Il suffira de dessiner une autre représentation du deuxième dépla-
cement. Ainsi pour définir AB +CD, on effectue le déplacement AB, puis
le déplacement égal à CD, dont l’origine est en B et l’extrémité en E. On
peut encore dire que BE est la représentation du déplacement CD, dont
l’origine cöıncide avec l’extrémité de AB. Les élèves sont invités à placer
le point E sur le quadrillage (voir figure 12 à la page 232). On écrira

AB + CD = AB + BE = AE.

On constate que AE s’écrit
(

5
−9

)
et que

(
7
4

)
+

(
−2
−13

)
=

(
5
−9

)
.

On pourrait aussi dessiner une autre représentation de AB, dont l’extré-
mité cöıncide avec C, mais, dans ce cas, le dessin sort du cadre de la feuille.
On peut encore imaginer de remplacer AB et CD par des déplacements
A′B′ et B′E′, tels que A′B′ = AB et B′E′ = CD. Les déplacements A′B′

et B′E′ sont ainsi placés dans les conditions d’application de la relation
de Chasles et leur somme est le déplacement A′E′. On invite les élèves à
réaliser cette construction en choisissant pour B′ un nœud du quadrillage
tel que le dessin soit entièrement contenu dans le cadre. La comparaison
du déplacement AE et des différentes représentations de A′E′ montre bien
que les sommes obtenues sont égales ; le couple de nombres est toujours(

5
−9

)
pour tous les déplacements A′E′.

Multiplication de déplacements par un nombre

Quel est le déplacement CL qui, en partant de C, mène deux fois plus loin
que CA dans la même direction et le même sens3 ?

3 Pour multiplier un vecteur par deux, différents modes de pensée coexistent dans les
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A

C

L

3

6

5

10

Fig. 11 : Construction de CL

Après avoir placé L et observé la configuration de Thalès de la figure 11,

on constate que CL correspond à
(

6
−10

)
. Il est donc naturel d’adopter

la convention d’écriture

CL = 2CA et
(

6
−10

)
= 2

(
3
−5

)
;

ainsi que

CL = −2AC et
(

6
−10

)
= −2

(
−3

5

)
;

ou encore

CA =
1
2
CL et

(
3
−5

)
=

1
2

(
6

−10

)
;

AC =
−1
2

CL et
(
−3

5

)
=
−1
2

(
6

−10

)
.

Ces nombres, par lesquels on multiplie les déplacements (et les couples)
sont appelés scalaires4 pour les distinguer des nombres qui composent les
couples représentant les déplacements.

On peut se demander où se trouve le point N tel que

CN =
1
2
CA correspondant au couple

1
2

(
3
−5

)
.

Le point N n’est plus un nœud du quadrillage. De par leur définition, les
déplacements CN et CL, multiples de CA, ont la même direction que CA,

esprits : ajouter le vecteur à lui-même, aller deux fois plus loin dans la même direction
et le même sens ou doubler chaque composante.

4 C’est à W. R. Hamilton que nous devons l’introduction des vocables vecteurs et
scalaires, dans ses Elements of Quaternions [1866]. Les scalaires sont des nombres qui
permettent la comparaison de vecteurs qui sont sur un même axe, axe qu’Hamilton
appelait échelle (en anglais scale).
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ce qui implique l’alignement des points A, C, N et L. Par contre, le point
E, qui, dans un premier temps, semblait aligné avec A et C ne peut l’être
car AE n’est pas un multiple de CA. En effet, il n’existe aucune valeur de
λ telle que (

5
−9

)
= λ

(
3
−5

)
.

Ces observations sont illustrées par la figure 12.

A

B

C

 D

E

L

N

Fig. 12 : Opérations sur les déplacements

La multiplication du déplacement CA par le scalaire 1
2 nous a permis

d’atteindre le point N qui n’est plus un nœud du quadrillage.

Comment, à partir d’un nœud du quadrillage, atteindre d’autres points
qui ne sont pas des nœuds ?

Les élèves associeront sans doute la multiplication par un scalaire non
entier au fait d’atteindre, à partir d’un nœud du quadrillage, un point qui
ne l’est pas.

Les deux opérations de somme et de multiplication par un scalaire peuvent
être combinées pour produire une somme de multiples de deux ou plu-
sieurs déplacements. Par exemple, on peut définir le déplacement AX de
la manière suivante : AX = 1

2AB + 1
4AC. Les élèves sont invités à le

construire. On dit que le déplacement AX est une combinaison linéaire
des déplacements AB et AC, les scalaires 1

2 et 1
4 sont les coefficients de

cette combinaison linéaire.

La multiplication par un scalaire nous a amenés à considérer des dépla-
cements dont le point d’arrivée est un point quelconque du plan. Il faut
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donc étendre les opérations à des déplacements dont les extrémités ne sont
plus des nœuds du réseau. On perçoit clairement que le point de départ et
le point d’arrivée suffisent pour déterminer un déplacement. Dorénavant,
nous représenterons toujours celui-ci par un segment de droite joignant le
point de départ au point d’arrivée (comme dans les figures 10 à 12). Ce
segment est orienté du point de départ vers le point d’arrivée, orientation
qui transparâıt d’ailleurs dans l’écriture du déplacement, AB étant le dé-
placement qui va de A vers B et BA son opposé de B vers A. Nous pouvons
étendre de manière naturelle les opérations définies sur les déplacements
liés au quadrillage à tous les déplacements du plan.

Cependant, pour exprimer chacun des déplacements au moyen d’un couple
de nombres comme nous avons pu le faire jusqu’à présent, il faudra choisir
deux directions, munies chacune d’un sens et d’une unité. Notons i et j
les déplacements unitaires, dans le sens positif, dans chacune de ces deux
directions. Si nous pouvons exprimer tout déplacement du plan comme
combinaison linéaire de ces deux déplacements ✭✭ de base ✮✮, alors, dans
l’expression AB = λi + µj, les coefficients λ et µ déterminent le couple(

λ
µ

)
associé à ce déplacement. En effet, les couples associés aux dépla-

cements élémentaires i et j sont
(

1
0

)
et

(
0
1

)
, et l’écriture sous forme

de couples de la combinaison linéaire λi+µj est λ

(
1
0

)
+µ

(
0
1

)
, c’est-

à-dire
(

λ
µ

)
. Les élèves sont invités à montrer que cette décomposition

est toujours possible dans un cas général.

λ

µ

A

B

i

j

A

B

i

j

i

j

Fig. 13 : Cas général

Remarquons que le choix de deux déplacements ✭✭ de base ✮✮ induit dans
le plan un réseau de parallélogrammes, déterminé par les directions et les
longueurs de i et j. Le choix très naturel et le plus souvent utilisé est celui
de deux directions perpendiculaires, l’une horizontale, orientée de gauche
à droite, l’autre verticale, orientée de bas en haut, et sur chacune d’elles,
la même unité de longueur. Le réseau sous-jacent est alors un quadrillage,
mais il est bien entendu que les déplacements ne sont plus liés aux nœuds
du réseau. Cependant, comme le quadrillage permet une visualisation plus
claire des problèmes, nous continuerons à le faire apparâıtre dans la plupart
des dessins.



234 Chapitre 8. Introduction au calcul vectoriel

Propriétés des opérations

Les exercices suivants et d’autres analogues sont proposés aux élèves. Leur
intérêt est non seulement de faire manipuler les opérations qui viennent
d’être définies, mais surtout de dégager petit à petit les propriétés du calcul
vectoriel.

A

B

C

D

Fig. 14 : Propriétés des opérations

1. Représenter et calculer les couples correspondant à

• (AB + BC) + CD et AB + (BC + CD) ;

• AB + BC et BC + AB ;

• 2(AB + BC) et 2AB + 2BC ;

• 2AB + 3AB et (2 + 3)AB = 5AB ;

• 5(2
3AB) et (5 · 2

3)AB = 10
3 AB.

2. Imaginer une construction géométrique, à partir du quadrillage, pour
déterminer

• le point E tel que AE = 8
5AB ;

• le point F tel que CF = −3
4 CB ;

• le point R tel que AR =
√

2AD.

Indication : pour chacun des cas, choisir sur le quadrillage une unité
adaptée à la construction, suffisamment grande pour éviter les impré-
cisions.

Les propriétés qui sont dégagées des exercices proposés et reprises en syn-
thèse n’ont pas été démontrées. C’est un choix volontaire afin de ne pas
allonger ce travail. Il n’est pas malsain de ne pas tout prouver d’emblée,
surtout quand ce qu’on a à prouver parâıt si naturel.
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Synthèse

Addition de déplacements

• La somme de deux déplacements tels que l’origine du second cöıncide avec l’extrémité du
premier est définie par la relation de Chasles AB +BC = AC. En particulier : AB +BA =
AA.
BA est le déplacement opposé de AB.
AA est le déplacement nul.

• Si les couples associés à AB et à BC sont respectivement
(

α
β

)
et

(
λ
µ

)
, AC est repré-

senté par le couple
(

α + λ
β + µ

)
, BA par le couple

(
−α
−β

)
, le déplacement nul par le couple(

0
0

)
. Des déplacements égaux sont représentés par le même couple.

• La somme de deux déplacements tels que l’origine du second ne cöıncide pas avec l’extrémité
du premier est définie par

AB + CD = AB + BE = AE

où BE est le déplacement égal à CD, d’origine B.

• Propriétés :

(AB + BC) + CD = AB + (BC + CD),
AB + BC = BC + AB.

Multiplication par un scalaire

• kAB est le déplacement qui va k fois plus loin que B dans la direction de AB, à partir de
A. Si k est positif, le sens est celui de AB, sinon, celui de BA.

• kAB est représenté par le couple
(

kα
kβ

)
.

• Propriétés :

k(AB + BC) = kAB + kBC,

kAB + ,AB = (k + ,)AB,

k(,AB) = (k,)AB.

Échos des classes Le fait de travailler simultanément sur les déplacements du plan et sur
les couples de nombres qui y sont associés permet de confronter à chaque
étape différents modes de raisonnement. Pour certains élèves, c’est l’aspect
graphique qui est prépondérant, tandis que d’autres raisonnent d’emblée
sur les composantes. Le va-et-vient permanent entre le dessin et l’écriture
des relations, soit en termes de déplacements, soit en termes de couples,
permet de faire progresser les différents aspects en même temps et de lever
quelques difficultés. Ainsi, lorsque les élèves ont proposé un peu rapidement
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le couple
(

4
7

)
pour le déplacement opposé à AB =

(
7
4

)
, le retour au

dessin leur a permis de corriger rapidement l’erreur.

Tout au long de ce travail d’élaboration des définitions des opérations
sur les déplacements, les différents raisonnements qui guident les élèves
éclairent ces opérations sous divers aspects, ce qui contribue à donner du
sens aux définitions.

Lors des exercices de construction de multiples de déplacements, les élèves
ont imaginé des stratégies très variées pour utiliser le quadrillage de la
manière la plus efficace. Par contre, lorsque le professeur a proposé des
exercices de construction (additions et multiplications par un scalaire) sur
des feuilles dépourvues de quadrillage, les élèves ont été très perturbés.
Une discussion a été nécessaire pour convaincre chacun que, si la présence
du quadrillage sur la feuille permet d’effectuer rapidement ces opérations,
elle n’est nullement indispensable. La somme de deux déplacements par
la relation de Chasles, la construction d’un déplacement égal à un autre,
ou d’un multiple d’un déplacement par une configuration de Thalès ne dé-
pendent pas de la présence d’un quelconque réseau. Même convaincus, cer-
tains élèves étaient cependant si déstabilisés qu’ils ont essayé de ✭✭ tricher ✮✮

en glissant subrepticement une feuille quadrillée sous la feuille blanche pour
tenter d’apercevoir le quadrillage par transparence.

Quelques exercices formels de fixation des propriétés ont fait apparâıtre
des erreurs comme

2BM + MC = 3BC ou AM −MB = −AB,

le recours au dessin a permis de les corriger.

Le foisonnement des idées a été si grand tout au long de cette phase de
l’activité que le besoin de faire le point et de rassembler les résultats ob-
tenus de manière claire s’est fait sentir impérieusement. C’est pourquoi la
synthèse concernant les opérations sur les déplacements, qui n’avait pas
été prévue au départ, s’est avérée indispensable.

1.4 Langage PostScript

Comment s’y
prendre ?

Toutes ces manipulations un peu fastidieuses peuvent être remplacées par
une activité utilisant le langage PostScript (langage de commande d’im-
primante). Les professeurs intéressés pourront se procurer sur internet à
l’adresse URL

http://www.profor.be/crem/index.htm

le document CalculVectoriel.eps qui contient déjà certaines instructions
PostScript. Celles-ci dessinent le quadrillage et positionnent le point A. Il
est conseillé de faire une copie de ce document avant d’y faire travailler
les élèves. Toutes les opérations effectuées sur le quadrillage peuvent être
illustrées au moyen de ce langage. Pour visualiser les effets des commandes
PostScript, il faut télécharger un interpréteur :

– sur Macintosh : MacGS que l’on trouve sur le site internet
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http://www.cs.wisc.edu/~ghost/macos/index.htm

– pour windows : GSView que l’on trouve sur le site internet

http://www.cs.wisc.edu/~ghost/gsview/index.html

Voici comment se présente ce document :

%!PS-Adobe-2.0 EPSF-1.2
%%BoundingBox: 110 139 513 769

...

%******************************************
% Commandes introduites par l’utilisateur *
%******************************************

allerenA
7 4 rlineto
(B) point
-10 1 rlineto
(C) point
allerenA
-3 5 rlineto

%******************************************

stroke
grestore
% Dessin du quadrillage
[1 s div 1 s div] 0 setdash vert
[1 s div 1 s div] 0 setdash hor

showpage

Ce fichier peut être ouvert avec n’importe quel éditeur de texte, de préfé-
rence le plus simple possible comme, par exemple, le Bloc-notes de Win-
dows, ou Alpha pour Macintosh. Si on utilise Word, ou tout autre traite-
ment de texte, il faut veiller à sauver le document en mode texte et non
en mode Word (ou autre).

Les élèves inséreront leurs commandes dans un espace réservé qui se situe
en dessous du commentaire ✭✭ commandes de l’utilisateur ✮✮ et au-dessus

d’une ligne d’astérisques. Le déplacement
(

7
4

)
est obtenu au moyen de

la commande

7 4 rmoveto

À cet endroit on positionne un point (B par exemple) au moyen de la
commande point ; on le nomme B par la commande
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(B) point

Si on souhaite visualiser le déplacement en ligne droite, on remplace la
commande

rmoveto

par la commande

rlineto.

La commande

allerenA

permet de retourner au point A. Pour faire disparâıtre le quadrillage, on
place le caractère

%

devant chacune des deux lignes qui suivent

% dessin du quadrillage

Pour illustrer une addition, par exemple,

AB + BC = AC ou
(

7
4

)
+

(
−10

1

)
=

(
−3

5

)
les commandes seront

7 4 rlineto
(B) point
-10 1 rlineto
(C) point

Après avoir visualisé le résultat, on ajoute les commandes

allerenA
-3 5 rlineto

Ces deux dernières commandes ont pour effet de tracer le déplacement
somme AC.

Pour illustrer une multiplication par un scalaire, par exemple, AM = 2AC,
les commandes seront

allerenA
-3 5 2 rlinetomul
(M) point

Si on souhaite effectuer une opération à partir d’un point du quadrillage
autre que A, par exemple C, on pourra atteindre celui-ci à partir de A de
la manière suivante

allerenA
-3 5 rmoveto

Ceci permettra ensuite d’effectuer le déplacement CL = 2CA

3 -5 2 rlinetomul
(L) point
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On obtiendra CN = 1
2CA comme suit5 :

allerenA
-3 5 rmoveto
3 -5 1 2 div rmovetomul
(N) point

On peut encore placer AQ = −1
3 AB :

allerenA
7 4 1 3 div neg rlinetomul

et AR =
√

2AL

allerenA
3 -5 2 sqrt rlinetomul
(R) point

Les élèves vérifieront que les points obtenus par constructions géométriques
cöıncident avec ceux placés par le logiciel. La commande

a b k rlinetomul

est, en fait, équivalente à

k a mul k b mul rlineto

ce qui traduit la propriété

k

(
a
b

)
=

(
ka
kb

)
.

1.5 Déplacements dans l’espace

Comment s’y
prendre ?

Une démarche analogue à celle décrite aux sections 1.2 et 1.3 pour intro-
duire les déplacements dans le plan et les opérations sur ceux-ci permet
d’aborder les déplacements dans l’espace.

Décrire le déplacement qui mène du point A au point B (figure 15).

Les élèves imagineront probablement un codage du type droite-gauche (d-
g), avant-arrière (av-ar), haut-bas (h-b). Le déplacement AB sera alors
décrit comme 4 en avant, 1 à gauche et 2 vers le bas, que nous noterons,
de manière plus condensée,

4av, 1g, 2b ou encore 1g, 4av, 2b.

Les élèves prennent conscience qu’il faut trois directions pour décrire les
déplacements de l’espace, et que, sur chacune d’elles, il y a deux sens. Cette
observation permet de réduire le nombre des symboles de codage à trois au
lieu de six. On conviendra de garder les symboles av, d, et h, de compter
positivement les déplacements vers l’avant, vers la droite et vers le haut et
négativement les déplacements vers l’arrière, vers la gauche et vers le bas.

5 PostScript utilise la notation polonaise inverse ; ainsi 1 2 div effectue la division de
1 par 2.
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A

B

C

Fig. 15 : Déplacements et addition de déplacements dans l’espace

Le déplacement AB sera alors noté : 4av, −1d, −2h.

Si on veut encore simplifier le codage pour ne garder que les nombres,
il faut convenir en plus d’un ordre pour les énoncer. Par exemple, si le
premier nombre représente le déplacement sur la direction arrière-avant,
le deuxième le déplacement sur la direction gauche-droite, et le troisième
le déplacement sur la direction bas-haut, il n’y aura pas d’ambigüıté. Le

déplacement AB sera noté AB =

 4
−1
−2

 .

De la même manière, on a

BC =

 −5
6
3

 et AC =

 −1
5
1

 .

Addition de déplacements

Comme dans le plan, on a la relation de Chasles

AB + BC = AC,

et, pour les triples correspondants, l’addition s’écrit 4
−1
−2

 +

 −5
6
3

 =

 −1
5
1

 .

Si l’origine du second déplacement ne cöıncide pas avec l’extrémité du pre-
mier, on remplace l’un des déplacements par un déplacement équivalent
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de manière à retrouver une situation où la relation de Chasles est d’appli-
cation.

L’opposé du déplacement AB est le déplacement BA =

 −4
1
2

 . On a

AB + BA = AA (déplacement nul) et, pour les triples correspondants, 4
−1
−2

 +

 −4
1
2

 =

 0
0
0

 .

Les propriétés de l’addition des déplacements dans l’espace sont les mêmes
que dans le plan.

Multiplication de déplacements par un scalaire

On définit kAB comme le déplacement qui va k fois plus loin que B dans
la direction de AB, à partir de A. Si k est positif, le sens est celui de AB,
sinon, celui de BA. La figure 16 illustre deux exemples de multiplication
scalaire.

D

E

F

L

Fig. 16 : Multiplication scalaire dans l’espace
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On a

DF = 2DE et, pour les triples correspondants

 −2
2
6

 = 2

 −1
1
3

 ,

DL = −2DE et, pour les triples correspondants

 2
−2
−6

 = −2

 −1
1
3

.

Les propriétés de la multiplication scalaire des déplacements dans l’espace
sont les mêmes que dans le plan.

1.6 Polynômes

Comment s’y
prendre ?

Après une première approche des espaces vectoriels par des gestes très
quotidiens, proches du bon sens, comme se déplacer dans un plan de ville,
le but de cette activité est de montrer que la structure ainsi dégagée peut
se retrouver dans un contexte très différent. Il s’agit donc d’une démarche
purement intellectuelle, qui peut intéresser certains élèves, mais qu’il ne
conviendra sans doute pas d’aborder dans toutes les classes.

Dès la troisième, les élèves connaissent l’addition des polynômes et leur
multiplication par un scalaire. Nous allons éclairer ces opérations sous un
jour nouveau en les replaçant dans un contexte semblable à celui dans
lequel nous venons de travailler.

Considérons tout d’abord l’ensemble des polynômes de degré inférieur ou
égal à 2, dont la forme générale, ordonnée par puissances croissantes de x,
est a + bx + cx2.

Chaque polynôme peut être considéré comme une combinaison linéaire de
trois polynômes ✭✭ de base ✮✮ 1, x et x2, avec les coefficients a, b, c. Ainsi,

a + bx + cx2 = a · 1 + b · x + c · x2.

Ceci permet d’associer à chaque polynôme un triple de nombres

 a
b
c

.

Les élèves sont invités à écrire les triples de nombres correspondant aux

polynômes ✭✭ de base ✮✮ 1, x et x2 et à retrouver le triple

 a
b
c

 comme

combinaison linéaire des trois triples ✭✭ de base ✮✮. Ils pourront comparer
cette décomposition avec celle effectuée sur les couples de nombres associés
aux déplacements du plan.

On demande aux élèves de calculer

1. P (x) + Q(x)

2. −2P (x) + 3Q(x)

3. Q(x)−R(x)
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où P (x) = 3 − 2x + 5x2, Q(x) = −2 + 7x + x2 et R(x) = x2 + 1 et de
transcrire ces différentes opérations en termes de triples associés.

La comparaison avec les opérations sur les couples associés aux déplace-
ments du plan s’impose d’elle-même.

Retrouve-t-on pour les opérations sur les polynômes des propriétés sem-
blables à celles dégagées pour les déplacements dans un plan à la page
234 ?

Les élèves vérifient sur les exemples proposés que

(P (x) + Q(x)) + R(x) = P (x) + (Q(x) + R(x)),
P (x) + Q(x) = Q(x) + P (x),

k(P (x) + Q(x)) = kP (x) + kQ(x),
kP (x) + ,P (x) = (k + ,)P (x),

k(,P (x)) = (k,)P (x),

où k et , sont des scalaires quelconques. La connaissance que les élèves ont
des opérations sur les polynômes leur permettra sans doute de dire que ces
propriétés restent vraies pour n’importe quel polynôme. Si nécessaire, on
peut proposer d’autres exemples pour les polynômes P (x), Q(x) et R(x).

Prolongement
possible

Est-il possible de procéder de la même manière pour

• les polynômes de degré inférieur ou égal à 3,

• les polynômes de degré inférieur ou égal à 4,

• tous les polynômes ?

Combien de polynômes ✭✭ de base ✮✮ faudrait-il pour exprimer tout poly-
nôme comme combinaison linéaire de ceux-ci ?

Les polynômes de degré inférieur ou égal à 3, à 4, . . . à n s’exprimeront
comme combinaisons linéaires de 4, 5, . . . (n+1) ✭✭ polynômes de base ✮✮ et
seront représentés par des quadruples, quintuples, . . . (n+1)-uples. Il fau-
drait une infinité de ✭✭ polynômes de base ✮✮ pour exprimer tout polynôme
comme combinaison linéaire de ceux-ci.

1.7 Suites arithmétiques

Comment s’y
prendre ?

On montre aux élèves quelques débuts de listes de nombres qu’on leur
demande de prolonger. Le professeur signalera aux élèves qu’en prolongeant
indéfiniment ces listes de nombres, on obtient ce que les mathématiciens
nomment suites de nombres. Chacun des nombres est appelé terme de la
suite.
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S1 0 1 2 3 4 5 · · ·
S2 0 1 4 9 16 25 · · ·
S3 1 3 5 7 9 11 · · ·
S4 1 11 111 1 111 11 111 111 111 · · ·
S5 1 1

2
1
3

1
4

1
5

1
6 · · ·

S6 2 5 8 11 14 17 · · ·
S7 1 1 2 3 5 8 · · ·
S8 1 1

4
1
9

1
16

1
25

1
36 · · ·

S9 1 −3 −7 −11 −15 −19 · · ·
S10 3 17

4
11
2

27
4 8 37

4 · · ·

Parmi ces dix suites de nombres, y en a-t-il qui ont un mode de construc-
tion semblable ? Si oui, lesquelles ?

Dans les suites S1, S3, S6, S9 et S10, la valeur de chaque terme à partir
du deuxième est obtenue en ajoutant une quantité constante à la valeur
du terme qui précède. Ce type de suite est appelé suite arithmétique et la
quantité constante ajoutée est la raison de la suite.

Les suites qui précèdent ont été ✭✭ définies ✮✮ par leurs six premiers termes.

Si on sait qu’il s’agit de suites arithmétiques, faut-il fournir autant
de termes ? Quel nombre minimum d’informations faut-il donner pour
qu’une telle suite soit entièrement connue ?

Des réponses variées que proposeront les élèves, nous retiendrons que la
donnée des deux premiers termes t1, t2 ou celle du premier terme t1 et de
la raison r suffisent pour que la suite soit déterminée.

Y a-t-il une manière naturelle d’additionner deux suites, de les multiplier
par un scalaire ?

Les élèves proposeront sans doute de faire ces opérations terme à terme.
On leur demande alors de calculer, par exemple S3 + S6, 2S6 et 2S10.

S3 1 2
1 3 5 7 9 11 · · ·

S6 2 3
1 5 8 11 14 17 · · ·

S3 + S6 3 5
1 8 13 18 23 28 · · ·

S6 2 3
1 5 8 11 14 17 · · ·

2S6 4 6
1 10 16 22 28 34 · · ·

S10 3
5
41 17

4
11
2

27
4 8 37

4 · · ·

2S10 6
5
21 17

2 11 27
2 16 37

2 · · ·

On observe sur ces exemples que la somme de deux suites arithmétiques est
une suite arithmétique, ainsi que la multiplication d’une suite arithmétique
par un scalaire.
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Ces propriétés sont-elles vraies en toute généralité ?

Au cours de ces opérations, comment trouve-t-on les premiers termes et
les raisons des suites obtenues ?

Les élèves sont invités à écrire les opérations sous une forme générale, par
exemple,

S1 a a + r a + 2r · · ·
S2 b b + r′ b + 2r′ · · ·

S1 + S2 a + b a + b + (r + r′) a + b + 2(r + r′) · · ·
kS1 ka ka + kr ka + 2kr · · ·

La suite S1 est déterminée par les nombres a et r, nous l’écrivons sous

forme de couple
(

a
r

)
par analogie avec les déplacements et les poly-

nômes. De même, la suite S2 correspond au couple
(

b
r′

)
. La suite

S1 + S2 s’écrit
(

a + b
r + r′

)
,

puisque son premier terme est a + b et sa raison r + r′. De même, la suite

kS1 s’écrit
(

ka
kr

)
,

puisque son premier terme est ka et sa raison kr. Les opérations sur les
suites se traduisent par les opérations correspondantes sur les couples :(

a
r

)
+

(
b
r′

)
=

(
a + b
r + r′

)
,

k

(
a
r

)
=

(
ka
kr

)
.

On retrouve à nouveau des propriétés de la somme et de la multiplica-
tion par un scalaire, semblables à celles observées pour les déplacements
dans un plan à la page 234 et pour les polynômes à la page 243. Elles
peuvent être vérifiées dans le cas général, puisque les opérations sur les
suites viennent d’être dégagées en termes de couples sous forme littérale.
Les élèves vérifient que

(S1 + S2) + S3 = S1 + (S2 + S3),
S1 + S2 = S2 + S1,

k(S1 + S2) = kS1 + kS2,
kS1 + ,S1 = (k + ,)S1,

k(,S1) = (k,)S1.

Remarquons au passage l’évolution du niveau d’abstraction dans l’énoncé
et la vérification des propriétés : pour les déplacements du plan, elles ont
été mises en évidence sur des exemples ; pour les polynômes, elles ont été
énoncées sous forme générale mais vérifiées sur des polynômes particuliers ;
tandis que pour les suites, elles sont démontrées en toute généralité.
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Prolongement
possible

Cela signifie-il que toute suite arithmétique peut s’écrire sous forme de
combinaison linéaire de deux suites arithmétiques ✭✭ de base ✮✮ ?

Si
(

a
r

)
= a

(
1
0

)
+r

(
0
1

)
, quelles sont les suites arithmétiques qui

correspondent aux couples
(

1
0

)
et

(
0
1

)
?

On demande aux élèves d’écrire les suites S3, S6 et S10 comme combinai-
sons linéaires des deux suites ✭✭ de base ✮✮

1 1 1 1 1 1 . . . et 0 1 2 3 4 5 . . .

Les élèves seront peut-être étonnés de constater que les suites arithmé-
tiques, qui comportent une infinité de termes, peuvent s’exprimer comme
combinaisons linéaires de deux suites arithmétiques ✭✭ de base ✮✮, tandis
qu’une infinité de polynômes ✭✭ de base ✮✮ sont nécessaires pour exprimer
tous les polynômes, alors que chacun d’eux ne comporte qu’un nombre fini
de termes.

1.8 Synthèse : vers la structure d’espace vectoriel

Comment s’y
prendre ?

Les élèves viennent de rencontrer quelques ensembles dont les éléments
sont de natures très différentes. Néanmoins, les opérations effectuées sur
ces objets, ainsi que les propriétés de ces opérations, présentent des res-
semblances frappantes. Une discussion au sein de la classe, conduite par
le professeur, devrait permettre de dresser la liste de ces points communs.
La réflexion peut être suscitée par quelques questions.

Quelles sont les opérations qui ont été effectuées sur les éléments de ces
différents ensembles ?
Quelles sont les propriétés de ces opérations qu’on retrouve dans les
différents exemples ?
Retrouve-t-on les propriétés de l’addition et de la multiplication des
nombres réels ?
Expliquer comment, dans ces exemples, les éléments ont pu être associés
à des n-uples et comment les opérations de somme et de multiplication
par un scalaire se transposent en termes d’opérations sur les n-uples.

Que ce soient les déplacements (dans le plan ou l’espace), les polynômes
ou les suites arithmétiques, nous avons pu

• les additionner,

• les multiplier par un scalaire,

• en faire des combinaisons linéaires,

• les exprimer comme combinaisons linéaires d’un certain nombre d’élé-
ments ✭✭ de base ✮✮.

Examinons tout d’abord les propriétés de l’addition en les comparant à
celles de l’addition des nombres réels. Dans chacun des cas, on retrouve
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l’associativité et la commutativité de l’addition. On s’interroge alors sur
l’existence d’un élément neutre et d’un opposé pour chaque élément.

Dans l’ensemble des polynômes de degré inférieur ou égal à deux,

– quel est l’élément nul ?

– quel est le polynôme opposé à P (x) = 3− 2x + 5x2 ?

Dans l’ensemble des suites arithmétiques,

– quel est l’élément nul ?

– quelle est la suite opposée à la suite 1 4 7 10 . . .

Dans chaque ensemble, il y a donc un élément nul qui correspond au couple(
0
0

)
(au n-uple dont tous les coefficients sont nuls). Cet élément est

neutre pour l’addition, ce qui signifie que si on l’additionne à un élément
quelconque, la somme obtenue est cet élément lui-même.

Chaque élément a un opposé, qui correspond au couple (au n-uple) dont
les termes ont le signe contraire de ceux du couple (n-uple) représentant
l’élément de départ. Quand on additionne un élément et son opposé, on
trouve l’élément nul. Cette dernière propriété est l’outil qui permet de
résoudre des équations.

La multiplication par un scalaire ne ressemble pas à la multiplication des
nombres réels, déjà théorisée à la page 221. Les propriétés qui ont été
dégagées dans les différents exemples montrent qu’elle s’apparente plutôt
à une ✭✭ multiplication naturelle ✮✮, dans laquelle les deux éléments du
produit sont de natures différentes, et qu’on utilise implicitement quand
on dit

– 3 fois (1 pomme + 1 poire) = 3 pommes + 3 poires,

– 2 pommes + 3 pommes = 5 pommes,

– 2 fois 3 pommes = 6 pommes.

Même s’ils ne peuvent pas désigner par leur nom les propriétés de la multi-
plication par un scalaire, les élèves pourront sans doute associer celles qui
ont le même statut dans les listes reprises dans les exemples.

Les ensembles dont les éléments peuvent être additionnés et multipliés par
un scalaire, avec les propriétés que nous avons rencontrées et qui sont re-
prises ci-dessous, sont appelés espaces vectoriels. Leurs éléments sont appe-
lés vecteurs et sont généralement représentés par une minuscule surmontée
d’une flèche : −→u .

Voici les propriétés qui caractérisent un espace vectoriel V.

Les propriétés de la somme

Dans un espace vectoriel V,

1. la somme de deux vecteurs existe toujours et est un vecteur. En effet,

−→u +−→v appartient à V.
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2. La somme des vecteurs est associative, ce qui permet d’écrire la
somme de trois vecteurs sans parenthèses. Ainsi,

(−→u +−→v ) +−→w = −→u + (−→v +−→w ) = −→u +−→v +−→w .

3. Il y a un vecteur nul noté −→0 tel que

−→u +−→0 = −→u = −→0 +−→u .

4. Chaque vecteur −→u a un opposé noté −−→u tel que

−→u + (−−→u ) = −→0 = (−−→u ) +−→u .

5. La somme des vecteurs est commutative, ce qui signifie que dans une
somme, on peut changer l’ordre des vecteurs. On a

−→u +−→v = −→v +−→u .

Ces cinq propriétés peuvent être résumées en disant que V est un groupe
commutatif pour l’addition des vecteurs.

Les propriétés de la multiplication par un scalaire

Dans ce qui suit, k et , représentent des scalaires.

1. Un vecteur peut toujours être multiplié par un scalaire et le résultat
est un vecteur,

k−→u appartient à V ;

2.
k(−→u +−→v ) = k−→u + k−→v ;

3.
(k + ,)−→u = k−→u + ,−→u ;

4.
k(,−→u ) = (k,)−→u .

La propriété 2 établit un lien entre la multiplication par un scalaire et l’ad-
dition des vecteurs ; les deux suivantes établissent le lien avec les opérations
sur les scalaires, l’addition (propriété 3) et la multiplication (propriété 4).
Les propriétés 2 et 3 sont des propriétés de distributivité, la propriété 4
est une propriété d’associativité. On l’appelle ✭✭ associativité mixte ✮✮ car
elle lie deux opérations de multiplication : la multiplication des scalaires
et la multiplication d’un vecteur par un scalaire.

Existe-t-il un neutre pour la multiplication par un scalaire ?

La question de l’existence d’un neutre pour la multiplication par un scalaire
met en évidence une situation qu’on ne rencontre pas dans les opérations
qui lient deux éléments de même nature. Les élèves exhiberont sans doute
le scalaire neutre 1

1−→v = −→v ,
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mais il est impossible de trouver un vecteur neutre −→n tel que

k−→n = k,

puisque k−→n est un vecteur et ne peut donc valoir k. La propriété 1−→v = −→v
exprime que le neutre de la multiplication des réels est aussi neutre pour
la multiplication par un scalaire. Nous ajoutons cette propriété afin d’être
complet, même si notre but n’est pas de donner une définition axiomatique
rigoureuse.

Dimension6 et opérations sur les n-uples

Si les éléments ✭✭ de base ✮✮ sont au nombre de deux (déplacements dans
le plan, polynômes de degré inférieur ou égal à un, suites arithmétiques),
chaque élément peut être exprimé comme combinaison linéaire des deux
éléments ✭✭ de base ✮✮. Les coefficients de cette combinaison linéaire forment
un couple qui représente cet élément. Les couples associés aux éléments
✭✭ de base ✮✮ sont (

1
0

)
et

(
0
1

)
.

Si les éléments ✭✭ de base ✮✮ sont au nombre de trois (déplacements dans
l’espace, polynômes de degré inférieur ou égal à deux), chaque élément
peut être exprimé comme combinaison linéaire des trois éléments ✭✭ de
base ✮✮. Les coefficients de cette combinaison linéaire forment un triple qui
représente cet élément. Les triples associés aux éléments ✭✭ de base ✮✮ sont 1

0
0

 ,

 0
1
0

 et

 0
0
1

 .

Si les éléments ✭✭ de base ✮✮ sont au nombre de n (polynômes de degré
inférieur ou égal à n− 1), chaque élément peut être exprimé comme com-
binaison linéaire des n éléments ✭✭ de base ✮✮. Les coefficients de cette com-
binaison linéaire forment un n-uple qui représente cet élément. Les n-uples
associés aux éléments ✭✭ de base ✮✮ sont

1
0
0
...
0

 ,


0
1
0
...
0

 , . . . et


0
0
...
0
1

 .

Ce nombre n, qui représente le nombre d’éléments ✭✭ de base ✮✮ nécessaires
pour exprimer tout élément de l’ensemble comme combinaison linéaire de
ceux-ci, et qui correspond également au nombre de termes dans le n-uple
associé à chaque élément, est appelé la dimension de l’espace vectoriel.

6 Nous n’avons pas défini la notion de famille libre. Cependant le travail effectué dans
cette activité donne une première approche des notions de ✭✭ famille génératrice ✮✮ et de
✭✭ base ✮✮, qui permet de parler de dimension de manière intuitive.
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Dans un espace vectoriel de dimension 2, les opérations de somme et de
multiplication par un scalaire se tranposent aux couples qui les représentent
de la manière suivante,(

u1

u2

)
+

(
v1

v2

)
=

(
u1 + v1

u2 + v2

)
,

k

(
u1

u2

)
=

(
ku1

ku2

)
.

Ces opérations s’étendent de manière naturelle à un espace vectoriel de
dimension n, 

u1

u2
...
un

 +


v1

v2
...
vn

 =


u1 + v1

u2 + v2
...

un + vn

 ,

k


u1

u2
...
un

 =


ku1

ku2
...

kun

 .

Ces opérations jouissent des propriétés caractéristiques des espaces vecto-
riels, et c’est pourquoi on peut dire que l’ensemble des n-uples de réels
forme aussi un espace vectoriel.

Échos des classes Le niveau de la classe n’a pas permis d’aborder d’autres types de vecteurs
que les déplacements du plan. La synthèse finale a néanmoins été réalisée
par les élèves eux-mêmes, sur base des synthèses antérieures. L’écriture
condensée des vecteurs représentés par une seule lettre surmontée d’une
flèche (pour les distinguer des scalaires) leur a paru très naturelle, puisqu’ils
avaient déjà rencontré des vecteurs dans d’autres contextes. Seul le neutre
de la multiplication scalaire a posé problème : la valeur 0 a été proposée
en premier.

2 Géométrie analytique et calcul vectoriel

De quoi s’agit-il ? Résoudre des problèmes de géométrie analytique du plan et de l’espace en
utilisant le calcul vectoriel.

Enjeux Développer les compétences liées au calcul vectoriel en analysant diverses
situations-problèmes. Sur les liens entre vecteurs et géométrie analytique,
voir aussi la section 8.1 du chapitre 16. Sur les centres de gravité, voir aussi
le chapitre 12.

Compétences

Le calcul vectoriel dans le plan et dans l’espace, faisant intervenir les com-
posantes des vecteurs.



2. Géométrie analytique et calcul vectoriel 251

Les formes synthétique et analytique des notions, des relations et équations
de base de la géométrie : incidence, alignement, concourance, parallélisme,
milieu d’un segment, centre de gravité, . . .

Les formes synthétique et analytique des translations, symétries centrales
et homothéties du plan et de l’espace.

De quoi a-t-on
besoin ?

Des feuilles A4 recouvertes d’un quadrillage de 1 cm de côté ou d’un réseau
de parallélogrammes, certaines munies d’une origine O, d’autres encore où
sont marqués une origine O et quelques autres points. Ce matériel peut
être obtenu par photocopie des documents fournis en annexe aux pages
486 à 488.

2.1 Lien entre les composantes d’un vecteur et les
coordonnées de ses extrémités

Comment s’y
prendre ?

Le problème de situer un point sur un quadrillage est latent depuis le
moment où, dans l’activité précédente, on a demandé aux élèves de dessi-
ner un déplacement donné par ses composantes. Les élèves ont bien pris
conscience qu’ils peuvent représenter un déplacement donné, mais ils ne
savent que faire pour décrire un représentant de ce déplacement en un
endroit précisément choisi. Le travail suivant a pour but de lever cette
difficulté.

On distribue à tous les élèves une feuille A4 recouverte d’un quadrillage
et on demande à l’un d’entre eux de placer un point A sur un nœud de
ce quadrillage. Sans montrer sa feuille, il doit alors communiquer des ren-
seignements à ses condisciples pour que chacun puisse dessiner le point A
exactement au même endroit. Il est probable que l’élève qui a choisi la po-
sition du point A situe celui-ci comme l’extrémité d’un déplacement dont
l’origine serait le coin inférieur gauche du quadrillage (ou un autre coin).
Les élèves se rendent compte que, pour traiter ce problème, une origine doit
être choisie en un point qu’on peut décrire sans ambigüıté, par exemple
en un coin du quadrillage. Sinon il est tout aussi difficile d’expliquer où se
trouve l’origine du déplacement que son extrémité. On recommence l’ac-
tivité après avoir distribué une autre feuille quadrillée munie d’un point
marqué O. On demande aux élèves de choisir ce point O comme origine
pour marquer le point A comme extrémité d’un déplacement OA décrit en
fonction du quadrillage. On montre alors aux élèves une feuille, sans qua-
drillage, où l’on a placé un point O et un point A, et on leur demande de
reproduire le déplacement OA à partir d’un point O placé arbitrairement
sur une feuille de leur cahier.

Cette courte activité préalable est destinée à faire prendre conscience aux
élèves que pour déterminer la position d’un point, il faut

– soit une origine et deux directions privilégiées, orientées et munies d’une
unité (par exemple induites par un quadrillage ou un réseau de parallé-
logrammes) ;

– soit une origine et deux vecteurs ✭✭ de base ✮✮.
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La donnée d’une origine, qui n’était pas nécessaire pour décrire des dé-
placements, devient indispensable dès qu’on veut préciser la position des
points. On définit alors la ✭✭ position du point A ✮✮ comme le déplacement
qui permet de passer de O à A. On peut donc lui associer un couple de
nombres. On a

position de A = OA =
(

4
3

)
.

A

O I

J

Fig. 17 : Quadrillage

A

O
J

I

Fig. 18 : Réseau de parallélogrammes

Les élèves reconnaissent les coordonnées du point A dans le repère OIJ ,
où O est le point origine choisi, I et J étant les extrémités des vecteurs
✭✭ de base ✮✮

−→
i et −→j placés avec leur origine en O. D’une manière générale,

les coordonnées des points sont des couples de nombres réels ; elles ne sont
entières que pour les nœuds du quadrillage associé au repère OIJ .

Les élèves ont l’habitude d’écrire ces coordonnées en ligne et non en co-
lonne. On pourrait revenir à cette façon de faire pour les couples de coor-
données de points, mais aussi pour les couples de composantes de vecteurs,
tout en signalant aux élèves que plus tard (en calcul matriciel), il faudra
utiliser une notation de tous ces couples en colonnes. Dans ce document,
nous avons choisi de continuer à écrire tous les n-uples en colonnes.

Pour établir le lien entre les composantes des vecteurs et les coordonnées
des points, on distribue la feuille suivante, munie d’un quadrillage et des
points O, A, B, C et D (figure 19).

Y a-t-il un lien entre les coordonnées des points A, B, C, D et les
composantes des vecteurs −→AB,

−→
BC,

−→
CD et −→AD ?

Dans un premier temps, les élèves notent les couples de coordonnées des
points et les couples de composantes des vecteurs.

A =
(

2
4

)
, B =

(
5
−4

)
, C =

(
−5
−5

)
, D =

(
−2

9

)
,

−→
AB =

(
3
−8

)
,
−→
BC =

(
−10
−1

)
,
−→
CD =

(
3

14

)
,
−→
AD =

(
−4

5

)
.
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A

B
C

D

O I

J

Fig. 19 : Coordonnées et composantes

En comparant les couples associés à A, B et −→AB, cer-
tains élèves constateront que(

3
−8

)
=

(
5
−4

)
−

(
2
4

)
et vérifieront ensuite si une relation similaire est encore
vraie pour les autres vecteurs. D’autres penseront peut-
être à la relation de Chasles et au fait qu’on peut aller
de O à B en passant par A

−→
OA +−→AB = −→OB,

ou qu’on peut aller de A à B en passant par O

−→
AO +−→OB = −→AB.

Ils en déduiront que

−→
AB = −→

OB −−→OA

= (position de B)− (position de A).

Cette constatation peut être étayée par un raisonnement intuitif en repre-
nant un cas très simple où les points A et B se trouvent à droite et plus

haut que O, par exemple A=
(

3
4

)
et B=

(
9
7

)
. On voit bien alors que,

pour aller de A en B, il faut avancer de 6 vers la droite, pour passer de
l’abscisse 3 à l’abscisse 9, et de 3 vers le haut, pour passer de l’ordonnée
4 à l’ordonnée 7. Le dessin montre bien que, quelle que soit la position de
O, la différence des abscisses et la différence des ordonnées déterminent les
composantes du vecteur −→AB.

Composantes d’un vecteur. – Les composantes d’un vecteur sont ob-
tenues par la différence entre les coordonnées de son extrémité et celles de
son origine.

Tout ceci se généralise aux vecteurs de l’espace.

À ce stade du travail, le professeur explique aux élèves que le fait de pou-
voir situer des points dans le plan ou l’espace munis d’un repère, et d’avoir
établi le lien entre les coordonnées des points et les composantes des vec-
teurs, va leur permettre d’aller plus loin. Dans les activités qui suivent,
nous allons utiliser des équations vectorielles extrêmement simples pour
résoudre toutes sortes de problèmes de géométrie, tant dans le plan que
dans l’espace.

Échos des classes La nécessité de marquer une origine pour situer des points dans le plan
n’a posé aucune difficulté. Ici encore, les élèves ont fait appel à différents
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modes de raisonnement pour établir le lien entre les composantes d’un
vecteur et les coordonnées de ses extrémités. Le fait de définir la position
du point A comme le déplacement OA situe d’emblée le problème dans le
contexte des déplacements du plan et amène l’idée d’utiliser la relation de
Chasles.

2.2 Problèmes d’alignement et de parallélisme

De quoi s’agit-il ? Résoudre des problèmes d’alignement et de parallélisme dans le plan et
dans l’espace à partir d’équations vectorielles.

Comment s’y
prendre ? À quelle condition des points du plan et de l’espace sont-ils alignés ?

Le problème est ainsi posé sous une forme très générale. Les élèves propose-
ront sans doute d’examiner d’abord la situation dans le plan. Ils arriveront
peut-être à dégager une idée intuitive à partir d’un cas très simple qu’ils
auront choisi eux-mêmes. L’exemple suivant leur est fourni, soit pour les
inciter à formuler clairement leur raisonnement, soit pour guider leur ré-
flexion.

1. Les points A, B et C du plan sont-ils alignés ?

A =
(

1
3

)
, B =

(
4
5

)
, C =

(
100
69

)
.

2. Les points P , Q et R de l’espace sont-ils alignés ?

P =

 2
0
5

 , Q =

 5
3
−2

 , R =

 302
300
−690

 .

Confrontés à la première question, les élèves seront sans doute tentés de
représenter les points dans un repère approprié. Les coordonnées du point
C les obligent à choisir une unité très petite dans chacune des directions.
Le manque de précision du dessin ne leur permettra pas de se convaincre
avec certitude.

D’autres penseront peut-être à écrire l’équation de la droite AB et à ob-
server que les coordonnées du point C vérifient cette équation. Aucune de
ces deux stratégies ne leur permettra de répondre à la deuxième question.
Par contre les élèves qui se souviennent que dans la section 1, l’alignement
des points A, C, N , L a été mis en relation avec le fait que les vecteurs−→
CL et −−→CN sont multiples de −→CA (figure 12 à la page 232), auront à leur
disposition l’outil qui leur permettra de répondre aux deux questions par
le même raisonnement et de la manière la plus économique.

Les élèves constatent que −→AC est multiple de −→AB en observant leurs com-
posantes

−→
AB =

(
3
2

)
et −→AC =

(
99
66

)
.
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Par contre,

−→
PR =

 300
300
−695

 n’est pas multiple de −→PQ =

 3
3
−7

 ,

ce qui indique que les points P , Q et R ne sont pas alignés.

Le fait que le vecteur −→AC est multiple du vecteur −→AB signifie que ces deux
vecteurs d’origine A ont la même direction. Cette remarque nous amène
tout naturellement à poser la question du parallélisme.

À quelle condition des droites du plan ou de l’espace sont-elles paral-
lèles ?

Après une première discussion dans la classe, nous proposons à nouveau
un exemple pour soutenir la réflexion.

1. Dans le plan muni d’un repère, les droites AB et CD sont-elles
parallèles ?

A =
(
−1
−2

)
, B =

(
1
3

)
, C =

(
4
4

)
, D =

(
−4
−15

)
.

2. Dans l’espace muni d’un repère, les droites PQ et RS sont-elles
parallèles ?

P =

 1
0
−1

 , Q =

 5
−2

1

 R =

 −2
−1

5

 , S =

 0
−2

6

 .

Le dessin de la première situation ne permet pas de conclure avec certitude.
Les droites AB et CD semblent plus ou moins parallèles. Cependant, le

calcul des composantes des vecteurs −→AB =
(

2
5

)
et −→CD =

(
−8
−19

)
montre qu’un de ces deux vecteurs n’est pas multiple de l’autre et qu’ils
n’ont donc pas la même direction. Par conséquent, les droites AB et CD
ne sont pas parallèles. Dans l’espace, par contre,

−→
PQ = 2−→RS puisque

 4
−2

2

 = 2

 2
−1

1

 .

Dans ce cas, on peut conclure que les droites PQ et RS sont parallèles.

Parallélisme et alignement. – Si −→CD est multiple de −→AB, alors les
vecteurs −→AB et −→CD ont la même direction et les droites AB et CD sont
parallèles7. Si de plus, les droites AB et CD ont un point commun, les
quatre points A, B, C et D sont alignés. En particulier, si −→AC est multiple
de −→AB, les points A, B et C sont alignés.

7 On admet explicitement qu’une droite est parallèle à elle-même et que le parallé-
lisme est une relation d’équivalence.
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Tout ceci permet de résoudre des problèmes plus complexes, où inter-
viennent à la fois des questions d’alignement et de parallélisme.

Dans le plan muni d’un repère OIJ , on donne les points

A =
(

2
3

)
, B =

(
1
−2

)
, C =

(
−4

1

)
.

Représenter graphiquement les points D, E, F et K et calculer leurs
coordonnées, sachant que

1. D est le point de la droite BC, dont l’abscisse vaut 2 dans le repère
OIJ ;

2. E est le point de la droite AC dont l’abscisse est le double de
l’ordonnée dans le repère OIJ ;

3. F est le point de la parallèle à la droite AB passant par C, dont
l’ordonnée vaut −2 dans le repère OIJ ;

4. K est le point de la parallèle à la droite AC passant par B, dont
l’abscisse vaut 259 dans le repère OIJ .

Voici comment ces questions peuvent être traitées.

1. Recherche du point D : les données permettent de placer le point D
sur le dessin.

A

O I

J

B

C

D
F

Fig. 20 : Alignement et parallélisme

Pour exprimer que le point D est aligné avec B et C, on écrit que−→
BD est multiple de −→BC c’est-à-dire

−→
BD = λ

−→
BC ou −→OD = −→OB + λ

−→
BC,

où λ est un scalaire. En remplaçant chaque vecteur par le couple de
ses composantes, on obtient(

2
yD

)
=

(
1
−2

)
+ λ

(
−5

3

)
.
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Le système {
2 = 1− 5λ
yD = −2 + 3λ

permet de déterminer la valeur de λ qui correspond au point D :
λ = −1

5 , valeur qui peut être interprétée en observant le dessin.
Celui-ci montre que −→BD = −1

5

−→
BC, le point D étant situé du côté

opposé à C par rapport à B et à une distance cinq fois plus petite de
B que celle de B à C. Ces constatations permettent de comprendre
clairement le rôle que joue le paramètre dans l’équation vectorielle
de départ. En remplaçant la valeur de λ dans la deuxième équation,

on trouve yD = −13
5 . Les coordonnées de D sont donc

(
2
−13

5

)
.

2. Recherche du point E : il n’est plus possible de placer le point E avec
précision sans faire le calcul préalable. Par un raisonnement similaire
au précédent, on écrit l’égalité vectorielle

−→
AE = µ

−→
AC ou −→OE = −→OA + µ

−→
AC,

où µ est un scalaire. En remplaçant chaque vecteur par le couple de
ses composantes, on obtient(

2yE
yE

)
=

(
2
3

)
+ µ

(
−6
−2

)
.

Le système {
2yE = 2− 6µ
yE = 3− 2µ

permet de déterminer la valeur de µ qui correspond au point E :

µ = −2 et les coordonnées du point E=
(

14
7

)
. Il est possible à

présent de placer le point E sur le dessin et de vérifier qu’il répond
bien à la question.

3. Recherche du point F : cette fois le point F peut être construit avec
précision, la difficulté supplémentaire provient du fait qu’il ne s’agit
plus d’un simple problème d’alignement. Il faudra peut-être renvoyer
les élèves à la synthèse de la page 255 pour les amener à écrire une
équation vectorielle de départ.

−→
CF = ν

−→
AB ou −→OF = −→OC + ν

−→
AB,

où ν est un scalaire. En remplaçant chaque vecteur par le couple de
ses composantes, on obtient(

xF

−2

)
=

(
−4

1

)
+ ν

(
−1
−5

)
.

Le système {
xF = −4− ν
−2 = 1− 5ν

permet de déterminer la valeur de ν qui correspond au point F :

ν = 3
5 et les coordonnées du point F=

(
−23

5
−2

)
.
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4. Recherche du point K : l’abscisse 259 du point K est trop grande
pour qu’on puisse visualiser celui-ci, mais un calcul analogue aux
précédents donne, à partir de l’équation vectorielle −−→BK = ρ

−→
AC, la

valeur de ρ = −43 et les coordonnées du point K=
(

259
84

)
.

Il est possible de traiter des problèmes du même type dans l’espace. Nous
en donnons un exemple.

Dans l’espace muni d’un repère OIJK, on donne les points A, B et C
par leurs coordonnées

A =

 1
2
0

 , B =

 −1
2
5

 , C =

 0
−1

1

 .

Calculer les coordonnées des points D, E, F et K, sachant que

1. D est le point de la droite BC, d’abscisse−3 dans le repère OIJK ;

2. E est le point de la droite AC, dont la somme des coordonnées
vaut 5 dans le repère OIJK ;

3. F est le point de la parallèle à la droite AB passant par C, de
hauteur 11 dans le repère OIJK ;

4. K est le point de la parallèle à la droite AB passant par C, d’abs-
cisse 258 dans le repère OIJK.

Il n’est plus question ici de s’appuyer sur un dessin, mais le travail effectué
dans le plan a préparé les élèves à écrire les équations vectorielles de départ
sans avoir recours à un support visuel. Les résultats obtenus sont

D =

 −3
8

13

 , E =

 5
3
4
−2

3

 , F =

 −4
−1
11

 , K =

 258
−1
−644

 .

Ces différentes questions montrent bien que le calcul vectoriel permet de
traiter certains problèmes d’alignement et de parallélisme tant dans le plan
que dans l’espace.

Échos des classes Seuls les problèmes dans le plan ont été traités dans une classe de qua-
trième. La difficulté majeure a été d’établir une équation vectorielle de
départ. À partir de celle-ci, le passage aux couples de composantes s’effec-
tue naturellement. Les élèves ont pris l’habitude de ✭✭ lire ✮✮ les composantes
sur le quadrillage ; les fréquents retours au dessin qui en résultent ont per-
mis de donner du sens aux étapes de calcul, et notamment d’interpréter la
valeur du paramètre.

Pour chacune des questions, différentes équations vectorielles ont été pro-
posées. Le fait que toutes ces équations conduisent, par des calculs diffé-
rents, à la même réponse, a été une source d’étonnement pour certains.
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2.3 Centres de gravité

De quoi s’agit-il ? Déterminer les coordonnées du centre de gravité de 2, 3, 4, . . . points, dans
le plan et dans l’espace.

Comment s’y
prendre ?

La première question concerne la recherche des coordonnées du milieu d’un
segment, tant dans le plan que dans l’espace.

Déterminer les coordonnées du milieu du segment [AB] où

1. A =
(
−1

3

)
et B =

(
4
−2

)
dans le plan muni d’un repère ;

2. A =

 −1
3
5

 et B =

 4
−2
−3

 dans l’espace muni d’un repère.

En déduire l’expression générale des coordonnées du milieu d’un seg-
ment, dans le plan et dans l’espace.

A

B

M

Fig. 21 : Milieu d’un segment

Le point M , milieu de [AB], est évidemment un point de la droite AB.
La recherche du milieu s’apparente donc à un problème d’alignement, où
la position du point cherché par rapport aux points A et B est connue. À
partir de l’une des équations vectorielles

−−→
AM =

1
2
−→
AB ou −−→AM = −−→MB,

on obtient, en remplaçant chacun des vecteurs par son expression en somme
de vecteurs passant par l’origine,

−−→
OM −−→OA =

1
2
(−→OB −−→OA) ou −−→OM −−→OA = −→OB −−−→OM,

ce qui donne
−−→
OM =

−→
OA +−→OB

2
.

Cette dernière relation permet de calculer les coordonnées du milieu, aussi
bien dans le plan que dans l’espace.

Pour le problème posé, on obtient donc M =
( 3

2
1
2

)
dans le plan et M =

3
2
1
2

1

 dans l’espace, mais le raisonnement effectué ci-dessus fournit une

formule générale pour déterminer le milieu d’un segment.
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De plus, on peut remarquer que, puisque tout point P du plan ou de

l’espace peut jouer le rôle de l’origine, la relation −−→OM =
−→
OA+

−→
OB

2 peut
encore s’écrire

−−→
PM =

−→
PA +−→PB

2
pour tout point P du plan ou de l’espace.

Milieu d’un segment. – Voici quatre égalités qui définissent le point
M , milieu du segment [AB].

−−→
AM =

1
2
−→
AB,

−−→
AM = −−→

MB,

−−→
OM =

−→
OA +−→OB

2
,

−−→
PM =

−→
PA +−→PB

2
pour tout point P du plan ou de l’espace.

La relation −−→AM = −−→MB peut encore s’écrire −−→MA + −−→MB = −→0 ; cette der-
nière expression donnera lieu à une généralisation ultérieure.

Dans le plan muni d’un repère, les coordonnées du milieu M du segment

[AB], où A =
(

xA

yA

)
et B =

(
xB

yB

)
sont

M =
1
2

[(
xA

yA

)
+

(
xB

yB

)]
=

( xA+xB
2

yA+yB
2

)
.

Dans l’espace muni d’un repère, les coordonnées du milieu M du segment

[AB], où A =

 xA

yA
zA

 et B =

 xB

yB
zB

 sont

M =
1
2

 xA

yA
zA

 +

 xB

yB
zB

 =


xA+xB

2
yA+yB

2
zA+zB

2

 .

Le point M milieu du segment [AB] est le point qui vérifie la condition−−→
MA +−−→MB = −→0 . Par analogie, on peut poser la question suivante.

Existe-il, pour tout triangle ABC du plan ou de l’espace, un point G
qui vérifie la condition −→GA + −→GB + −→GC = −→0 ? Si ce point G existe,
quelle est sa position par rapport aux sommets du triangle ABC ?

Cette question, très générale, peut être abordée par un problème particu-
lier.
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1. Dans le plan muni d’un repère, on donne les trois points A, B et
C par leurs coordonnées

A =
(
−1

3

)
, B =

(
4
−2

)
et C =

(
1
−6

)
.

2. Dans l’espace muni d’un repère, on donne les trois points A, B et
C par leurs coordonnées

A =

 −1
3
5

 , B =

 4
−2
−3

 et C =

 1
−6

2

 .

Dans ces deux cas, on demande de vérifier l’existence d’un point G qui
vérifie la condition −→GA +−→GB +−→GC = −→0 , et, s’il existe, de déterminer
ses coordonnées.
Démontrer ensuite que ce point G se trouve sur les médianes du triangle,
aux deux tiers à partir du sommet.

On montre tout d’abord que la relation

−→
GA +−→GB +−→GC = −→0

est équivalente à
−→
OG =

−→
OA +−→OB +−→OC

3
.

Cette deuxième relation est obtenue facilement en remplaçant −→GA par−→
OA − −→OG, et en procédant de même pour −→GB et −→GC. Cette expression
établit l’existence du point G en toute généralité, et cette forme est ana-
logue à l’expression de M comme milieu du segment [AB]. Tout comme
les coordonnées du point M sont les moyennes arithmétiques des coordon-
nées correspondantes des extrémités du segment [AB], les coordonnées du
point G sont les moyennes arithmétiques des coordonnées correspondantes

des sommets du triangle ABC. On obtient alors G =
( 4

3

− 5
3

)
pour le

problème dans le plan et G =


4
3

− 5
3
4
3

 celui dans l’espace.

Remarquons que la démonstration suggérée ci-dessus permet d’établir que
la relation −→

GA +−→GB +−→GC = −→0
est équivalente à

−→
PG =

−→
PA +−→PB +−→PC

3
pour tout point P du plan ou de l’espace.

Les élèves peuvent vérifier, à titre d’exercice, que le point G trouvé, appelé
centre de gravité de ABC, est bien situé sur chacune des médianes du
triangle (et donc à leur intersection), aux deux tiers à partir du sommet.
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La propriété peut être établie dans le cas général par un calcul vectoriel
relativement simple. Notons A′, B′ et C ′ les milieux respectifs des côtés
[BC], [AC] et [AB].

B

A

C

 C'  B'

 

A'

 G

Fig. 22 : Centre de gravité d’un triangle

Les propositions A′ est milieu de [BC]

si et seulement si
−−→
PA′ =

−→
PB +−→PC

2
,

G est centre de gravité de ABC

si et seulement si −→PG =
−→
PA +−→PB +−→PC

3
sont vraies quelle que soit la position du point P . Si
on place celui-ci en A, on obtient

−−→
AA′ =

−→
AB +−→AC

2
et −→AG =

−→
AB +−→AC

3

ce qui montre bien que −→AG = 2
3

−−→
AA′.

Centre de gravité d’un triangle8. – Le point G est le centre de gravité
du triangle ABC si et seulement si −→GA + −→GB + −→GC = −→0 . Voici deux
autres égalités qui définissent le point G.

−→
OG =

−→
OA +−→OB +−→OC

3
−→
PG =

−→
PA +−→PB +−→PC

3
pour tout point P du plan ou de l’espace.

Le centre de gravité d’un triangle se trouve sur les médianes aux deux tiers
à partir du sommet.

Dans le plan muni d’un repère, les coordonnées du centre de gravité G du

triangle ABC, où A =
(

xA

yA

)
, B =

(
xB

yB

)
et C =

(
xC

yC

)
sont

G =
1
3

[(
xA

yA

)
+

(
xB

yB

)
+

(
xC

yC

)]
=

( xA+xB+xC
3

yA+yB+yC
3

)
.

Dans l’espace muni d’un repère, les coordonnées du centre de gravité G du

triangle ABC, où A =

 xA

yA
zA

, B =

 xB

yB
zB

 et C =

 xC

yC
zC

 sont

G =
1
3

 xA

yA
zA

 +

 xB

yB
zB

 +

 xC

yC
zC

 =


xA+xB+xC

3
yA+yB+yC

3
zA+zB+zC

3

 .

8 Chaque fois qu’il sera question du centre de gravité d’une figure, il s’agira du centre
de gravité des sommets de cette figure (sous-entendu : affectés d’une même masse).
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Prolongements
possibles

Centre de gravité d’un quadrilatère quelconque

Déterminer la position du centre de gravité d’un quadrilatère quel-
conque.

Le centre de gravité de quatre points A, B, C, D est le point G tel que

−→
GA +−→GB +−→GC +−→GD = −→0 .

Ce point G est aussi défini par la relation équivalente

−→
OG =

−→
OA +−→OB +−→OC +−→OD

4
,

dans laquelle il semble naturel d’effectuer des groupements, par exemple

−→
OG =

−→
OA+

−→
OB

2 +
−→
OC+

−→
OD

2

2
.

D

A

C

B

 N

 
L

 K

 

M

 G

Fig. 23

Nous voyons ainsi apparâıtre de manière naturelle les
milieux K et M des segments [AB] et [CD], définis
par les relations

−−→
OK =

−→
OA +−→OB

2
et −−→

OM =
−→
OC +−→OD

2
.

On obtient ainsi −→OG =
−−→
OK +−−→OM

2
qui situe le point

G au milieu de la médiane [KM ]. L’autre façon de
grouper

−→
OG =

−→
OA+

−→
OD

2 +
−→
OB+

−→
OC

2

2
=
−−→
ON +−→OL

2

montre que le point G se trouve aussi au milieu de la
médiane [NL].

On a ainsi démontré que le centre de gravité d’un quadrilatère quelconque
est le point d’intersection des médianes, et que celles-ci se coupent en leur
milieu.

Remarque. – On peut aussi voir que les médianes d’un quadrilatère
ABCD quelconque se coupent en leur milieu en prouvant au préalable que
le quadrilatère KLMN qui joint les milieux de ses côtés est un parallélo-
gramme. Cette démonstration peut également se faire vectoriellement.

Centre de gravité d’un tétraèdre

Déterminer la position du centre de gravité d’un tétraèdre quelconque
ABCD.
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Il s’agit donc de situer le point G tel que

−→
GA +−→GB +−→GC +−→GD = −→0 , ou encore −→OG =

−→
OA +−→OB +−→OC +−→OD

4
.

Au cours de la résolution du problème précédent, nous n’avons jamais
utilisé le fait que les points A, B, C et D étaient coplanaires. Nous pouvons
donc reprendre ces mêmes calculs pour établir que le point G se trouve au
milieu des segments [KM ] et [LN ], où K, L, M et N sont les milieux des
arêtes [AB], [BC], [CD] et [DA]. Un troisième groupement des sommets
deux par deux

−→
OG =

−→
OA+

−→
OC

2 +
−→
OB+

−→
OD

2

2
=
−→
OQ +−→OR

2

montre que le point G se trouve aussi au milieu du segment [QR], où Q et
R désignent les milieux des arêtes [AC] et [BD]. Ceci démontre donc que,
dans un tétraèdre quelconque, les segments joignant les milieux des paires
d’arêtes gauches se coupent en leur milieu, et que ce point d’intersection
est le centre de gravité du tétraèdre.

A

B

D

C

 
D©

 
G

Fig. 24

Dans un tétraèdre, il est tout aussi naturel de grouper trois sommets, de
manière à faire apparâıtre les centres de gravité des faces triangulaires.
On écrit, par exemple, que

−→
OG =

3(
−→
OA+

−→
OB+

−→
OC

3 ) +−→OD

4
=

3
−−→
OD′ +−→OD

4
.

Cette relation fait intervenir D′, centre de gravité de la face ABC. Elle
est encore vraie si on remplace le point O par n’importe quel point P du
plan. En particulier, en plaçant O au point D, on obtient

−→
DG =

3
4
−−→
DD′,

qui indique que le point G se trouve sur le segment [DD′], aux trois quarts
à partir de D.

Une autre voie est de partir directement de l’expression

−→
GA +−→GB +−→GC +−→GD = −→0 .

En y remplaçant −→GA +−→GB +−→GC par 3
−−→
GD′, on obtient

3
−−→
GD′ +−→GD = −→0 c’est-à-dire −→DG = 3

−−→
GD′

qui exprime également que le point G se trouve sur le segment [DD′], aux
trois quarts à partir de D.

Si on appelle hypermédiane d’un tétraèdre le segment qui joint un sommet
au centre de gravité de la face opposée, on peut donc démontrer que le
centre de gravité du tétraèdre est situé sur chacune des hypermédianes,
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aux trois quarts à partir du sommet. Les quatre hypermédianes sont donc
concourantes en ce point.

Centre de gravité d’une pyramide

A

B

C

D

S

 

S©

 G

 K

 

L

 
M

N

Fig. 25

On considère une pyramide SABCD de sommet
S et dont la base ABCD est un quadrilatère quel-
conque. Déterminer la position du centre de gra-
vité de la pyramide SABCD.

La résolution des deux derniers problèmes devrait
permettre aux élèves d’imaginer, puis de démontrer,
que le centre de gravité G de cette pyramide se trouve
sur le segment [SS′], où S′ est le point d’intersection
des médianes de la base ABCD et qu’il se trouve,
sur ce segment, aux quatre cinquièmes à partir du
sommet S.

Centre de gravité d’un ensemble de points du plan ou de l’espace

 G

 

 

 

T

S

A

B

C
D

E

Fig. 26

Pour fixer les idées, considérons cinq points A, B, C,
D et E dans l’espace. Le centre de gravité de ces cinq
points est le point G tel que

−→
GA +−→GB +−→GC +−→GD +−→GE = −→0 .

Ce point G existe et est déterminé par la relation

−→
OG =

−→
OA +−→OB +−→OC +−→OD +−→OE

5
.

Soit T le centre de gravité du triangle ABE et S celui
du segment [CD]. On a donc

−→
GA +−→GB +−→GE = 3−→GT et −→GC +−→GD = 2−→GS.

En remplaçant, dans la relation

−→
GA +−→GB +−→GC +−→GD +−→GE = −→0 ,

−→
GA +−→GB +−→GE par 3−→GT et −→GC +−→GD par 2−→GS,

on obtient
3−→GT + 2−→GS = −→0 ou encore −→SG =

3
5
−→
ST ,
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qui exprime que le centre de gravité de l’ensemble des cinq points se trouve
sur le segment qui joint les centres de gravité des groupements de trois et
de deux points.

Dans l’expression 3−→GT + 2−→GS = −→0 , les coefficients 2 et 3 représentent le
nombre de points des groupements dont T et S sont les centres de gravité.

Généralisation

Considérons un ensemble de n points du plan ou de l’espace A1, A2,
A3, . . ., An et notons G le centre de gravité de ces n points. Répartis-
sons ces n points en deux groupements de p et n − p points (p < n),
A1, A2, A3, . . . , Ap, de centre de gravité G1, et Ap+1, Ap+2, . . . , An de
centre de gravité G2.

Un raisonnement analogue à celui qui précède permet d’établir que

p
−−→
GG1 + (n− p)−−→GG2 = −→0 .

On peut encore voir les choses de la manière suivante.

−→
OG =

−−→
OA1 +−−→OA2 + . . . +−−→OAn

n
=

(−−→OA1 +−−→OA2 + . . . +−−→OAp) + (−−−−→OAp+1 +−−−−→OAp+2 + . . . +−−→OAn)
n

=

p
(
−−→
OA1+

−−→
OA2+...+

−−→
OAp)

p + (n− p) (
−−−−→
OAp+1+

−−−−→
OAp+2+...+

−−→
OAn)

n−p

n
=

p
−−→
OG1 + (n− p)−−→OG2

n
.

C’est une autre façon de situer le point G sur le segment [G1G2].

Échos des classes Voir ceux de la section 2.2, à la page 258.

2.4 Problèmes d’incidence

De quoi s’agit-il ? Quelques problèmes plus complexes faisant appel au même type de rai-
sonnement qui a servi précédemment peuvent être soumis aux élèves, si le
professeur souhaite approfondir cette matière. En voici un exemple rela-
tif à l’intersection de deux droites du plan, traité en termes d’équations
vectorielles et paramétriques.

Comment s’y
prendre ?

Dans le plan muni d’un repère, on donne les points A, B, C, P et Q et
leurs coordonnées

A =
(

95
2

)
, B =

(
1
2

)
, C =

(
10
20

)
, P =

(
1
1

)
, Q =

(
50
10

)
.

Déterminer les coordonnées des points d’intersection de la droite PQ
avec les côtés du parallélogramme ABCD.
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Précisons que les points demandés doivent appartenir aux segments [AB],
[BC], [CD] ou [DA] et non à leurs prolongements.

Le premier problème qui se pose aux élèves est de réaliser un dessin qui
illustre la situation. Dans un repère orthonormé, l’abscisse 95 du point A
impose une unité telle que le dessin est peu utile. Certains élèves penseront
peut-être à prendre une unité plus petite sur l’axe des abscisses que sur
l’axe des ordonnées. Ils obtiennent ainsi une figure qui, même si elle est
imprécise, soutient le raisonnement.

AB

C
DS

T

R

P

Q

?
?

Fig. 27

Trouver les coordonnées du point D ne devrait pas leur poser de problème.
Le plus simple est de partir de l’une des équations vectorielles −→CD = −→BA

ou −→BC = −→AD. On trouve D =
(

104
20

)
.

La figure montre que la droite PQ coupe certainement le côté [BA] en un
point que nous notons R. Il faut donc chercher les coordonnées du point
d’ordonnée 2 sur la droite PQ. À partir de l’équation vectorielle

−→
PR = λ

−→
PQ ou −→OR = −→OP + λ

−→
PQ,

et en remplaçant chaque vecteur par le couple de ses composantes, on
obtient (

xR

2

)
=

(
1
1

)
+ λ

(
49
9

)
.

Le système {
xR = 1 + 49λ
2 = 1 + 9λ

permet de déterminer la valeur λ = 1
9 qui correspond au point R et ensuite

les coordonnées du point R =
(

58
9
2

)
.

Par contre, l’imprécision du dessin ne permet pas de voir si la droite PQ
passe par D, ou si elle coupe le côté [CD] ou le côté [AD]. Le plus simple
est de vérifier si la droite PQ passe par D. Ce n’est pas le cas car

−→
PD =

(
103
19

)
n’est pas multiple de −→PQ =

(
49
9

)
.
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Calculons ensuite les coordonnées du point S d’intersection des droites PQ

et CD. C’est le point d’ordonnée 20 sur la droite PQ. On trouve
(

104, 4
20

)
pour le point S. Il faut alors remarquer que ce point est à droite de D et
qu’il n’appartient donc pas au segment [CD]. On en déduit que la droite
PQ coupe le côté [AD] en un point que nous noterons T . La détermination
de ce point T pose un problème nouveau. En effet, nous ne connaissons
pour T ni l’abscisse, ni l’ordonnée, ni une relation entre les deux. Nous
savons seulement que le point T est à la fois un point de la droite PQ
et un point de la droite AD. Exprimons que T est sur la droite PQ par
l’équation vectorielle

−→
PT = λ

−→
PQ ou −→OT = −→OP + λ

−→
PQ.

Le point T appartient aussi à la droite AD, ce qui s’exprime par

−→
AT = µ

−→
AD ou −→OT = −→OA + µ

−→
AD.

L’erreur habituelle des élèves consiste à désigner par la même lettre les
paramètres dans les deux expressions de −→OT . Dans ce cas, ils obtiennent
une équation vectorielle

−→
OP + λ

−→
PQ = −→OA + λ

−→
AD

qui se révèle impossible dès qu’on remplace les vecteurs par les couples
de composantes. Le retour au schéma permet de comprendre qu’il n’y a
aucune raison pour que les vecteurs −→PT et −→PQ soient dans le même rapport
que les vecteurs −→AT et −→AD. Il existe donc une valeur de λ et une valeur de
µ, en général différentes, telles que

−→
OP + λ

−→
PQ = −→OA + µ

−→
AD.

En passant aux couples des composantes, nous obtenons(
1
1

)
+ λ

(
49
9

)
=

(
95
2

)
+ µ

(
9

18

)
.

Le système {
1 + 49λ = 95 + 9µ
1 + 9λ = 2 + 18µ

permet de déterminer les valeurs de λ et µ qui correspondent au point
T . Remarquons qu’il suffit de connâıtre l’une de ces deux valeurs pour
déterminer les coordonnées du point T . Dans le système mis sous la forme{

49λ− 9µ = 94
9λ− 18µ = 1,

il est facile d’éliminer µ en multipliant la première équation par 2. Nous
obtenons ainsi λ = 187

89 et les coordonnées du point T

T =

(
1 + 187×49

89

1 + 187×9
89

)
, dont les valeurs approchées sont

(
103, 95
19, 91

)
.
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Ce point est bien sur la droite AD, entre les points A et D.

La résolution de ce problème a permis de montrer toute la puissance des
équations vectorielles et paramétriques pour traiter des problèmes d’inci-
dence. Les méthodes décrites ci-dessus peuvent s’appliquer telles quelles à
des problèmes d’incidence dans l’espace. Nous en proposons à titre d’exem-
ples. Voici tout d’abord un problème de section plane dans un cube9.

Construire la section du cube de la figure 28 (en annexe à la page 489)
par le plan PQR, où P est situé sur l’arête [AB] au tiers à partir de A,
Q est situé au milieu de l’arête [BC], et R est situé au milieu de l’arête
[CC ′]. On demande ensuite de déterminer les coordonnées de tous les
sommets de cette section, après avoir choisi un repère approprié.

P

Q

R

A B

D C

A© B©

D© C©

Fig. 28

Dans tous les exercices précédents, le repère était imposé par l’énoncé,
puisque les points étaient donnés par des coordonnées. Par contre, pour
traiter ce dernier problème, les élèves devront placer eux-mêmes un repère.
Le plus facile est de placer l’origine sur un sommet du cube et les trois
vecteurs ✭✭ de base ✮✮ sur des arêtes. Nous proposons, par exemple, de
placer l’origine en A, et les vecteurs ✭✭ de base ✮✮ de telle sorte que −→i = −→AB,
−→
j = −→AD et −→k =

−−→
AA′. Dans ce cas,

A =

 0
0
0

 , B =

 1
0
0

 , D =

 0
1
0

 , A′ =

 0
0
1

 .

On trouve ensuite

P =

 1
3
0
0

 , Q =

 1
1
2
0

 , R =

 1
1
1
2

 .

L’un des points intermédiaires V =

 5
3
1
0

, intersection des droites PQ

et DC, ou W =

 1
3
2
1

, intersection des droites QR et B′C ′, permet de

9 Des problèmes de ce type sont traités sous forme synthétique dans CREM [2001b].
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calculer ensuite les points S =

 1
3
1
1

 sur l’arête C ′D′, T =

 0
3
4
1

 sur

l’arête A′D′ et U =

 0
0
1
4

 sur l’arête AA′.

Cette méthode de calcul reproduit les étapes de la construction de la sec-
tion, mais le calcul vectoriel permet aussi de travailler d’emblée dans le plan
de section PQR. En effet, les vecteurs −→QS, −→QT et −→QU peuvent s’exprimer
comme combinaisons linéaires des vecteurs −→QP et −→QR.

Pour la détermination du point S, par exemple, on a

−→
QS = λ

−→
QP + µ

−→
QR ou

 xS

yS
zS

 =

 1
1
2
0

− λ


2
3
1
2

0

 + µ

 0
1
2
1
2

 .

Sachant que yS = 1 et que zS = 1, on détermine successivement µ = 2
et λ = 1, puis xS = 1

3 . Cette méthode peut sembler plus compliquée
puisqu’elle met en jeu un système à deux paramètres, mais d’autre part le
même système permet également de calculer les coordonnées des points T
et U .

Les valeurs des coordonnées des sommets de la section permettent de situer
avec précision ces points sur les arêtes. Par exemple S se trouve au tiers de
[D′C ′] à partir de D′. Si tous les élèves n’ont pas choisi le même repère, ce
peut être l’occasion de leur faire remarquer que, même si les coordonnées
des points de la section sont différentes, l’interprétation de leur position
sur les arêtes du cube reste identique.

Passons maintenant à un autre type de questions. La mise en œuvre des
équations vectorielles et paramétriques permet aussi de déterminer les po-
sitions relatives des droites de l’espace.

Dans l’espace muni d’un repère OIJK, on donne

A =

 1
0
1

 , B =

 2
1
0

 , C =

 4
3
−2

 ,

D =

 −2
−3

4

 , E =

 −3
2
1

 , F =

 −2
1
3

 ,

G =

 −1
4
−1

 , P =

 −2
1
−2

 , Q =

 −1
0
0

 .

Quelles sont les positions relatives des droites CD, EF , EG et PQ par
rapport à la droite AB ?

Rappelons que des droites de l’espace peuvent être parallèles, sécantes
ou gauches. Les élèves doivent imaginer une méthode pour déterminer la
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position de chacune des droites par rapport à AB. Le plus simple est
de calculer les coordonnées d’un vecteur sur chacune des droites, car ce
premier travail permet de voir facilement quelles sont les droites qui ont
la même direction que AB. On obtient

−→
AB =

 1
1
−1

 ,
−→
CD =

 −6
−6

6

 ,
−→
EF =

 1
−1

2

 ,

−→
EG =

 2
2
−2

 ,
−→
PQ =

 1
−1

2

 .

Comme −→CD = −6−→AB et que −→EG = 2−→AB, on peut conclure que les droites
AB, CD et EG ont la même direction. Il s’agit alors de préciser si elles
sont parallèles disjointes ou confondues. Une stratégie consiste à vérifier si
l’un des points C, D, E ou G est aligné avec A et B (voir la synthèse de

la page 255). Le calcul des composantes des vecteurs −→AC =

 3
3
−3

 et

−→
AE =

 −4
2
0

 montre que −→AC = 3−→AB, tandis que −→AE n’est pas multiple

de −→AB. En conclusion, les points A, B, C et D sont alignés, alors que les
droites AB et EG sont parallèles disjointes.

Plutôt que d’utiliser une condition d’alignement, les élèves auront peut-
être l’idée de vérifier si les droites AB et CD, puis AB et EG, ont un
point commun. Si T est un point commun aux droites AB et CD, il vérifie
les équations vectorielles

−→
AT = λ

−→
AB ou −→OT = −→OA + λ

−→
AB,

−→
CT = µ

−→
CD ou −→OT = −→OC + µ

−→
CD.

En égalant les expressions de −→OT et en remplaçant les vecteurs par leurs
composantes, on obtient 1

0
1

 + λ

 1
1
−1

 =

 4
3
−2

 + µ

 −6
−6

6

 .

Le système qui en découle, à savoir
λ + 6µ = 3
λ + 6µ = 3
−λ− 6µ = −3

est vérifié par une infinité de valeurs des paramètres λ et µ, du moment que
λ = −6µ + 3. Cela montre bien qu’il y a une infinité de points communs
aux droites AB et CD et que les points A, B, C, D sont alignés. À chaque
valeur de λ qui situe un point T par rapport à A et B correspond une seule
valeur de µ qui situe ce même point T par rapport à C et D.
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En recherchant de la même manière un point d’intersection S aux droites
AB et EG, on obtient l’équation vectorielle

−→
OA + λ

−→
AB = −→OE + µ

−→
EG,

et en termes de composantes 1
0
1

 + λ

 1
1
−1

 =

 −3
2
1

 + µ

 2
2
−2

 .

Le système 
λ− 2µ = −4
λ− 2µ = 2
−λ + 2µ = 0

est cette fois impossible, ce qui montre bien que les droites de même di-
rection AB et EG sont parallèles disjointes.

Nous avons déjà vu que les droites EF et PQ n’ont pas la même direction
que la droite AB. C’est donc l’existence d’un éventuel point d’intersection
qui nous permettra de savoir si elles sont gauches ou sécantes avec AB.

S’il existe un point L commun aux droites AB et EF , il vérifie l’équation
vectorielle −→

OL = −→OA + λ
−→
AB = −→OE + µ

−→
EF,

et en termes de composantes 1
0
1

 + λ

 1
1
−1

 =

 −3
2
1

 + µ

 1
−1

2

 .

Pour résoudre le système 
λ− µ = −4
λ + µ = 2

−λ− 2µ = 0

qui en découle, on détermine les valeurs λ = −1 et µ = 3 qui vérifient
les deux premières équations. Ces valeurs devraient également vérifier la
troisième équation pour être solutions du système, mais ce n’est pas le cas.
On dit que le système est incompatible. Aucune valeur de λ et de µ ne
convient, les droites AB et EF sont donc gauches.

On reprend le même raisonnement pour un éventuel point R commun aux
droites AB et PQ. Il vérifie l’équation vectorielle

−→
OR = −→OA + λ

−→
AB = −→OP + µ

−→
PQ,

et en termes de composantes 1
0
1

 + λ

 1
1
−1

 =

 −2
1
−2

 + µ

 1
−1

2

 .
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Dans le système qui s’ensuit,
λ− µ = −3
λ + µ = 1

−λ− 2µ = −3,

les valeurs λ = −1 et µ = 2 qui vérifient les deux premières équations du
système vérifient également la troisième équation. Cette fois le système est
compatible. Le point d’intersection R est obtenu en remplaçant, soit λ par
−1 dans −→OR = −→OA+λ

−→
AB, soit µ par 2 dans −→OR = −→OP +µ

−→
PQ. On obtient

R =

 0
−1

2

 .

Ce travail a permis de rencontrer de manière naturelle des systèmes de 3
équations à 2 inconnues, en donnant du sens aux différents cas qui peuvent
se présenter, tout en évoquant l’aspect vectoriel des positions relatives des
droites de l’espace.

Un autre type de problèmes d’incidence dans l’espace10 est celui de la
recherche du point de percée d’une droite dans un plan. Nous proposons
de l’aborder par un exercice comme celui-ci.

On considère le tétraèdre ABCD, R le point situé sur l’arête [AD] au
tiers à partir de D et E le point du plan ABC tel que BACE forme un
parallélogramme. On demande de déterminer le point de percée P de
la droite RE dans la face BCD, de situer ce point avec précision sur la
droite RE et dans la face BCD, en utilisant un repère approprié.

Le dessin de la figure 29 est reproduit en annexe à la page 490.

A

B

D

C

 E

R
 P

Fig. 29

La nature du problème nous conduit à renoncer à l’emploi d’un repère
orthonormé. Il vaut mieux, si on veut éviter de trop longs calculs, se donner
un repère dont l’origine est un sommet du tétraèdre et dont les vecteurs
✭✭ de base ✮✮ sont sur les arêtes de celui-ci. On peut, par exemple choisir

10 Des problèmes de ce type sont traités sous forme synthétique dans CREM [2001b].
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de travailler dans le repère ABCD. Les vecteurs ✭✭ de base ✮✮ sont alors−→
i = −→AB, −→j = −→AC et −→k = −→AD. Dans ce repère, les points A, B, C, D,
E et R ont pour coordonnées

A =

 0
0
0

 , B =

 1
0
0

 , C =

 0
1
0

 ,

D =

 0
0
1

 , E =

 1
1
0

 , R =

 0
0
2
3

 .

Comme le point P appartient à la droite RE, il vérifie l’équation vectorielle

−→
RP = λ

−→
RE ou −→AP = −→AR + λ

−→
RE.

De plus nous avons vu que tout vecteur d’un plan pouvait être exprimé
comme combinaison linéaire de deux vecteurs ✭✭ de base ✮✮ de ce plan. Dans
le plan BCD, on peut donc exprimer le vecteur −→BP comme combinaison
linéaire des vecteurs −→BC et −→BD. L’équation vectorielle

−→
BP = µ

−→
BC + ν

−→
BD ou −→AP = −→AB + µ

−→
BC + ν

−→
BD

exprime donc bien que le point P appartient au plan BCD. On exprime
que P appartient à la fois à la droite RE et au plan BCD en égalant les
deux expressions de −→AP , ce qui donne, en passant aux composantes des
vecteurs, 0

0
2
3

 + λ

 1
1
−2

3

 =

 1
0
0

 + µ

 −1
1
0

 + ν

 −1
0
1

 .

Le système qui en découle,
λ + µ + ν = 1
λ− µ = 0
−2

3λ − ν = −2
3

a pour solution λ = 1
4 , µ = 1

4 , ν = 1
2 . Les coordonnées du point P sont

1
4
1
4
1
2

 dans le repère choisi. Elles sont obtenues en remplaçant, par exem-

ple, λ par 1
4 dans l’expression de −→AP . Les valeurs des paramètres peuvent

cependant être interprétées indépendamment du repère. Le fait que

−→
RP =

1
4
−→
RE

signifie que le point P se trouve sur le segment [RE] au quart à partir de
R. Dans la face BCD, on peut situer le point P à partir de la relation

−→
BP =

1
4
−→
BC +

1
2
−→
BD.
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2.5 Quelques transformations du plan et de l’espace

Comment s’y
prendre ?

Dans le plan muni d’un repère, on donne les points A, B et C par leurs
coordonnées

A =
(

2
3

)
, B =

(
1
−2

)
, C =

(
−4

1

)
.

Représenter graphiquement les points suivants et calculer leurs coor-
données, sachant que

1. D est le point tel que CABD forme un parallélogramme,

2. A′ est l’image de A par la translation −→t = −→BC,

3. B′ est le symétrique de B par rapport à A,

4. C ′ est l’image de C par une homothétie de centre A et de rapport
−3

4 .

Dans l’espace muni d’un repère, on donne les points A, B et C par leurs
coordonnées

A =

 2
3
1

 , B =

 1
−2
−5

 , C =

 −4
1
−2

 .

Calculer les coordonnées des points D, A′, B′ et C ′ définis de la même
manière que dans le plan.
En déduire, après généralisation, l’expression analytique des transla-
tions, symétries centrales et homothéties dans le plan et dans l’espace.

Voici les résultats pour le plan.

A

O

B

C

D

A©

B©

C©

Fig. 30 : Transformations du plan
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1. L’équation −→CD = −→AB nous donne
(
−5
−4

)
pour les coordonnées du

point D.

2. L’équation
−−→
AA′ = −→BC nous donne

(
−3

6

)
pour les coordonnées du

point A′.

3. L’équation
−−→
AB′ = −→BA ou

−−→
BB′ = 2−→BA nous donne

(
3
8

)
pour les

coordonnées du point B′.

4. L’équation
−−→
AC ′ = −3

4

−→
AC nous donne

( 13
2
9
2

)
pour les coordonnées

du point C ′.

Voici les résultats pour l’espace.

1. L’équation −→CD = −→AB nous donne

 −5
−4
−8

 pour les coordonnées du

point D.

2. L’équation
−−→
AA′ = −→BC nous donne

 −3
6
4

 pour les coordonnées du

point A′.

3. L’équation
−−→
AB′ = −→BA ou

−−→
BB′ = 2−→BA nous donne

 3
8
7

 pour les

coordonnées du point B′.

4. L’équation
−−→
AC ′ = −3

4

−→
AC nous donne


13
2
9
2
13
4

 pour les coordonnées

du point C ′.

Généralisation

Considérons les points P et P ′ de coordonnées
(

x
y

)
et

(
x′

y′

)
.

1. P ′ est l’image de P par la translation −→t de composantes
(

tx
ty

)
si et seulement si

−−→
PP ′ = −→t

si et seulement si
(

x′

y′

)
=

(
x
y

)
+

(
tx
ty

)
.

2. P ′ est l’image de P par la symétrie de centre C de coordonnées(
xC

yC

)
si et seulement si

−−→
CP ′ = −→PC

si et seulement si
(

x′

y′

)
= 2

(
xC

yC

)
−

(
x
y

)
.
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3. P ′ est l’image de P par l’homothétie de centre C de coordonnées(
xC

yC

)
et de rapport k

si et seulement si
−−→
CP ′ = k

−→
CP

si et seulement si
(

x′

y′

)
= k

(
x
y

)
+ (1− k)

(
xC

yC

)
.

Les expressions correspondantes dans l’espace sont obtenues sans peine en
ajoutant la troisième composante.

Ce dernier travail montre que le calcul vectoriel permet également d’ex-
primer de manière extrêmement concise des propriétés de translation, de
symétrie centrale et d’homothétie. Il permet d’en dégager facilement les
expressions analytiques, aussi bien dans l’espace que dans le plan. Nous
proposons, pour terminer, deux applications qui mettent en œuvre ces
transformations.

Dans un plan, on considère trois points non alignés A, B et M . Au point
M , on associe le point R milieu de [BM ], le point S, symétrique de R
par rapport à A, ainsi que le point P , point d’intersection des droites
MS et AB. Qu’advient-il du point P lorsque le point M se déplace dans
le plan ?

A B

R

M

S

P

Fig. 31

Il semble naturel de travailler dans un repère dont l’origine est A et où
−→
i = −→AB. Dans ce cas, les points A et B ont pour coordonnées

(
0
0

)
et(

1
0

)
. Le point mobile M sera noté

(
λ
µ

)
. On obtient successivement

R =
(

λ+1
2
µ
2

)
et S =

(
−λ+1

2
−µ

2

)
.

En exprimant que le point P est aligné avec M et S, on obtient l’équation
vectorielle −−→

MP = k
−−→
MS ou −→OP = −−→OM + k

−−→
MS,
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ce qui donne pour les coordonnées du point P(
λ
µ

)
+ k

[(
−λ+1

2
−µ

2

)
−

(
λ
µ

)]
=

(
λ− k(3λ+1)

2
µ(2−3k)

2

)
.

Comme le point P appartient à la droite AB, son ordonnée est nulle, ce
qui permet de déterminer la valeur de k qui vaut 2

3 . En remplaçant k par

2
3 dans les coordonnées de P , on trouve

(
−1

3
0

)
. Le point P est donc un

point fixe, situé sur la droite AB, et tel que −→AP = −1
3

−→
AB.

Dans un triangle ABC, on note H, J , K les milieux des côtés [BC], [CA]
et [AB], G le centre de gravité. Le point M étant un point quelconque
du plan, on note P , Q, R les symétriques de M par rapport à H, J , K.
Montrer que

1. les segments [AP ], [BQ] et [CR] ont même milieu O ;

2. les trois points M , G, O sont alignés.

A

B C

M

 
H

 

 J

P

 
Q

 
K

 R
 O

 G

Fig. 32

Plaçons le repère en BHK, pour éviter d’introduire immédiatement des
coordonnées fractionnaires. On a donc

B =
(

0
0

)
, H =

(
1
0

)
, K =

(
0
1

)
, C =

(
2
0

)
, A =

(
0
2

)
.

Le point quelconque M est noté M =
(

λ
µ

)
. On obtient alors

J =
(

1
1

)
, P =

(
2− λ
−µ

)
, Q =

(
2− λ
2− µ

)
, R =

(
−λ

2− µ

)
.
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En calculant les coordonnées des milieux de [BQ], de [AP ] et de [CR], on

trouve chaque fois
(

1− λ
2

1− µ
2

)
, ces trois segments ont donc bien le même

milieu O =
(

1− λ
2

1− µ
2

)
. Il reste à calculer

G =
( 2

3
2
3

)
,
−−→
MG =

( 2
3 − λ
2
3 − µ

)
,
−→
GO =

(
1
3 − λ

2
1
3 −

µ
2

)
.

Comme −−→MG = 2−→GO, on peut en déduire que les points M , G et O sont
alignés, et que G se trouve sur [MO], aux deux tiers à partir de M .

Ce dernier résultat, qui peut sembler inattendu quand on travaille vec-
toriellement, apparâıt de manière naturelle au cours d’une démonstration
synthétique des propriétés annoncées. Voici quelques indications qui per-
mettent de rédiger une telle démonstration.

Dans le triangle ABC, le segment [JH] est parallèle au segment [AB] et
|JH| = |AB|

2 .

Dans le triangle MPQ, le segment [JH] est parallèle au segment [QP ] et
|JH| = |QP |

2 .

On en déduit que les segments [AB] et [QP ] sont parallèles et de même
longueur. Le quadrilatère ABPQ est donc un parallélogramme dont les
diagonales [AP ] et [BQ] se coupent en leur milieu.

On démontre de même que BCQR est un parallélogramme dont les dia-
gonales [CR] et [BQ] se coupent en leur milieu.

Par conséquent, les trois segments [AP ], [BQ] et [CR] ont même milieu O.

Le point G, centre de gravité du triangle ABC, se trouve sur la médiane
[BJ ] aux deux tiers à partir de B. Comme [BJ ] est aussi médiane du
triangle BMQ, G est aussi le centre de gravité de ce triangle et se trouve
donc également sur la médiane [MO], aux deux tiers à partir de M . Les
trois points M , G, O sont donc alignés.

Échos des classes Voir ceux de la section 2.2, à la page 258.
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Le produit scalaire

1 Des polygones réguliers au produit scalaire

De quoi s’agit-il ? Faire apparâıtre des relations algébriques entre les coordonnées des som-
mets des polygones réguliers. Pour chaque paire de vecteurs, trouver une
expression algébrique qui ne dépend que de leurs longueurs et de l’angle
formé par leurs directions.

Enjeux La somme des vecteurs et le produit d’un vecteur par un scalaire sont les
deux opérations qui permettent de construire la géométrie affine par calcul.
Le produit scalaire que nous introduisons ici permet de même d’établir par
calcul les propriétés euclidiennes (voir à ce sujet le chapitre 15).

Nous cherchons ici à faire émerger les différentes formes du produit scalaire
à partir de figures géométriques simples et à donner du sens à l’expression
du produit scalaire de deux vecteurs dans une base orthonormée.

Matières couvertes. – La règle des cosinus, encore appelée théorème
de Pythagore généralisé et la formule du cosinus de la différence de deux
angles.

Le produit scalaire de deux vecteurs dans le plan et dans l’espace, exprimé
sous des formes faisant intervenir

– les composantes des vecteurs dans un repère orthonormé,

– la fonction cosinus,

– la projection d’un vecteur sur l’autre.

Les propriétés du produit scalaire et leur justification dans un contexte
géométrique.

Compétences. – Savoir, connâıtre, définir : le calcul vectoriel dans le
plan et dans l’espace faisant intervenir les composantes des vecteurs et le
produit scalaire de deux vecteurs.

De quoi a-t-on
besoin ?

Prérequis. – Les coordonnées d’un point et les composantes d’un vecteur
dans une base orthonormée.

La trigonométrie dans le triangle rectangle.

280
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Les nombres trigonométriques d’un angle orienté rapporté au cercle trigo-
nométrique et leurs valeurs remarquables.

Matériel. – Une calculatrice scientifique.

1.1 Émergence d’une formule

Comment s’y
prendre ?

Tout au long de ce chapitre, nous travaillerons dans le plan métrique, c’est-
à-dire dans le plan muni d’une unité de longueur.

Le début de cette activité peut sembler très directif. Il a pour but de
confronter les élèves avec une série de figures géométriques simples : des
polygones réguliers centrés à l’origine d’un repère orthonormé. La recherche
des coordonnées des sommets de ces polygones fournit l’occasion d’utiliser
les sinus et cosinus de quelques angles orientés rapportés au cercle trigo-
nométrique dans un contexte de géométrie analytique. L’observation des
figures et des tableaux de nombres obtenus à partir des coordonnées de
leurs sommets devrait permettre de dégager une formulation du produit
scalaire dans une base orthonormée, ainsi que son interprétation.

Représenter un carré ABCD inscrit dans un cercle de rayon 1 centré à
l’origine O d’un repère orthonormé. Indiquer les coordonnées des som-
mets du carré dans ce repère.

Certains élèves auront placé les sommets du carré sur les axes car, dans
cette position, les coordonnées des sommets semblent évidentes. Ils ob-
tiennent alors la figure 1.

D’autres auront eu l’idée de placer les médianes du carré sur les axes et
obtiendront la figure 2.

Il est possible que d’autres positions du carré soient proposées spontané-
ment. Sinon, le professeur demande de dessiner aussi le carré dont une
diagonale forme un angle de 30◦ avec l’axe des x (figure 3).

A

B

C

D

O

Fig. 1

AB

C D

O

Fig. 2

A

B

C
D

O

30J

Fig. 3
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Pour chacun des carrés obtenus, placer les coordonnées des sommets
dans un tableau comme celui présenté ci-dessous pour le carré de la fi-
gure 1 et observer les régularités que présentent ces tableaux de nombres.
Quelles sont les régularités qui persistent lorsque le carré est placé dans
une position plus générale ?

A B C D

x 1 0 −1 0
y 0 1 0 −1

Les connaissances des élèves en trigonométrie devraient leur permettre de
construire les tableaux suivants pour les carrés des figures 2 et 3.

A B C D

x

√
2

2
−
√

2
2

−
√

2
2

√
2

2

y

√
2

2

√
2

2
−
√

2
2

−
√

2
2

A B C D

x

√
3

2
−1

2
−
√

3
2

1
2

y
1
2

√
3

2
−1

2
−
√

3
2

Les deux premiers tableaux présentent des régularités qui proviennent de
la position particulière du carré par rapport aux axes. Dans le premier,
les seules valeurs qui apparaissent sont 1, 0 et −1 ; dans le second, il n’y
a que deux valeurs opposées. Le tableau de nombres associé à la figure 3,
moins particulière que les deux précédentes, donne une meilleure idée des
régularités qu’on pourrait observer dans le cas général. On n’y voit que
deux valeurs différentes en valeur absolue : 1

2 et
√

3
2 . Ces deux nombres

reviennent dans chaque colonne, en changeant de place à chaque passage
d’une colonne à la suivante et avec les signes ✭✭ moins ✮✮ aux mêmes endroits
que dans le tableau précédent. Pour aborder le cas général, on suggère aux
élèves de dessiner un carré dont une diagonale forme un angle quelconque
α avec l’axe des x. Ils obtiennent la figure 4 et le tableau qui s’y rapporte.

A

B

C

D

O
α

Fig. 4

A B C D

x cosα − sinα − cosα sinα
y sinα cosα − sinα − cosα
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Il sera sans doute utile de faire observer aux élèves que les coordonnées
de chacun des sommets du carré vérifient la relation x2 + y2 = 1, puisque
cos2 α + sin2 α = 1, et que cette relation est liée au fait que le carré est
inscrit dans un cercle de rayon 1.

Et si le cercle circonscrit au carré n’est plus de rayon 1 ?
Dessiner un carré inscrit dans un cercle centré à l’origine et dont le som-

met A dans le premier quadrant a pour coordonnées
(

a
b

)
; compléter

ensuite le tableau qui s’y rapporte.

Il faudra sans doute susciter une discussion dans la classe pour amener les
élèves à observer que ce dernier carré fournit un cas plus général que les
précédents, le rayon du cercle circonscrit au carré valant

√
a2 + b2, quantité

qui n’est pas nécessairement égale à 1.

Les moyens qui sont à la disposition des élèves pour déterminer les coordon-
nées des sommets ne manquent pas. Ils peuvent, par exemple, considérer
les triangles rectangles dont les hypoténuses sont les segments OA, OB,
OC et OD, et dont les côtés sont parallèles aux axes. La rotation de 90◦

autour de O qui amène chacun de ces triangles sur le suivant permet de
justifier l’égalité des longueurs des côtés de ces triangles. Il reste alors à dé-
terminer les signes pour en déduire les coordonnées des sommets du carré.
La figure 5 montre comment passer des coordonnées du point A à celles
du point B.

a

b

a

b

O

A

B

Fig. 5

Voici le tableau obtenu.

A B C D

x a −b −a b
y b a −b −a

Une phase de discussion sera sans doute encore nécessaire pour que toute
la classe soit convaincue que ce tableau généralise tous les précédents.

On demande alors aux élèves d’analyser ce tableau, en particulier les sous-
tableaux formés de deux colonnes consécutives. Leur faire expliquer com-
ment on passe d’une colonne à la suivante éclaire assez bien la question.
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Remarquons au passage que le tableau est cyclique et qu’on peut passer
de la dernière colonne à la première par le même procédé. Le but est de
trouver une relation toujours vérifiée par les coordonnées de deux sommets
consécutifs du carré. Les élèves devraient finalement parvenir à la conclu-
sion que le produit des abscisses est toujours égal à l’opposé du produit
des ordonnées. Pour formuler mathématiquement cette observation sous

la forme d’une relation liant x1, y1, x2, y2, où
(

x1

y1

)
et

(
x2

y2

)
sont les

coordonnées de deux sommets consécutifs du carré, on écrira d’abord

x1x2 = −y1y2 et ensuite x1x2 + y1y2 = 0.

La même expression calculée sur les coordonnées de deux sommets diamé-
tralement opposés donne

−1 pour tous les carrés inscrits dans un cercle de rayon 1 ;

−(a2 + b2) = −r2 dans le cas général.

Que se passe-t-il si le nombre de côtés est plus grand que quatre ?
Les tableaux de nombres obtenus à partir des coordonnées des som-
mets d’autres polygones réguliers présentent-ils de telles régularités ?
Qu’advient-il de la relation x1x2 + y1y2 = 0 ? Que vaut l’expression
x1x2 + y1y2 lorsqu’on la calcule pour différentes paires de sommets ?

Examinons, par exemple, un hexagone inscrit dans un cercle de rayon 1 et
centré en O. C’est un polygone dont la construction est bien connue des
élèves. La figure 6 montre un hexagone dont un diamètre cöıncide avec
l’axe des x et la figure 7 montre un hexagone dont un diamètre forme un
angle de 12◦ avec l’axe des x.

A

BC

D

E F

O

Fig. 6

A

BC

D

E F

O
12J

Fig. 7

Ce sont les valeurs particulières des sinus et cosinus des multiples de 60◦

qui fournissent les coordonnées des sommets de l’hexagone de la figure 6, et
pour l’hexagone de la figure 7, les coordonnées des sommets sont exprimées
sous la forme (cos 12◦, sin 12◦), (cos 72◦, sin 72◦), . . .

On note les coordonnées des sommets dans un tableau de la forme
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A B C D E F A

x

y

x1x2 + y1y2

où
(

x1

y1

)
et

(
x2

y2

)
sont les coordonnées de deux sommets consécutifs

de l’hexagone.

Des régularités dans le tableau des coordonnées n’apparaissent plus de ma-
nière aussi évidente que pour le carré ; par contre, on voit que l’expression
x1x2 + y1y2 calculée pour les coordonnées de deux sommets consécutifs
d’un hexagone vaut toujours 0,5.

La même expression x1x2 + y1y2 est également calculée pour les coordon-
nées de différentes paires de sommets non consécutifs de l’hexagone.

Les résultats obtenus peuvent être regroupés de la manière suivante : l’ex-
pression x1x2 + y1y2 vaut

0, 5 lorsque
(

x1

y1

)
et

(
x2

y2

)
sont les coordonnées de deux sommets

consécutifs de l’hexagone ;

−0, 5 lorsque
(

x1

y1

)
et

(
x2

y2

)
sont les coordonnées de deux som-

mets de l’hexagone situés à 120◦ l’un de l’autre ;

−1 lorsque
(

x1

y1

)
et

(
x2

y2

)
sont les coordonnées de deux sommets

diamétralement opposés de l’hexagone.
On commence alors à penser que l’expression x1x2 + y1y2 est liée à l’angle
formé par les vecteurs d’origine O et dont les extrémités sont les sommets
d’un polygone inscrit dans un cercle de rayon 1. Il serait intéressant de
connâıtre la valeur de l’expression x1x2 + y1y2 si l’angle formé par les vec-
teurs considérés vaut 0◦, c’est-à-dire lorsque x1 = x2 et y1 = y2. On obtient

alors x2
1+y2

1 = 1 dans tous les cas où le point de coordonnées
(

x1

y1

)
est à

distance 1 de O. En tenant compte de cette dernière observation, on dresse
le tableau suivant.

angle x1x2 + y1y2

0◦ 1
90◦ 0
180◦ −1
60◦ 0, 5
120◦ −0, 5

Ce tableau devrait permettre de conjecturer que

x1x2 + y1y2 = cosα,

où α est l’angle formé par les vecteurs −−→OP1 et −−→OP2, P1 et P2 étant des

points situés à distance 1 de l’origine et de coordonnées respectives
(

x1

y1

)
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et
(

x2

y2

)
. On désignera par ✭✭ longueur d’un vecteur ✮✮ la longueur du

segment qui joint son origine à son extrémité. Ceci nous permet d’énoncer
la conjecture sous la forme suivante,

x1x2 + y1y2 = cosα,

où α est l’angle formé par les vecteurs de longueur 1 et de composantes(
x1

y1

)
et

(
x2

y2

)
.

L’exemple du carré inscrit dans un cercle de rayon différent de 1 montre
bien que la longueur des vecteurs joue également un rôle dans la valeur de
l’expression x1x2 + y1y2.

Quelle signification peut-on donner à l’expression x1x2 + y1y2 lorsque
les vecteurs sont de longueurs différentes (et différentes de 1) ?

A

B

C

D

E

F

G

H

O
α

1

1

Fig. 8

Pour soutenir le réflexion des élèves, on leur pré-
sente la figure 8, qui montre deux carrés,

• l’un inscrit dans un cercle de rayon 3 et dont
une diagonale cöıncide avec l’axe des x,

• l’autre inscrit dans un cercle de rayon 2 et
dont une diagonale forme un angle α avec
l’axe des x.

Les coordonnées des sommets des deux carrés sont
rassemblées dans le tableau suivant.

A E B F C G D H

x 3 2 cosα 0 −2 sinα −3 −2 cosα 0 2 sinα

y 0 2 sinα 3 2 cosα 0 −2 sinα −3 −2 cosα

x1x2 + y1y2 6 cosα 6 sinα 6 cosα 6 sinα 6 cosα 6 sinα 6 cosα

L’expression x2
1 + y2

1 qui valait 1 pour les vecteurs de longueur 1, vaut
à présent 9 pour les sommets du carré ABCD et 4 pour ceux du carré
EFGH. D’une manière générale, le théorème de Pythagore nous indique

que, pour un point P de coordonnée
(

xP

yP

)
, l’expression x2

P +y2
P est égale

au carré de sa distance à l’origine |OP |, ou encore au carré de la longueur

du vecteur −→OP . La longueur d’un vecteur de composantes
(

x1

y1

)
vaut

donc
√

x2
1 + y2

1.
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Le tableau permet également de vérifier que

x1x2 + y1y2 = 3 · 2 · cosα

pour les paires de sommets A et E, B et F , C et G et enfin D et H ; et
que

x1x2 + y1y2 = 3 · 2 · sinα = 3 · 2 · cos
(π

2
− α

)
pour les paires de sommets E et B, F et C, G et D et, pour terminer, H
et A, où (π2 − α) est l’angle ÊOB.

Ceci devrait inciter les élèves à conjecturer que l’expression x1x2+y1y2 vaut

le produit des longueurs des vecteurs dont les composantes sont
(

x1

y1

)
et

(
x2

y2

)
, multiplié par le cosinus de l’angle formé par les directions de

ces deux vecteurs.

Cette expression x1x2 + y1y2 est appelée le produit scalaire des vecteurs
−→v1 et −→v2 de composantes

(
x1

y1

)
et

(
x2

y2

)
dans une base orthonormée

et est notée1 < −→v1 |−→v2 >.

La conjecture peut donc s’écrire

< −→v1 |−→v2 >= x1x2 + y1y2 = ‖−→v1‖ · ‖−→v2‖ · cos θ

où ‖−→v1‖ et ‖−→v2‖ sont les longueurs des vecteurs −→v1 et −→v2 et θ l’angle formé
par les directions de ces deux vecteurs. Nous avons montré que ‖−→v1‖ et
‖−→v2‖ valent respectivement

√
x2

1 + y2
1 et

√
x2

2 + y2
2.

v

v

→

→

θ

1

2

Fig. 9

1.2 Les trois formes du produit scalaire

Comment s’y
prendre ?

Généralisons la situation observée pour les vecteurs −→OA et −→OE de la figure
8 dans le but d’obtenir une première forme du produit scalaire faisant
intervenir les directions des vecteurs.

Considérons deux vecteurs −→a et −→b formant avec l’axe des x des angles
orientés α et β. Dessinons ces vecteurs de telle sorte que leur origine cöın-
cide avec l’origine O du repère orthonormé : −→a = −→OA et −→b = −→OB. Nous
savons que dans ce cas, les composantes des vecteurs sont égales aux co-
ordonnées de leurs extrémités A et B. Les relations trigonométriques dans
les triangles rectangles OAA′ et OBB′ nous donnent les coordonnées des

1 Le choix de la notation < −→v1 |−→v2 > pour le produit scalaire de deux vecteurs n’a
rien d’impératif. Nous l’avons adoptée pour bien distinguer cette opération de la multi-
plication dans les réels et de la multiplication d’un vecteur par un scalaire. En effet, il
s’agit d’une opération tout à fait nouvelle qui, à deux vecteurs, associe un nombre. Ce
nombre dépend de la longueur des deux vecteurs et de l’angle formé par leurs directions.
Ceci s’écarte notablement d’une multiplication au sens usuel. De plus, cette notation se
rapproche de celles habituellement utilisées pour les formes bilinéaires dans les ouvrages
d’algèbre linéaire.
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points A et B, et donc les composantes des vecteurs −→a et −→b , qui sont
respectivement

−→a =
(
‖−→a ‖ cosα
‖−→a ‖ sinα

)
et −→b =

(
‖−→b ‖ cosβ
‖−→b ‖ sinβ

)
,

où ‖−→a ‖ et ‖−→b ‖ sont les longueurs des vecteurs −→a et −→b .

O A' B'

A

B

α
β

Fig. 10

O A' B'

A

B

α
β

Fig. 11

Le produit scalaire de ces deux vecteurs vaut donc

< −→a |−→b >= ‖−→a ‖‖−→b ‖(cosα cosβ + sinα sinβ).

Or, nous avions conjecturé que

< −→a |−→b >= ‖−→a ‖‖−→b ‖ cos θ

où θ est l’angle formé par les vecteurs −→a et −→b , qui vaut α−β dans le cas
de la figure 10 et β − α dans la figure 11. Remarquons que cos(α − β) =
cos(β − α). La conjecture est donc établie si les élèves connaissent la for-
mule qui exprime cos(α− β) en fonction des nombres trigonométriques de
α et β. Si ce n’est pas le cas, nous proposons ci-dessous une démonstration
de la conjecture à partir de la règle des cosinus, encore appelée théorème
de Pythagore généralisé. Nous présentons dans la section 1.5 à la page 295
une démonstration de ce dernier théorème telle qu’elle apparâıt dans Les
Éléments d’Euclide. Remarquons que la comparaison des deux expres-
sions de < −→a |−→b > ci-dessus nous permettra de déduire la formule du
cosinus de la différence de deux angles, dès que la conjecture sera établie.

Démonstration de la conjecture

Nous proposons ici une façon d’établir le lien entre les deux premières
formes du produit scalaire,

< −→a |−→b >= x1x2 + y1y2 et < −→a |−→b >= ‖−→a ‖‖−→b ‖ cos θ.

Considérons un triangle quelconque ABC tel que les composantes des vec-

teurs −→AB et −→AC soient
(

x1

y1

)
et

(
x2

y2

)
. Celles-ci sont indépendantes

de la position de l’origine du repère. Nous pouvons donc placer l’origine
du repère en A sans nuire à la généralité. Dans ce cas, les coordonnées des
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points B et C sont également
(

x1

y1

)
et

(
x2

y2

)
et les composantes de

−→
BC valent

(
x2 − x1

y2 − y1

)
. En calculant le carré de la longueur du côté BC,

on trouve

A

B
x
y

C
x
y

( )
(  )

(  )

0
0

1
1

2
2

Fig. 12

|BC|2 = (x2 − x1)2 + (y2 − y1)2

= x2
2 + x2

1 − 2x1x2 + y2
2 + y2

1 − 2y1y2

= x2
1 + y2

1 + x2
2 + y2

2 − 2(x1x2 + y1y2)
= |AB|2 + |AC|2 − 2(x1x2 + y1y2).

En comparant cette dernière égalité avec le calcul de |BC|2 par la règle
des cosinus,

|BC|2 = |AB|2 + |AC|2 − 2|AB| · |AC| · cos Â,

on établit l’égalité

x1x2 + y1y2 = |AB| · |AC| · cos Â.

Si on change de repère orthonormé, les composantes des vecteurs −→AB et−→
AC changent de valeurs, mais l’expression x1x2 + y1y2 reste invariante et
vaut toujours |AB| · |AC| · cos Â.

Forme du produit scalaire faisant intervenir la projection ortho-
gonale d’un vecteur sur l’autre

Il reste à faire le lien avec la forme du produit scalaire qui fait intervenir
la projection d’un vecteur sur l’autre.

a

b

O

A

B

B'

A'

→

→

θ

Fig. 13

Les figures montrent que, dans l’expression

< −→a |−→b >= ‖−→a ‖‖−→b ‖ cos θ,

‖−→b ‖ cos θ représente la longueur |OB′| de la projection du vecteur −→b sur
la direction du vecteur −→a , munie du signe + si l’angle θ est aigu et du
signe − si l’angle θ est obtus. On peut encore interpréter cela en disant que
le signe est + si le vecteur −→a et la projection de −→b sur −→a sont de même
sens, et que le signe est − s’ils sont de sens contraires. De la même manière,
‖−→a ‖ cos θ représente la longueur |OA′| de la projection du vecteur −→a sur
la direction du vecteur −→b , munie du signe adéquat (figures 13 et 14).

a

b

O

A

B

B'
A'

→

→

θ

Fig. 14
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Synthèse

Si −→a et −→b sont deux vecteurs de composantes respectives
(

x1

y1

)
et

(
x2

y2

)
en base ortho-

normée, le produit scalaire des vecteurs −→a et −→b peut s’écrire sous les formes suivantes :

< −→a |−→b > = x1x2 + y1y2

= ‖−→a ‖‖−→b ‖ cos θ
= (signe)|OA| · |OB′| = (signe)|OB| · |OA′|

Dans cette dernière forme, |OA|, |OB|, |OA′| et |OB′| représentent les longueurs des vecteurs
−→a , −→b , et des projections orthogonales de chacun d’eux sur la direction de l’autre (voir figures
13 et 14). Le signe est

+ si l’angle θ est aigu, ou encore, si l’un des vecteurs et la projection de l’autre sur
celui-ci sont de même sens,

− si l’angle θ est obtus, ou encore, si l’un des vecteurs et la projection de l’autre sur
celui-ci sont de sens contraires.

Les valeurs ‖−→a ‖ =
√

x2
1 + y2

1 et ‖−→b ‖ =
√

x2
2 + y2

2 qui représentent les longueurs des vecteurs
−→a et −→b sont encore appelées norme de −→a et norme de −→b . D’autre part, si les composantes
des vecteurs −→a et −→b sont écrites sous la forme

−→a =
(
‖−→a ‖ cosα
‖−→a ‖ sinα

)
et −→b =

(
‖−→b ‖ cosβ
‖−→b ‖ sinβ

)
,

α et β étant les angles orientés formés par les vecteurs −→a et −→b avec l’axe des x (voir les
figures 10 et 11), le produit scalaire de ces deux vecteurs vaut alors

< −→a |−→b >= ‖−→a ‖‖−→b ‖(cosα cosβ + sinα sinβ).

Comme θ est égal à α− β ou à β − α, la comparaison de cette dernière égalité avec

< −→a |−→b >= ‖−→a ‖‖−→b ‖ cos θ

permet d’établir la formule donnant le cosinus de la différence de deux angles, à savoir

cos(α− β) = cos(β − α) = cosα cosβ + sinα sinβ.

Extension du produit scalaire à l’espace

Deux vecteurs de l’espace, amenés dans une position où leurs origines cöın-
cident en un point quelconque de l’espace, déterminent un plan. Dans ce
plan, leur produit scalaire vaut donc

< −→a |−→b >= ‖−→a ‖‖−→b ‖ cos θ,
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où θ désigne l’angle formé par leurs directions. Montrons que si les com-

posantes des vecteurs −→a et −→b sont respectivement

 x1

y1

z1

 et

 x2

y2

z2

,

leur produit scalaire peut s’écrire

< −→a |−→b >= x1x2 + y1y2 + z1z2.

Il suffit pour cela d’adapter la démonstration de la conjecture dans le plan
au cas où ABC est un triangle de l’espace.

Considérons un triangle ABC quelconque dans l’espace tel que les compo-

santes des vecteurs −→AB et −→AC soient

 x1

y1

z1

 et

 x2

y2

z2

. Celles-ci sont

indépendantes de la position de l’origine du repère, que nous pouvons donc
placer en A. Dans ce cas, les coordonnées des points B et C sont égales
aux composantes de −→AB et −→AC.

x

y

z

A

B

B'

z

x

y

1

1

1

Fig. 15

La figure 15 montre bien que |AB|2 = |AB′|2 + |B′B|2, le triangle AB′B
étant rectangle en B′. Comme |AB′|2 = x2

1 + y2
1, on a

|AB|2 = x2
1 + y2

1 + z2
1 ,

et de manière analogue

|AC|2 = x2
2 + y2

2 + z2
2 .

Cette expression du carré d’une longueur comme somme de trois carrés
peut être considérée comme une extension du théorème de Pythagore dans
l’espace. D’une manière générale, la longueur d’un vecteur de l’espace (et
du plan) est égale à la racine carrée de la somme des carrés de ses compo-
santes.
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En calculant le carré de la longueur du côté BC, égale à la longueur du

vecteur −→BC de composantes

 x2 − x1

y2 − y1

z2 − z1

, on trouve

|BC|2 = (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

= x2
2 + x2

1 − 2x1x2 + y2
2 + y2

1 − 2y1y2 + z2
2 + z2

1 − 2z1z2

= x2
1 + y2

1 + z2
1 + x2

2 + y2
2 + z2

2 − 2(x1x2 + y1y2 + z1z2)
= |AB|2 + |AC|2 − 2(x1x2 + y1y2 + z1z2).

En comparant cette dernière égalité avec l’expression de |BC|2 calculée
par la règle des cosinus, à savoir

|BC|2 = |AB|2 + |AC|2 − 2|AB| · |AC| · cos Â,

on établit l’égalité

x1x2 + y1y2 + z1z2 = |AB| · |AC| · cos Â.

1.3 Calculer des longueurs et des angles

Comment s’y
prendre ?

Que peut-on calculer au moyen du produit scalaire ?

Toute l’activité qui précède visait à faire émerger l’idée que le produit
scalaire de deux vecteurs est une expression qui dépend de la longueur
de chacun des vecteurs et de l’amplitude de l’angle que forment leurs di-
rections. On peut donc espérer qu’arrivés à ce stade, les élèves proposent
spontanément d’utiliser le produit scalaire pour calculer des longueurs et
des angles. Reste à établir les formules.

Pour arriver à une formule qui donne la longueur d’un vecteur, il faut en-
core observer que l’expression x2

1 + y2
1 = ‖−→a ‖2 dans le plan (qui devient

x2
1 + y2

1 + z2
1 = ‖−→a ‖2 dans l’espace) peut encore être vue comme le pro-

duit scalaire du vecteur −→a par lui-même (encore appelé carré scalaire du
vecteur −→a ). En effet,

< −→a |−→a >= x1x1 + y1y1 = x2
1 + y2

1 = ‖−→a ‖2.
Par conséquent, la longueur du vecteur −→a peut être calculée par la formule

‖−→a ‖ =
√

< −→a |−→a >,

ce qui peut s’énoncer
1. La norme d’un vecteur est la racine carrée de son carré scalaire.
La deuxième forme du produit scalaire

< −→a |−→b >= ‖−→a ‖‖−→b ‖ cos θ

fournit la formule qui permet de calculer l’angle (non orienté) formé par
les directions de deux vecteurs. On obtient

cos θ =
< −→a |−→b >

‖−→a ‖‖−→b ‖
.

En particulier, on peut énoncer
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2. Le produit scalaire de deux vecteurs orthogonaux est nul.
Ces deux formules peuvent être exploitées pour calculer la longueur d’un
segment [AB] et l’angle de deux droites AB et CD. On obtient

|AB| = ‖−→AB‖ =
√

<
−→
AB|−→AB > et cos(AB,CD) =

<
−→
AB|−→CD >

‖−→AB‖‖−→CD‖
.

Le chapitre suivant proposera quelques situations-problèmes où ces aspects
du produit scalaire seront mis en œuvre.

1.4 Propriétés du produit scalaire

Comment s’y
prendre ?

À partir du moment où les élèves disposent des trois formes de l’expression
du produit scalaire, les démonstrations de ses propriétés ne devraient pas
poser de problèmes. Ils peuvent à tout moment se référer à la forme de
leur choix pour donner une justification adéquate.

< −→a |−→b > = <
−→
b |−→a >

< −→a |−→b +−→c > = < −→a |−→b > + < −→a |−→c >

< −→a |k−→b > = k < −→a |−→b >

Il nous semble intéressant de montrer ces propriétés à partir de la première
forme du produit scalaire dans le plan. Considérons des vecteurs −→a , −→b et
−→c quelconques, k et , des scalaires quelconques. Nous notons

−→a =
(

x1

y1

)
,
−→
b =

(
x2

y2

)
et −→c =

(
x3

y3

)
les composantes de ces vecteurs. Ainsi, les composantes des vecteurs −→b +−→c
et k
−→
b sont

−→
b +−→c =

(
x2 + x3

y2 + y3

)
, k
−→
b =

(
kx2

ky2

)
.

On a

< −→a |−→b > = x1x2 + y1y2,

< −→a |−→c > = x1x3 + y1y3,

<
−→
b |−→a > = x2x1 + y2y1

= x1x2 + y1y2

= < −→a |−→b >,

< −→a |−→b +−→c > = x1(x2 + x3) + y1(y2 + y3)
= x1x2 + y1y2 + x1x3 + y1y3

= < −→a |−→b > + < −→a |−→c >,

< −→a |k−→b > = x1kx2 + y1ky2

= k(x1x2 + y1y2)
= k < −→a |−→b >,
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ce qui établit les propriétés dans le plan. Celles-ci peuvent être démontrées
dans l’espace de manière analogue.

Les deux dernières propriétés peuvent être condensées en une seule qui
s’écrit

< −→a |k−→b + ,−→c >= k < −→a |−→b > +, < −→a |−→c > ;

et en tenant compte de la commutativité, on a aussi

< k
−→
b + ,−→c |−→a >= k <

−→
b |−→a > +, < −→c |−→a > .

Cet ensemble de propriétés exprime la bilinéarité du produit scalaire.

Application de la bilinéarité du produit scalaire

Adoptons, pour la perpendicularité des droites et des plans ces deux défi-
nitions, couramment admises.

Une droite est perpendiculaire à un plan si elle est perpendiculaire à toutes
les droites du plan passant par son pied.

Un plan est perpendiculaire à une droite si et seulement si cette droite est
perpendiculaire au plan.

La première définition est très exigeante : pour s’assurer de la perpen-
dicularité d’une droite et d’un plan, il faudrait vérifier que la droite est
perpendiculaire à une infinité de droites du plan. Une condition aussi forte
est-elle vraiment nécessaire ?

À combien de droites d’un plan faut-il vérifier qu’une droite est perpen-
diculaire pour pouvoir conclure qu’elle est perpendiculaire au plan ?

La vue d’un livre ouvert posé debout sur une table nous donne l’intuition
que si la droite est perpendiculaire à deux droites du plan passant par
son pied, elle sera perpendiculaire à toutes les autres, et donc qu’elle sera
perpendiculaire au plan. La linéarité du produit scalaire fournit la réponse
à la question en même temps que sa justification.

a
a

p

p

b

b

P π→

→

→

Fig. 16

En effet, considérons une droite p, P un point de cette
droite, un plan π passant par P et contenant deux
droites a et b sécantes en P et perpendiculaires à p.
Montrons que la droite p est perpendiculaire à toutes
les droites du plan passant par P . Pour cela, considé-
rons un vecteur directeur sur chacune des droites : −→p
sur p, −→a sur a, et −→b sur b. Si la droite p est perpen-
diculaire aux droites a et b, on a

< −→p |−→a >= 0 et < −→p |−→b >= 0.

Par conséquent,

< −→p |k−→a + ,
−→
b >= k < −→p |−→a > + , < −→p |−→b >= 0.

Comme toutes les droites du plan π passant par P ont un vecteur directeur
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de la forme k−→a + ,
−→
b , la relation < −→p |k−→a + ,

−→
b >= 0 montre que la

droite p est perpendiculaire à toute droite du plan π passant par P .

Ceci nous permet d’énoncer une première forme de la condition suffisante
de perpendicularité d’une droite et d’un plan.

Une droite est perpendiculaire à un plan si elle est perpendiculaire à deux
droites du plan passant par son pied.

De plus, comme toutes les droites du plan π ont un vecteur directeur de
la forme k−→a + ,

−→
b , la relation < −→p |k−→a + ,

−→
b >= 0 montre que la droite

p est orthogonale à toute droite du plan π.

La linéarité du produit scalaire sous-tend donc également les démonstra-
tions de propriétés de la perpendicularité d’une droite et d’un plan, comme
par exemple

toute droite perpendiculaire à un plan est orthogonale à toutes les droites
de ce plan,

et la deuxième forme de la condition suffisante de perpendicularité d’une
droite et d’un plan

une droite est perpendiculaire à un plan si elle est orthogonale à deux
droites sécantes de ce plan.

1.5 La règle des cosinus

Cette activité complémentaire présente une démonstration de la règle des
cosinus, encore appelée théorème de Pythagore généralisé. Nous en pro-
posons ici une approche géométrique et directement appuyée sur les pro-
positions 12 et 13 des Éléments d’Euclide (en annexe aux pages 491 à
493).

Cette activité de démonstration peut prendre place à tout autre endroit du
cours qui conviendra au professeur, mais nous l’évoquons ici puisque nous
en utilisons les résultats pour établir l’équivalence des différentes formes
du produit scalaire.

Euclide, Les Éléments, Livre II, proposition 12.

Les Éléments d’Euclide représentent le premier ouvrage connu où les
mathématiques sont présentées sous une forme déductive bien structurée,
avec des démonstrations et un souci de rigueur. La plupart des élèves en
ont entendu parler, mais il est probable qu’aucun d’entre eux n’a jamais
eu l’occasion de consulter un texte mathématique ancien. Proposer aux
élèves cette activité de lecture et d’interprétation nous a paru intéressant
et de nature à susciter de l’intérêt pour l’histoire des mathématiques. La
proposition 12 du livre II est un bon exemple d’un théorème dont la version
originale peut être proposée aux élèves pour qu’ils la décortiquent et la
traduisent dans un langage mathématique actuel. Voici la traduction en
français de B. Vitrac2.

2 Dans cette section, nous adopterons la notation de Vitrac, plus légère et nous
noterons AB indifféremment pour le segment [AB] et pour sa longueur |AB|. Il n’en
résulte aucune ambigüıté.
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12
Dans les triangles obtusangles, le carré sur le côté sous-tendant l’angle obtus est plus grand que
les carrés sur les côtés contenant l’angle obtus de deux fois le rectangle contenu par celui des
côtés de l’angle obtus sur lequel tombe la perpendiculaire et par la droite découpée à l’extérieur
par la perpendiculaire au-delà de l’angle obtus.

AD C

B

Fig. 17

Soit le triangle obtusangle ABC ayant l’angle sous BAC obtus, et, qu’à partir du point B soit
menée BD, perpendiculaire sur CA, prolongée. Je dis que le carré sur BC est plus grand que
les carrés sur BA, AC de deux fois le rectangle contenu par CA, AD.

En effet, puisque la droite CD a été coupée au hasard au point A, le carré sur DC est donc
égal aux carrés sur CA, AD et deux fois le rectangle contenu par CA, AD (II. 4). Que celui sur
DB soit ajouté de part et d’autre. Les carrés sur CD, DB sont donc égaux aux carrés sur CA,
AD, DB, et à deux fois le rectangle contenu par CA, AD. Mais d’une part celui sur CB est
égal à ceux sur CD, DB ; en effet l’angle en D est droit (I. 47). Et d’autre part celui sur AB
est égal à ceux sur AD, DB. Donc le carré sur CB est égal aux carrés sur CA, AB et deux fois
le rectangle contenu par CA, AD. De sorte que le carré sur CB est plus grand que les carrés
sur CA, AB de deux fois le rectangle contenu par CA, AD.

Donc dans les triangles obtusangles, le carré sur le côté sous-tendant l’angle obtus est plus grand
que les carrés sur les côtés contenant l’angle obtus de deux fois le rectangle contenu par celui des
côtés de l’angle obtus sur lequel tombe la perpendiculaire et par la droite découpée à l’extérieur
par la perpendiculaire au-delà de l’angle obtus. Ce qu’il fallait démontrer.

La traduction de la thèse en langage mathématique actuel serait

BC2 = BA2 + AC2 + 2 · CA ·AD,

où D est le pied de la perpendiculaire abaissée du point B sur AC.

Euclide nous invite à écrire que

DC2 = CA2 + AD2 + 2 · CA ·AD,

où nous reconnaissons le développement de DC2 = (CA + AD)2 par le
produit remarquable (a + b)2. La proposition (II. 4) à laquelle il est fait
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référence présente une démonstration de cette formule dans un contexte
géométrique.

En ajoutant DB2 aux deux membres, on obtient

DC2 + DB2 = CA2 + AD2 + DB2 + 2 · CA ·AD.

D’autre part,

CB2 = DC2 + DB2 et AB2 = AD2 + DB2,

car l’angle en D est droit. Les élèves devraient reconnâıtre dans la pro-
position (I. 47) évoquée ici le théorème que nous appelons communément
✭✭ théorème de Pythagore ✮✮.

En remplaçant DC2 +DB2 et AD2 +DB2 dans l’équation précédente, on
obtient finalement

BC2 = BA2 + AC2 + 2 · CA ·AD,

qui est bien la thèse annoncée.

Euclide - Les Éléments, Livre II, proposition 13.

On présente ensuite aux élèves l’énoncé de la proposition (II. 13). L’activité
qui leur est proposée ici est de traduire la thèse en langage actuel et de
démontrer la propriété à la manière d’Euclide, c’est-à-dire en adaptant
la démonstration de la propriété (II. 12) au cas du triangle acutangle.

13
Dans les triangles acutangles, le carré sur le côté sous-tendant l’angle aigu est plus petit que les
carrés sur les côtés contenant l’angle aigu de deux fois le rectangle contenu par celui des côtés
de l’angle aigu sur lequel tombe la perpendiculaire et par la droite découpée à l’intérieur par la
perpendiculaire en-deçà de l’angle aigu.

DA C

B

Fig. 18

La thèse est cette fois

BC2 = BA2 + AC2 − 2 · CA ·AD.

La règle des cosinus

Pour obtenir la forme actuelle de ce théorème, il faut remarquer que les
relations trigonométriques dans le triangle ABD nous donnent
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AD = AB · cos Â, dans la figure 18, où cos Â est positif,

AD = −AB · cos Â, dans la figure 17 à la page 296, où cos Â est
négatif.

On obtient ainsi la règle des cosinus

BC2 = AB2 + AC2 − 2 ·AB ·AC · cos Â.

On peut encore adopter une notation plus légère en posant a = BC, b =
AC et c = AB ; on écrit alors

a2 = b2 + c2 − 2bc · cos Â

et, comme le triangle est quelconque, les sommets A, B et C ont le même
statut, ce qui permet d’écrire aussi

b2 = a2 + c2 − 2ac · cos B̂ et c2 = a2 + b2 − 2ab · cos Ĉ.

Commentaires

La méthode utilisée au début de ce chapitre (voir la section 1.1 à la page 281) pour
faire émerger la forme x1x2 + y1y2 peut également faire apparâıtre la forme x1y2 −
x2y1, cette dernière forme étant associée au produit vectoriel. Nous avons montré que
le produit scalaire est une forme bilinéaire invariante pour les changements de repères
orthonormés de même unité. Le produit vectoriel est une forme bilinéaire invariante pour
les changements de repères orthonormés qui conservent l’unité et l’orientation.

2 Géométrie analytique et produit scalaire

De quoi s’agit-il ? Résoudre, en utilisant le calcul vectoriel et le produit scalaire, des pro-
blèmes de représentation en vraie grandeur de figures planes de l’espace,
ainsi que d’autres problèmes où interviennent des calculs d’angles et de
longueurs. Ces problèmes sont abordés sous différents aspects, dans le but
de réinvestir des propriétés de géométrie synthétique, des constructions de
sections planes, des développements et d’autres types de représentations.

Enjeux Développer les compétences liées au produit scalaire en analysant diverses
situations-problèmes. Donner du sens aux calculs effectués au moyen du
produit scalaire en les utilisant pour construire des figures.

Compétences. – À partir des notions introduites dans la section 1,
déterminer une longueur, un angle, une relation entre points-droites-plans,
une équation, une propriété de figure, par une méthode routinière.

De quoi a-t-on
besoin ?

Prérequis. – Le chapitre 8 à la page 218 et la section 1 de ce chapitre.

Les notions de droites orthogonales, de droite perpendiculaire à un plan,
de plans perpendiculaires, et les propriétés de la perpendicularité.

Matériel. – Une calculatrice scientifique.
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Du matériel pour dessiner et un rapporteur.

Les développements d’un cube et d’un tétraèdre régulier sur papier fort,
qui peuvent être obtenus par photocopie des documents fournis en annexe
aux pages 494 et 495.

2.1 Vraie grandeur d’une section dans un cube.

Comment s’y
prendre ?

Reprenons le problème de section plane dans un cube traité dans la
section 2 du chapitre 8. La figure 19 montre la section du cube par le
plan PQR, où P est situé sur l’arête [AB] au tiers à partir de A, Q est
situé au milieu de l’arête [BC], et R est situé au milieu de l’arête [CC ′].
Représenter cette section en vraie grandeur.

Q

R

A B

D C

A' B'

D' C'S
T

U

P

Fig. 19

Reprenons le repère que nous avions choisi pour la détermination des som-
mets de la section. Plaçons l’origine en A, et les vecteurs ✭✭ de base ✮✮ de
telle sorte que −→i = −→AB, −→j = −→AD et −→k =

−−→
AA′. Si nous prenons l’arête du

cube comme unité de longueur, ce repère est bien un repère orthonormé.
Dans ce cas,

A =

 0
0
0

 , B =

 1
0
0

 , D =

 0
1
0

 , A′ =

 0
0
1

 .

Les sommets de la section ont pour coordonnées

P =

 1
3
0
0

 , Q =

 1
1
2
0

 , R =

 1
1
1
2

 ,

S =

 1
3
1
1

 , T =

 0
3
4
1

 , U =

 0
0
1
4

 .

Chacun de ces sommets peut être situé avec précision sur les arêtes du
cube :
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S se trouve sur [D′C ′] au tiers à partir de D′,

T se trouve sur [A′D′] aux trois quarts à partir de A′,

U se trouve sur [AA′] au quart à partir de A.

Certains élèves peuvent imaginer de tracer chacun des segments de la sec-
tion dans un carré figurant une face du cube, en respectant les positions
des points sur les arêtes. Le mieux est alors de le faire globalement sur un
développement du cube en papier fort. On peut fournir celui-ci aux élèves
de manière à limiter les imprécisions au départ. Ils pourront ainsi mesu-
rer les longueurs des côtés de la section, avec une précision qui dépend
évidemment du soin qu’ils auront apporté à leur dessin. Ce procédé peut
néanmoins leur parâıtre fastidieux et peu précis, et les inciter à trouver
une autre solution. Or précisément, la découverte du produit scalaire leur
a donné un outil facile à manipuler pour calculer des longueurs. Ainsi,
pour calculer la longueur du segment [PQ], on commence par déterminer
les composantes du vecteur −→PQ, obtenues en soustrayant les coordonnées
de P de celles de Q,

−→
PQ =

 2
3
1
2
0

 , et on calcule ensuite ‖−→PQ‖ =

√
4
9

+
1
4

=

√
25
36

=
5
6
.

Ce résultat pourrait également être obtenu par le théorème de Pythagore
dans le triangle rectangle PBQ. En effet, les côtés de l’angle droit me-
surent |PB| = 2

3 et |BQ| = 1
2 , ce qui permet de calculer la longueur de

l’hypoténuse qui vaut |PQ| =
√

4
9 + 1

4 = 5
6 . La comparaison des calculs

montre bien que la formule ‖−→PQ‖ =
√

<
−→
PQ|−→PQ > n’est rien d’autre que

l’application du théorème de Pythagore dans un triangle rectangle dont
l’hypoténuse cöıncide avec le vecteur −→PQ et dont les côtés de l’angle droit
sont parallèles aux axes.

De la même manière, on obtient ensuite

−→
QR =

 0
1
2
1
2

 et ‖−→QR‖ =

√
1
4

+
1
4

=
√

2
2

;

−→
RS =

 −2
3
0
1
2

 et ‖−→RS‖ =

√
4
9

+
1
4

=
5
6

;

−→
ST =

 −
1
3

−1
4
0

 et ‖−→ST‖ =

√
1
9

+
1
16

=
5
12

;

−→
TU =

 0
−3

4

−3
4

 et ‖−→TU‖ =

√
9
16

+
9
16

=
3
√

2
4

;

−→
UP =

 1
3
0
−1

4

 et ‖−→UP‖ =

√
1
9

+
1
16

=
5
12

.
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N’oublions pas que ces valeurs représentent les mesures des côtés de la
section lorsque l’unité de longueur est la longueur de l’arête du cube. Ces
valeurs calculées peuvent éventuellement être comparées aux longueurs
mesurées sur le développement du cube, pour corroborer ou infirmer les
résultats des calculs.

Une fois en possession de ces différentes mesures, il n’est pas certain que
les élèves réalisent immédiatement que ces données sont insuffisantes pour
dessiner la vraie grandeur de la section. Quelques tâtonnements seront sans
doute nécessaires pour qu’ils se persuadent qu’ils doivent aussi connâıtre
les mesures des angles, ou bien les longueurs des diagonales. Dans le même
ordre d’idées, de nombreux élèves ignorent en effet que, pour démontrer
qu’une figure est un polygone régulier (le triangle faisant exception), il
ne suffit pas de démontrer l’égalité des côtés, mais qu’il faut aussi établir
celle des angles. On peut, par exemple, leur faire observer que, avec quatre
segments de 5 cm, on peut bien sûr construire un carré, mais aussi toute
une série de losanges qui diffèrent par leurs angles.

Si les élèves proposent de calculer les longueurs des diagonales pour cons-
truire la vraie grandeur de la section par triangulation, le professeur les
laisse poursuivre dans cette voie mais leur annonce clairement que la me-
sure précise des angles de la figure leur sera demandée. Ils disposeront alors
d’un moyen de comparer les valeurs d’angles mesurées sur le dessin aux
valeurs calculées. Si, par contre, les élèves proposent spontanément de cal-
culer les mesures des angles pour représenter la section en grandeur réelle,
le problème qui se pose est celui de la détermination de ces mesures. Ici
encore, c’est le produit scalaire qui fournit un outil efficace. En effet, la
formule

< −→a |−→b >= ‖−→a ‖‖−→b ‖ cos θ

peut être exploitée pour calculer un angle compris entre deux vecteurs.
Ainsi, par exemple, l’angle Q̂ de l’hexagone de section est compris entre
les vecteurs −→QP et −→QR, dont le produit scalaire peut être calculé à partir
de leurs composantes (celles de −→QP sont opposées à celles de −→PQ). On a

−→
QP =

 −
2
3

−1
2
0

 et −→
QR =

 0
1
2
1
2

 .

On obtient

<
−→
QP |−→QR >= −2

3
· 0− 1

2
· 1
2

+ 0 · 1
2

= −1
4
,

et, en remplaçant <
−→
QP |−→QR > par −1

4 dans

<
−→
QP |−→QR >= ‖−→QP‖‖−→QR‖ cos Q̂,

on obtient la valeur du cosinus de l’angle Q̂

cos Q̂ =
<
−→
QP |−→QR >

‖−→QP‖‖−→QR‖
=
−1

4

5
6 ·

√
2

2

=
−3
√

2
10

.
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La mesure en degrés de l’amplitude de l’angle Q̂ est déterminée par la
calculatrice, qui donne Q̂ = 115◦, 10409025.

Si les élèves négligent d’utiliser les vecteurs orientés de telle sorte que leur
origine cöıncide avec le sommet de l’angle, ils obtiendront l’angle supplé-
mentaire de celui qu’ils croient calculer. Ils devraient s’apercevoir de leur
erreur en confrontant leurs résultats avec la vision approximative que leur
fournit le dessin en perspective. Un angle aigu d’environ 65◦ semble peu
réaliste dans la section hexagonale que nous étudions ici.

Arrivés à ce stade du travail, certains élèves auront peut-être remarqué
que la symétrie de la figure peut leur éviter de calculer tous les angles. Le
professeur leur demande alors de justifier les propriétés utilisées. Mais il est
également possible que, rassurés par le caractère routinier de l’application
de la formule, ils entreprennent de calculer tous les angles.

Ce travail est un peu fastidieux, mais néanmoins bien préparé, puisque
nous disposons déjà des composantes de tous les vecteurs correspondants
aux côtés de la section, ainsi que de leurs longueurs. Le professeur peut
suggérer aux élèves une répartition des tâches, pour éviter que trop de
temps ne soit consacré à des calculs répétitifs. Les résultats obtenus sont

Q̂ = R̂ = T̂ = Û = 115◦, 10409025 et Ŝ = P̂ = 129◦, 7918195.

Le professeur pose la question de la vérification.

A-t-on, comme dans le triangle, une propriété qui donne la somme des
angles d’un hexagone ?

Un découpage d’un hexagone quelconque en triangles permet de voir que
la somme de ses angles vaut 720◦, ce qui est bien le cas ici.

Les élèves qui ont effectué tous les calculs sans se poser trop de ques-
tions seront peut-être étonnés de constater qu’il n’y a que deux ampli-
tudes d’angles différentes. Une intéressante discussion peut s’installer dans
la classe pour expliquer cette propriété. Pouvait-on prévoir l’égalité de cer-
tains angles ? C’est l’occasion de se souvenir de cette propriété des plans
parallèles :

Si un plan coupe deux plans parallèles, il les coupe suivant des droites
parallèles.

Le plan de section coupe donc les faces parallèles suivant des segments
parallèles. On a donc

PQ est parallèle à TS,

QR est parallèle à TU ,

RS est parallèle à UP .

Par conséquent, P̂ = Ŝ, Q̂ = T̂ , R̂ = Û , car ce sont des angles à côtés
parallèles. Les positions particulières des points Q et R, au milieu des
arêtes [BC] et [CC ′], et des points S et P au tiers des arêtes [AB] et
[D′C ′] permettront de justifier l’égalité des angles Q̂ et R̂, et donc T̂ et Û .

Les élèves constatent ainsi qu’une analyse préalable des propriétés géomé-
triques de la figure permet d’éviter quelques calculs. Cependant, ils peuvent
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– on l’a vu – arriver à la solution en utilisant le produit scalaire, qui fournit
une méthode efficace de résolution de ce type de problème. Dans ce cas,
les propriétés de symétrie que le calcul a mises en évidence peuvent être
réexaminées dans un contexte de géométrie synthétique. Cette démarche
permettra peut-être aux moins intuitifs d’améliorer leur vision dans l’es-
pace.

Les élèves sont à présent en mesure de dessiner la section en vraie grandeur.

P

QR

S

T U

Fig. 20

Pour clôturer l’activité de manière très concrète, le professeur leur suggère
de repérer les points de la section sur le développement de cube et d’as-
sembler les cubes tronqués obtenus après découpage, de manière à faire
apparâıtre la section. Celle-ci est alors comparée au dessin réalisé à par-
tir des calculs, par application directe du modèle en carton sur la figure.
Comme l’hexagone de section possède un axe de symétrie passant par les
milieux des côtés [RQ] et [TU ], le problème de l’orientation ne se pose pas
ici. Quelle que soit la partie du cube qu’on dépose sur la figure, la section
sera superposable au dessin de la vraie grandeur.

2.2 Distance d’un sommet du cube à une diagonale

Comment s’y
prendre ?

Dans la représentation en perspective cavalière du cube de la figure 21,
construire la perpendiculaire issue de D′ à la diagonale A′C. Calculer
la distance du sommet D′ à la diagonale A′C.

A' B'

C'D'

A B

CD

Fig. 21
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Certains élèves seront peut-être tentés d’appliquer leur équerre sur la figure
pour tracer directement la perpendiculaire demandée. Néanmoins, après
un temps de réflexion et de discussion, ils devraient s’apercevoir que la
plupart des angles droits n’apparaissent pas en vraie grandeur dans une
représentation en perspective cavalière. C’est par exemple le cas des angles
droits de la base. Seuls les angles des faces frontales ABB′A′ et CC ′D′D
apparaissent comme des angles droits dans la figure 21. Le sommet D′ et la
diagonale A′C appartiennent au plan non frontal A′D′C, et dans ce plan,
la représentation du rectangle A′D′CB est un parallélogramme. Il n’y a
donc aucune raison d’espérer que la perpendiculaire issue de D′ forme avec
A′C un angle droit dans la représentation.

Cette première analyse permet cependant de remarquer que la construction
demandée est une droite du plan A′D′C et que le problème pourrait donc
être examiné dans ce plan.

Première approche : utilisation du produit scalaire

Il faut donc déterminer un point P de la diagonale A′C tel que D′P est
perpendiculaire à A′C, et calculer ensuite la longueur de [D′P ]. Comme il
s’agit d’un problème d’angle et de longueur, les élèves penseront probable-
ment à utiliser le produit scalaire. Plaçons le repère sur les arêtes du cube
comme dans le problème précédent, ce qui donne

A =

 0
0
0

 , B =

 1
0
0

 , D =

 0
1
0

 , A′ =

 0
0
1

 .

Le point P cherché appartient à la diagonale A′C, il vérifie donc la relation
d’alignement

−−→
A′P = k

−−→
A′C, qui peut s’écrire

−→
OP =

−−→
OA′ + k

−−→
A′C, c’est-à-dire P =

 0
0
1

 + k

 1
1
−1

 .

Les coordonnées du point P sont donc de la forme

P =

 k
k

1− k

 .

Les composantes des vecteurs orthogonaux
−−→
A′C et

−−→
D′P sont alors

−−→
A′C =

 1
1
−1

 et
−−→
D′P =

 k
k − 1
−k

 .

Exprimons, au moyen du produit scalaire, que ces vecteurs sont orthogo-
naux,

<
−−→
A′C|−−→D′P >= 0 c’est-à-dire 1 · k + 1 · (k − 1) + (−1) · (−k) = 0.
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Cette dernière équation, équivalente à 3k − 1 = 0, nous donne k = 1
3 , ce

qui détermine les coordonnées du point cherché, P =


1
3
1
3
2
3

.

Le fait que k = 1
3 nous indique que

−−→
A′P = 1

3

−−→
A′C, c’est-à-dire que le point

P se trouve sur la diagonale [A′C] au tiers à partir de A′. Ceci permet de
placer le point P sur le dessin, puisque la perspective cavalière respecte les
rapports des longueurs des segments dans une direction donnée.

On peut encore trouver les composantes du vecteur
−−→
D′P et calculer sa

longueur. On obtient

−−→
D′P =


1
3

−2
3

−1
3

 et ‖−−→D′P‖ =

√
1
9

+
4
9

+
1
9

=
√

6
3

,

qui est la distance du sommet D′ à la diagonale A′C.

On peut aussi chercher le point de percée de la droite D′P dans la face
ABB′A′. Ce point, noté Q, est sur la droite D′P , ce qui se traduit par la
relation d’alignement

−−→
D′Q = λ

−−→
D′P ou −→OQ =

−−→
OD′ + λ

−−→
D′P .

Nous obtenons ainsi, pour les coordonnées du point Q

Q =

 0
1
1

 + λ


1
3

−2
3

−1
3

 .

Comme ce point est dans la face ABB′A′, yQ = 1− 2
3λ = 0, ce qui donne

la valeur de λ = 3
2 et ensuite les coordonnées du point de percée cherché,

Q =

 1
2
0
1
2

 . Ce dernier résultat indique que le point Q se trouve au

centre de la face ABB′A′, c’est-à-dire à l’intersection des diagonales A′B
et AB′, et permet de placer correctement le point P sur le dessin sans
devoir partager le segment [A′C] en trois.

A' B'

C'D'

A B

CD

P

Q

Fig. 22



306 Chapitre 9. Le produit scalaire

La figure 22 montre la solution du problème.

Deuxième approche : résolution du problème dans le plan diago-
nal A′D′CB.

Nous avons déjà observé que le problème pouvait être examiné dans le plan
diagonal A′D′C, déterminé par la diagonale A′C et le point D′. En effet, la
perpendiculaire issue de D′ sur A′C est évidemment une droite de ce plan.
Si nous prenons l’arête du cube comme unité de longueur, la longueur de
la diagonale A′B peut être calculée par le théorème de Pythagore. Elle
vaut

√
2 et le rectangle A′BCD′ est représenté à la figure 23. Une feuille

de format A4, qui a les mêmes proportions que ce rectangle, permet de
visualiser la situation.

A' BQ

D' C

P

Fig. 23

On a |A′D′| = 1 et |A′B| =
√

2 ; le théorème de Pythagore appliqué au
triangle A′BC, rectangle en B, nous donne alors la longueur de la diagonale
|A′C| =

√
1 + 2 =

√
3.

Ne perdons pas de vue que le problème de la représentation de la perpen-
diculaire issue de D′ sur A′C sera résolu si nous pouvons déterminer la
position de son pied P sur la diagonale A′C. Nous voyons apparâıtre dans
cette figure deux autres triangles rectangles en P : les triangles A′PD′ et
CPD′. En appliquant le théorème de Pythagore dans ces deux triangles,
nous allons calculer les longueurs de leurs côtés et déterminer ainsi |A′P |.
Ainsi,

dans le triangle A′PD′, on a |A′P |2 + |D′P |2 = 1 et donc |D′P |2 =
1− |A′P |2,
dans le triangle CPD′, on a |CP |2 + |D′P |2 = 2.

En remplaçant |D′P |2 par 1 − |A′P |2, et |CP | par |A′C| − |A′P | =
√

3 −
|A′P | dans cette dernière égalité, on obtient

1− |A′P |2 + (
√

3− |A′P |)2 = 2.

Cette équation dont l’inconnue est |A′P | se réduit au premier degré et nous
donne |A′P | =

√
3

3 , ce qui nous indique que le point P se trouve au tiers de
la diagonale [A′C] à partir de A′, et nous permet dès lors de le représenter.
La distance |D′P | est calculée également. On a

|D′P |2 = 1− |A′P |2 = 1− 1
3

et donc |D′P | =
√

2
3

=
√

6
3

.
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Pour établir complètement le lien avec la solution précédente, il reste
à situer le point Q d’intersection de la droite D′P avec A′B. Comme
|A′P | = 1

3 |A′C|, on a aussi |PC| = 2
3 |A′C| et |A′P | = 1

2 |PC|. Les tri-
angles semblables D′PC et QPA′ nous permettent alors de conclure que
|A′Q| = 1

2 |D′C| = 1
2 |A′B|. Le point Q se trouve donc au milieu de la

diagonale de face [A′B].

Remarques

1. Il est également loisible d’utiliser le produit scalaire dans la figure
plane A′BCD′.

2. Une troisième approche du même problème sera évoquée dans la
section 2.3.

2.3 Sections du cube par des plans perpendiculaires à une
diagonale

Comment s’y
prendre ?

Étudier les sections d’un cube par l’ensemble des plans perpendiculaires
à une diagonale (AC ′ dans les figures ci-dessous).
Quelles sont les propriétés géométriques des polygones obtenus ?
Que peut-on dire de leurs côtés, de leurs angles ?
Pour quelles positions du plan de section sont-ils réguliers ?
Où se situent leurs centres de gravité3 ?

Une analyse succincte du problème montre qu’il y aura au moins deux types
de sections. Un plan passant par un point de la diagonale proche d’un des
sommets A ou C ′ ne coupe que les trois arêtes issues de ce sommet et la
section est alors un triangle. Mais si le plan de section coupe la diagonale
en un point proche de son milieu, la section semble être un hexagone. Il est
très possible que les élèves ne perçoivent pas d’emblée qu’il y a des sections
hexagonales. Nous montrerons plus loin comment les leur faire découvrir.

A' B'

C'D'

A B

CD
M

Z

XY

Fig. 24

A' B'

C'D'

A B

CD

M

P
Q

R

S

T

U

Fig. 25

3 Il s’agit du centre de gravité des sommets du polygone, au sens où il a été défini
dans le chapitre 8.
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Plaçons le repère sur les arêtes du cube comme précédemment, ce qui donne

A =

 0
0
0

 , B =

 1
0
0

 , D =

 0
1
0

 , A′ =

 0
0
1

 .

Le plan de section est entièrement déterminé par la position du point M
de la diagonale AC ′ par lequel il passe. Puisque M appartient à AC ′, la
relation d’alignement −−→AM = m · −−→AC ′ nous donne les coordonnées de ce
point. On a

−−→
AC ′ =

 1
1
1

 et donc M =

 m
m
m

 .

Si m = 0, le point M cöıncide avec le point A et la section est réduite
à ce point ; une situation similaire se produit pour m = 1, valeur pour
laquelle M cöıncide avec C ′. Les points de la diagonale AC ′ intérieurs au
cube correspondent ainsi aux valeurs de m comprises entre 0 et 1.

Le plan π passant par M et perpendiculaire à la diagonale AC ′ est l’en-
semble de tous les points N tels que le vecteur −−→MN est perpendiculaire au
vecteur

−−→
AC ′, c’est-à-dire tels que <

−−→
AC ′|−−→MN >= 0.

Pour poursuivre notre étude, examinons plus précisément les questions
suivantes.

Les sections triangulaires

À quelles valeurs de m correspondent les sections triangulaires ?
Déterminer les coordonnées de leurs sommets et de leurs centres de
gravité, calculer les côtés et les angles.

La figure 24 montre que, lorsque le plan π coupe la diagonale AC ′ en un
point proche de A ou de C ′, c’est-à-dire pour des valeurs de m proches de
0 ou de 1, la section est un triangle.

À partir de A

Les sommets. – Déterminons par exemple les coordonnées du point X,
point de percée de la droite AB dans le plan π. Comme X est sur la droite
AB,

−→
AX = x · −→AB nous donne X = x

 1
0
0

 et −−→
MX =

 x−m
−m
−m

 .

Exprimons, au moyen du produit scalaire, que les vecteurs
−−→
AC ′ et −−→MX

sont orthogonaux,

<
−−→
AC ′|−−→MX >= 0 ou x−m−m−m = 0.

Cette dernière équation nous donne x = 3m, et les coordonnées du point

X sont

 3m
0
0

. Pour que ce point X soit un sommet de la section du
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cube par le plan π, il doit être situé sur l’arête [AB] ; ses coordonnées sont
alors comprises entre 0 et 1 : on a par conséquent 0 < 3m < 1. La valeur
de m doit donc être comprise entre 0 et 1

3 .

De la même manière, nous déterminons ensuite Y =

 0
3m
0

, sur l’arête

[AD] et Z =

 0
0

3m

, sur l’arête [AA′].

Le centre de gravité. – Les coordonnées du centre de gravité de cha-
cun de ces triangles sont obtenues en effectuant la moyenne arithmétique
des coordonnées de ses sommets (voir la section 2.3 du chapitre 8). On a

G =
1
3

 3m
0
0

 +

 0
3m
0

 +

 0
0

3m

 =

 m
m
m

 = M.

Le centre de gravité de chacun de ces triangles est donc le point de percée
de la diagonale AC ′ dans le plan π.

Les côtés et les angles. – Pour calculer les longueurs des côtés de
la section, déterminons les composantes des vecteurs −−→XY , −→Y Z, et −→ZX et
calculons leur norme. On obtient

−−→
XY =

 −3m
3m
0

 et ‖−−→XY ‖ =
√

2(3m)2 = 3m
√

2,

−→
Y Z =

 0
−3m
3m

 et ‖−→Y Z‖ =
√

2(3m)2 = 3m
√

2,

−→
ZX =

 3m
0
−3m

 et ‖−→ZX‖ =
√

2(3m)2 = 3m
√

2.

La section XY Z est un triangle équilatéral (les angles valent donc 60◦)
dont les côtés mesurent 3

√
2m.

Les valeurs limites

pour m = 0, le triangle est réduit au point A,

pour m = 1
3 , les points X, Y , Z cöıncident avec les points B, D,

A′ (voir figure 26). La section est donc le triangle équilatéral A′BD,

dont le centre de gravité est bien le point


1
3
1
3
1
3

 .

À partir de C ′

Symétriquement, nous obtenons des sections triangulaires X ′Y ′Z ′, où X ′est
sur l’arête [D′C ′], Y ′ sur [B′C ′] et Z ′ sur [CC ′]. Par la même méthode, nous
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déterminons X ′ =

 3m− 2
1
1

, Y ′ =

 1
3m− 2

1

 et Z ′ =

 1
1

3m− 2

.

Ces triangles correspondent aux valeurs de m comprises entre 2
3 et 1.

La section X ′Y ′Z ′ est un triangle équilatéral dont les côtés mesurent

3
√

2(1−m), et dont le centre de gravité est le point

 m
m
m

.

Pour m = 1, le triangle est réduit au point C ′,

pour m = 2
3 , les points X ′, Y ′, Z ′ cöıncident avec les points D′, B′,

C (voir figure 27). La section est donc le triangle équilatéral D′B′C,

dont le centre de gravité est bien le point


2
3
2
3
2
3

 .

A' B'

C'D'

A B

CD

M

Fig. 26 : m = 1
3

A' B'

C'D'

A B

CD

M

Fig. 27 : m = 2
3

Les sections hexagonales

Envisageons maintenant les autres sections. Si les élèves n’ont pas remarqué
qu’il y a des sections hexagonales parmi les sections étudiées, on peut les
leur faire découvrir en repartant du triangle A′BD correspondant à la
valeur limite m = 1

3 . En prenant pour m une valeur légèrement supérieure,

on constate que le plan π coupe la droite AB en un point X =

 3m
0
0


situé un peu à droite de B. De même, il coupe la droite AD en un point Y
situé au-delà de D, et la droite AA′ en un point Z situé au-dessus de A′.
Dans ce cas, le triangle XY Z n’est plus la section du cube par le plan π,
mais les droites XY , Y Z et ZX restent les droites d’intersection du plan
π avec les faces ABCD, ADD′A′ et ABB′A′. Les élèves disposent donc
de tous les éléments nécessaires à la construction de la section. On leur
demande de la dessiner en justifiant les étapes.
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A' B'

C'D'

A B

CD

M

P
Q

R

S

T

U

X

Y

Z

Fig. 28

Dans le plan ABCD, la droite XY coupe les arêtes [BC] et [CD] aux
points S et T qui sont donc les extrémités du segment de la section dans
la face inférieure du cube. De même, dans le plan ADD′A′, la droite Y Z
coupe les arêtes [DD′] et [A′D′] aux points U et P ; et dans plan ABB′A′,
la droite ZX coupe les arêtes [A′B′] et [BB′] aux points Q et R. La section
du cube par le plan π est donc l’hexagone PQRSTU .

À quelles valeurs de m correspondent les sections hexagonales ?
Déterminer les coordonnées de leurs sommets et de leurs centres de
gravité, calculer les côtés et les angles et énoncer quelques propriétés
géométriques les concernant.
Y a-t-il des hexagones réguliers ?
Représenter la section en vraie grandeur pour une valeur de m choisie.

Les sommets. – Déterminons par exemple les coordonnées du point de
percée P de la droite A′D′ dans le plan π. Comme P est sur la droite A′D′,

−−→
A′P = p · −−→A′D′ nous donne P =

 0
0
1

 + p

 0
1
0

 ,

et donc

P =

 0
p
1

 et −−→
MP =

 −m
p−m
1−m

 .

Exprimons, au moyen du produit scalaire, que les vecteurs
−−→
AC ′ et −−→MP

sont orthogonaux :

<
−−→
AC ′|−−→MP >= 0 ou −m + p−m + 1−m = 0.



312 Chapitre 9. Le produit scalaire

Cette dernière équation nous donne p = 3m−1, et les coordonnées du point

P sont

 0
3m− 1

1

. Pour que ce point P soit un sommet de la section

du cube par le plan π, il doit être situé sur l’arête [A′D′] ; sa deuxième
coordonnée est alors comprise entre 0 et 1 : on a donc 0 < 3m− 1 < 1. La
valeur de m doit être comprise entre 1

3 et 2
3 .

Déterminons ensuite le point de percée Q de la droite A′B′ dans le plan
π. Nous obtenons

−−→
A′Q = q · −−→A′B′ et donc Q =

 0
0
1

 + q

 1
0
0

 ,

et enfin

Q =

 q
0
1

 et −−→
MQ =

 q −m
−m

1−m

 .

En exprimant, au moyen du produit scalaire, que les vecteurs
−−→
AC ′ et −−→MQ

sont orthogonaux, on a

<
−−→
AC ′|−−→MQ >= 0 ou q −m−m + 1−m = 0.

Cette dernière équation nous donne q = 3m−1, et donc Q =

 3m− 1
0
1

.

Ici encore, ce sont les valeurs de m comprises entre 1
3 et 2

3 qui correspondent
aux positions de Q sur l’arête [A′B′].

En procédant de manière analogue, nous déterminons successivement

R =

 1
0

3m− 1

 sur l’arête [BB′],

S =

 1
3m− 1

0

 sur l’arête [BC],

T =

 3m− 1
1
0

 sur l’arête [DC],

U =

 0
1

3m− 1

 sur l’arête [DD′].

Nous déduisons de ceci que, pour les valeurs de m comprises entre 1
3 et 2

3 ,
la section du cube par le plan π est l’hexagone PQRSTU .

Le centre de gravité. – Il est possible de déterminer les coordonnées
du centre de gravité de ces hexagones en effectuant la moyenne arithmé-
tique des coordonnées de leurs sommets. On a
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G =
1
6

 0
3m− 1

1

 +

 3m− 1
0
1

 +

 1
0

3m− 1

 + 1
3m− 1

0

 +

 3m− 1
1
0

 +

 0
1

3m− 1

 =

 m
m
m

 = M.

Ainsi, toute section hexagonale a son centre de gravité au point de percée
de la diagonale AC ′ dans le plan π.

Les côtés. – Pour calculer les longueurs des côtés de la section, déter-
minons les composantes des vecteurs −→PQ, −→QR, . . . et calculons leur norme.
On obtient

−→
PQ =

 3m− 1
1− 3m

0

 et ‖−→PQ‖ =
√

2(3m− 1)2 = (3m− 1)
√

2,

−→
QR =

 2− 3m
0

3m− 2

 et ‖−→QR‖ =
√

2(2− 3m)2 = (2− 3m)
√

2,

−→
RS =

 0
3m− 1
1− 3m

 et ‖−→RS‖ =
√

2(3m− 1)2 = (3m− 1)
√

2,

−→
ST =

 3m− 2
2− 3m

0

 et ‖−→ST‖ =
√

2(3m− 2)2 = (2− 3m)
√

2,

−→
TU =

 1− 3m
0

3m− 1

 et ‖−→TU‖ =
√

2(3m− 1)2 = (3m− 1)
√

2,

−→
UP =

 0
3m− 2
2− 3m

 et ‖−→UP‖ =
√

2(3m− 2)2 = (2− 3m)
√

2.

Ces calculs permettent de découvrir plusieurs propriétés géométriques de
ces hexagones.

Nous voyons tout d’abord qu’ils ont deux fois trois côtés de même longueur.

Nous savons que les côtés d’une section hexagonale dans un cube sont pa-
rallèles deux à deux, puisque le plan de section coupe deux faces parallèles
suivant des segments parallèles. Nous avons donc que

PQ est parallèle à ST ,

TU est parallèle à QR,

RS est parallèle à UP .
Nous constatons que les côtés parallèles sont de longueurs différentes, tou-

jours dans le rapport
2− 3m
3m− 1

.

Nous voyons aussi que −→PQ et −→ST sont des multiples de −→BD =

 −1
1
0

.

Les côtés [PQ] et [ST ] sont donc parallèles aux diagonales [BD] et [B′D′]
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des faces du cube. De même, les côtés [QR] et [TU ] sont parallèles aux
diagonales [BA′] et [CD′] des faces du cube ; et les côtés [RS] et [UP ] sont
parallèles aux diagonales [DA′] et [CB′] des faces du cube.

Les angles. – Lorsque la valeur de m varie entre 1
3 et 2

3 , les côtés
de l’hexagone restent toujours parallèles aux trois directions BD, BA′ et
DA′ des faces du cube. Les amplitudes des angles devraient donc rester
constantes. Nous pouvons nous en assurer en calculant par exemple l’angle
Q̂PU , au moyen du produit scalaire, ce qui donne

cos Q̂PU =
<
−→
PQ|−→PU >

‖−→PQ‖‖−→PU‖
=

(1− 3m)(2− 3m)
(3m− 1)

√
2(2− 3m)

√
2

= −1
2
.

La valeur obtenue pour le cosinus de l’angle est bien indépendante de m et
l’amplitude de cet angle est 120◦. Un calcul analogue permet de constater
que tous les angles de toutes les sections hexagonales mesurent 120◦.

La vraie grandeur. – Nous sommes à présent en mesure de dessiner
l’une de ces sections en vraie grandeur. La figure 29 représente la vraie
grandeur de la section de la figure 25 à la page 307 pour la valeur m = 43

100 .

M

P Q

R

ST

U

Fig. 29

L’hexagone régulier. – Pour que tous les côtés de l’hexagone soient
égaux, il faut que 2−3m = 3m−1, ce qui correspond à la valeur m = 1

2 . Le

plan de section passe alors par le point M =


1
2
1
2
1
2

, milieu de la diagonale

[AC ′]. De plus, comme 3m− 1 = 1
2 , chacun des sommets de l’hexagone est

au milieu de l’arête à laquelle il appartient, et les côtés mesurent
√

2
2 . Nous

avons déjà vérifié que tous les angles valaient 120◦. Nous pouvons donc
en conclure que la section du cube par le plan médiateur de la diagonale
[AC ′] est un hexagone régulier.
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C'D'

A B

CD

M

P

Q

R
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U

Fig. 30

Synthèse

C’est le moment de demander aux élèves de faire la synthèse des proprié-
tés des sections d’un cube par un plan perpendiculaire à une diagonale.
Certaines de ces propriétés peuvent être justifiées, ou même découvertes
par des raisonnements de géométrie synthétique, mais l’utilisation systé-
matique du produit scalaire comme outil d’investigation a sans nul doute
aidé de nombreux élèves à faire le tour de la question. La synthèse pourrait
ressembler à ceci :

Pour 0 < m � 1
3 ou 2

3 � m < 1, la section est un triangle équilatéral.
Pour 1

3 < m < 2
3 , la section est un hexagone dont les angles mesurent

120◦, dont les côtés sont parallèles deux à deux (il s’agit des côtés situés
dans des faces parallèles). De plus, il y a deux fois trois côtés égaux (voir
figure 29).
Pour m = 1

2 , l’hexagone est régulier.
Dans tous les cas, le centre de gravité de la section est situé au point de
percée de la diagonale AC ′ dans le plan π.

On peut terminer l’activité en montrant aux élèves que la diagonale du
cube est un axe de rotation d’ordre 3. Cette découverte donne un nouvel
éclairage à toutes ces propriétés qui se révèlent alors presque évidentes.

Remarque. – Ce travail permet d’aborder d’une troisième manière le
problème de la section 2.2 à la page 303. En effet, le triangle AD′B′ est le
triangle équilatéral obtenu comme section du cube par le plan perpendicu-
laire à la diagonale A′C au point P situé au tiers de A′C. La perpendicu-
laire à la diagonale A′C issue de D′ est donc une droite du plan AD′B′, et
son pied est le point de percée P de A′C dans ce plan. Ce point P est aussi
le centre de gravité du triangle AD′B′. Il se trouve donc sur la médiane
D′Q de ce triangle.
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2.4 Vraie grandeur d’une section dans un tétraèdre
régulier

Comment s’y
prendre ?

Construire la section du tétraèdre régulier ABCD par le plan PQR où

P est le point situé au milieu de l’arête [CD],

Q est le point de l’arête [BD], situé au tiers à partir de B,

R est le point de l’arête [AB], situé au quart à partir de A.

Construire la vraie grandeur de cette section.

Pour traiter des problèmes de sections planes dans les tétraèdres, nous
avons précédemment utilisé des repères dont l’origine et les points uni-
tés cöıncidaient avec les sommets du tétraèdre. Ce choix ne semble pas
approprié pour résoudre ce dernier problème, car un tel repère n’est pas
orthonormé. Dès qu’il est question de calculer des distances et des angles,
c’est-à-dire d’étudier les propriétés métriques d’une figure, l’utilisation du
produit scalaire nécessite l’emploi d’un repère orthonormé.

Plaçons donc l’origine du repère orthonormé au point A, l’axe des x sur
l’arête AB et le point unité sur cet axe en B. L’axe des y sera placé dans le
plan ABC, et l’axe des z perpendiculairement à ce plan. Nous avons donc

A =

 0
0
0

 et B =

 1
0
0

 .

A R B

T

C

Q

P

D

S

Fig. 31
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Les coordonnées du point C, sommet du triangle équilatéral ABC, ne
posent pas trop de problème. Elles peuvent être déterminées par la trigo-
nométrie, ou par le calcul de la hauteur du triangle ; on trouve

C =


1
2√
3

2
0

 ,

si le point C est placé du même côté de AB que l’axe des y.

La détermination du sommet D du tétraèdre nécessite un raisonnement
géométrique préalable. Le point D est équidistant des sommets A, B et C
du triangle de la base. Il appartient donc aux plans médiateurs des seg-
ments [AB], [BC] et [AC]. Ces trois plans perpendiculaires à la base ABC,
contiennent la droite perpendiculaire au plan ABC et passant par le point
d’intersection des médiatrices du triangle ABC. Cette droite est à l’inter-
section des trois plans médiateurs et contient donc le sommet D. Comme
le triangle ABC est équilatéral, le point d’intersection des médiatrices est
aussi le centre de gravité du triangle, dont les coordonnées peuvent être
calculées par moyenne arithmétique de celles des sommets du triangle (voir
la section 2.3 du chapitre 8). On a

G =


1
2√
3

6
0

 .

Les coordonnées du point D peuvent alors être déterminées en calculant la
hauteur |DG| du triangle ADG, sachant que son hypoténuse [AD] mesure
1. Ou encore, ce qui revient au même, en exprimant que le point D, dont
les coordonnées sont de la forme

D =


1
2√
3

6
k


est à distance 1 de A. Nous obtenons ainsi

D =


1
2√
3

6√
6

3

 .

Passons à la détermination des sommets connus de la section :

−→
AR = 1

4

−→
AB nous donne immédiatement R =

 1
4
0
0

 ;

−→
BQ = 1

3

−→
BD nous donne −→OQ = −→OB + 1

3

−→
BD ou encore

Q =

 1
0
0

 +
1
3


−1

2√
3

6√
6

3

 =


5
6√
3

18√
6

9

 ;
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−→
OP = 1

2(−→OC +−→OD) nous donne

P =
1
2




1
2√
3

2
0

 +


1
2√
3

6√
6

3


 =


1
2√
3

3√
6

6

 .

Le plan PQR coupe donc les faces BCD et ABD du tétraèdre suivant
les segments [PQ] et [QR]. Déterminons à présent la section dans la face
ABC. Cherchons à cet effet le point de percée de la droite PQ dans le
plan ABC. Nous connâıtrons ainsi un deuxième point du plan de section
dans le plan de cette face. Ce point, noté T , vérifie la relation d’alignement−→
PT = λ

−→
PQ. Nous avons par conséquent

−→
OT = −→OP + λ

−→
PQ et T =


1
2√
3

3√
6

6

 + λ


1
3

−5
√

3
18

−
√

6
18

 .

Ce point T , dont la troisième coordonnée vaut 0 puisqu’il est dans le plan
ABC, correspond donc à la valeur λ = 3, ce qui donne

T =


3
2

−
√

3
2
0

 .

Cherchons ensuite le point S, intersection de la droite TR et de l’arête AC.
La relation d’alignement −→TS = µ

−→
TR ou −→OS = −→OT + µ

−→
TR nous indique

que les coordonnées de S sont de la forme

S =


3
2

−
√

3
2
0

 + µ

 −
5
4√
3

2
0

 .

Comme S est aussi sur la droite AC, ses coordonnées sont également de
la forme

S = ν


1
2√
3

2
0

 ,

ce qui indique que sa deuxième coordonnée est égale à la première mul-
tipliée par

√
3. Cette constatation, appliquée à l’expression précédente de

S, permet de déterminer la valeur de µ. On trouve µ = 8
7 et

S =


1
14√
3

14
0

 ,

ce qui termine la construction de la section.

Comme dans l’exercice précédent, c’est au moyen du produit scalaire que
nous calculons les longueurs de côtés et les amplitudes des angles. Voici les
résultats :



2. Géométrie analytique et produit scalaire 319

||−→PQ|| = 0, 600925212576,

||−→RQ|| = 0, 650854139659,

||−→RS|| = 0, 217241518939,

||−→SP || = 0, 745736179208,

P̂ = 73◦, 0091767079,

Ŝ = 82◦, 763077974,

R̂ = 130◦, 7321067,

Q̂ = 73◦, 4956386183.

P

QR

S

Fig. 32

Nous vérifions que la somme des angles du quadrilatère vaut bien 360◦.
Nous sommes à présent en mesure de dessiner la vraie grandeur de la sec-
tion. Comme pour la section du cube de la page 299, nous demandons aux
élèves de reporter les points de section sur le développement d’un tétraèdre
régulier (fourni en annexe), puis de découper et d’assembler celui-ci pour
faire apparâıtre la section, qui sera comparée à la figure construite à partir
des mesures obtenues par calcul. Si les deux figures ne sont pas superpo-
sables mais semblent symétriques, les élèves sont invités à s’interroger sur
la concordance entre l’orientation de la représentation en vraie grandeur
et celle de la section construite à partir du développement.

Commentaires

Nous l’avons vu dans les exercices de ce chapitre où plusieurs approches sont présentées :
la plupart des problèmes que nous proposons aux élèves de l’enseignement secondaire
pour utiliser le produit scalaire peuvent être traités par d’autres moyens. Le recours aux
théorèmes de Thalès et de Pythagore, ou l’exploitation des propriétés géométriques des
figures concernées, permettent souvent d’arriver à la solution. Comparé à ces méthodes
dont la variété peut dérouter, le produit scalaire fournit à la fois une méthode de résolu-
tion routinière et l’outil qui leur permet de mener à bien les calculs. Une telle méthode,
basée sur des calculs systématiques, peut parâıtre fastidieuse. Cependant, si elle permet
à certains de découvrir a posteriori des propriétés géométriques intéressantes, elle atteint
un but important : celui de faire progresser chacun dans sa perception de l’espace.
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Nombres complexes et géométrie

1 Introduction historique

De quoi s’agit-il ? Cette activité, de nature très différente des précédentes, propose la lec-
ture de deux textes qui replacent l’émergence des nombres complexes dans
un cadre historique. Le premier, de J. Wallis [1685], fait état des dif-
ficultés qu’il y avait à admettre, non seulement l’existence des nombres
imaginaires, mais aussi celle des nombres négatifs. Le second, de Laisant
[1887] (à partir de l’article de Bellavitis [1854]), montre à quel point les
premiers travaux sur ce que nous appelons le calcul vectoriel étaient liés à
la représentation des nombres complexes.

Enjeux L’objectif est de faire voir aux élèves comment la naissance d’un nouveau
concept mathématique est liée aux préoccupations des scientifiques d’une
époque. En l’occurrence, les nombres complexes représentés géométrique-
ment apparaissent comme les éléments appropriés à la conception d’un
calcul en géométrie euclidienne.

Compétences. – Intégrer le savoir dans une culture scientifique et hu-
maniste.

De quoi a-t-on
besoin ?

Les deux textes proposés ci-dessous et repris en annexe aux pages 557, 558
et 562 sous une forme photocopiable pour les élèves.

Prérequis. – Si le premier texte peut servir d’introduction aux nombres
complexes, le second ne prend tout son sens que lorsque les élèves ont
connaissance des opérations sur les nombres complexes, y compris sous
forme trigonométrique.

1.1 Sur les nombres imaginaires

Alors que les quantités irrationnelles étaient connues depuis l’antiquité,
les nombres négatifs n’ont été acceptés que très tardivement. Lorsqu’une
valeur négative apparaissait, elle était rejetée. Ainsi, Leonardo Fibonacci
(1170-1240 environ), dans son Liber abaci (1202, révision 1228), trouve
une solution égale à −9 pour l’avoir de l’un des hommes dans le problème

320
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intitulé ✭✭ De quinque hominibus et una bursa1 ✮✮. Il dit : ✭✭ Ce problème
n’a pas de solution, sauf si nous posons que cet homme a une dette de
9. . . ✮✮, interprétation qui permet d’écarter le signe ✭✭ − ✮✮. Il donne ensuite
la solution complète du système dans cette hypothèse.

Quelques siècles plus tard, Argand, dans son Essai sur une manière de
représenter les quantités imaginaires dans les constructions géométriques
[1806], appelle quantités imaginaires aussi bien les quantités négatives que
celles dont le carré est négatif.

Le texte qui suit montre que la même démarche de pensée qui conduit à
admettre l’existence des nombres négatifs peut également nous amener à
concevoir celle des nombres que nous appelons imaginaires. Il s’agit d’une
traduction libre de la version anglaise de l’Algèbre de J. Wallis [1685], (in
D. Smith [1959]). John Wallis (1616-1703) était professeur savilien2 de
géométrie à Oxford (1649-1703). Contemporain de Newton, il fut le pre-
mier à apporter une contribution substantielle au traitement géométrique
des quantités imaginaires. Pour favoriser la diffusion de ses idées en dehors
de l’Angleterre, Il publia en 1693 une version latine de cette Algèbre. En
voici un extrait (qu’on trouve au chapitre LXVI, Vol. II, p. 286 de la ver-
sion latine). Le même texte – en vieil anglais – est fourni en annexe aux
pages 555 et 556.

Ces quantités, dites imaginaires, provenant des racines supposées de carrés négatifs, sont censées
impliquer que la situation est impossible. Et il en est effectivement ainsi si l’on s’en tient stricte-
ment à ce qui est communément admis. Car il est impossible qu’un nombre (négatif ou positif),
multiplié par lui-même puisse produire (par exemple) −4, en vertu de la règle des signes. Mais
il est tout aussi impossible qu’une quantité quelconque, même non supposée carrée, puisse être
négative. En effet, il n’est pas possible qu’une grandeur puisse être moindre que rien, ou qu’un
nombre soit plus petit que zéro.
Mais cette supposition (de l’existence de quantités négatives) n’est ni inutile, ni absurde, lors-
qu’elle est bien comprise. Et si, du point de vue de la notation algébrique pure, cela amène une
quantité inférieure à zéro, lorsqu’on l’applique à la physique, elle représente une quantité tout
aussi réelle que si le signe était +, mais il faut l’interpréter en sens contraire. Ainsi, par exemple :
supposons qu’un homme ait avancé (de A vers B) de 5 yards, et qu’ensuite, il ait reculé (de B
vers C) de 2 yards. Si on demande de combien il a avancé (quand il est en C), ou à combien
de yards il est devant A, je trouve (en soustrayant 2 de 5) qu’il a avancé de 3 yards (parce que
5− 2 = 3).

A BCD

Fig. 1

1 Des cinq hommes et une bourse. Fibonacci propose ce problème dans le chapitre
12 de son ouvrage, chapitre où l’on trouve de nombreuses récréations mathématiques et
notamment le célèbre problème des lapins.

2 L’un des événements marquants de l’histoire des mathématiques à l’Université
d’Oxford fut la fondation en 1619 par Sir Henry Savile, de deux chaires (dites savi-
liennes) en géométrie et en astronomie. Les statuts imposés par Savile prévoyaient,
notamment, d’enseigner ces deux matières par l’exégèse des grands textes du passé,
principalement les Éléments d’Euclide et l’Almageste de Ptolémée (in Fauvel J. et
al. [1999]).



322 Chapitre 10. Nombres complexes et géométrie

Mais si, ayant avancé de 5 yards vers B, il recule ensuite de 8 yards vers D, et qu’on demande
de combien il a avancé quand il est en D, ou combien plus en avant il est de A, je dis −3 yards
(parce que 5− 8 = −3). C’est-à-dire qu’il a avancé de 3 yards de moins que rien.
Ce qui, du point de vue de la justesse de l’expression ne peut être, puisqu’il ne peut exister
moins que rien. Ainsi, si on se limite à la ligne AB vers l’avant, la situation est impossible.
Mais si (contrairement à notre supposition) la ligne partant de A peut être prolongée vers
l’arrière, nous trouverons D 3 yards derrière A (ce qui est supposé être avant lui).
Et donc, dire qu’il a avancé de −3 yards représente ce que nous exprimerions, en langage
ordinaire, par : il a reculé de 3 yards, ou il manque 3 yards pour être aussi en avant qu’il l’était
en A.
Ceci ne répond pas seulement par un nombre négatif à la question posée, car il n’a pas (comme
on l’avait supposé) avancé du tout, mais au contraire, il est si loin d’avoir avancé, qu’il a reculé
de 3 yards, et qu’il est en D, 3 yards plus en arrière que lorsqu’il était en A.
Et, par conséquent, −3 désigne le point D aussi réellement que +3 désigne le point C. Non pas
en avant, comme on l’avait supposé, mais en arrière de A. Ainsi, +3 signifie 3 yards en avant et
−3, 3 yards en arrière, mais toujours sur la même ligne droite. Et chacun désigne (en tout cas
sur la même ligne droite infinie) un et un seul point. Et il en va ainsi pour toute équation du
premier degré qui n’admet qu’une seule racine.
Maintenant, ce qu’on admet sur les droites doit, pour la même raison, être admis dans les plans.
Et par exemple, supposons qu’en un endroit, nous gagnons 30 acres sur la mer, mais que nous
en perdons 20 en un autre lieu, et qu’on demande combien d’acres nous avons gagné en tout ;
la réponse est 10 acres ou +10 (parce que 30 − 20 = 10). Ceci représente aussi 1600 perches
carrées (car l’acre anglais est une surface rectangulaire de 40 perches de longueur sur 4 perches
de largeur dont l’aire est 160 ; 10 acres valent donc 1600 perches carrées).
Si cette surface est un carré, son côté sera long de 40 perches ou (si on admet la racine négative)
−40. Mais si en un troisième endroit, on perd 20 acres de plus, et qu’on pose la même question :
combien avons nous gagné en tout ? La réponse doit être −10 acres (car 30 − 20 − 20 = −10)
c’est-à-dire que le gain est de 10 acres moins que rien. Ce qui revient à dire qu’il y a une perte
de 10 acres ou de 1600 perches carrées.
Et de là nâıt une nouvelle difficulté, qui n’est pas plus une impossibilité que celle que nous
avons rencontrée précédemment (en supposant une quantité négative ou moindre que rien). Ne
considérer que

√
1600 est ambigu, cela peut être 40 ou −40. Et de cette ambigüıté, il ressort que

les équations quadratiques ont deux racines.
Maintenant (en supposant que cette surface négative −1600 perches a la forme d’un carré), ne
doit-on pas admettre que ce supposé carré possède un côté ? Et si oui, que sera ce côté ?
Nous ne pouvons pas dire qu’il vaut 40, ni −40 (parce que l’une ou l’autre de ces valeurs,
multipliée par elle-même, donnera +1600, pas −1600). Mais plus vraisemblablement, sa valeur
est
√
−1600 (la supposée racine d’un carré négatif) ou (ce qui est équivalent) 10

√
−16 ou 20

√
−4

ou 40
√
−1. Le symbole

√
suggère une moyenne proportionnelle3 entre une quantité positive et

une quantité négative. Car, de la même manière que
√
bc représente une moyenne proportionnelle

entre +b et +c, ou entre −b et −c (dont le produit vaut bc dans les deux cas),
√
−bc indique une

moyenne proportionnelle entre +b et −c, ou entre −b et +c (dont le produit vaut −bc). Et ceci,
sur le plan algébrique, fournit la véritable interprétation d’une telle racine imaginaire

√
−bc.

Dans les chapitres suivants, Wallis illustre cette notion par de nombreux
exemples géométriques.

3 La moyenne proportionnelle de a et b est la valeur x telle que a
x

= x
b

et donc

x =
√
ab ; on l’appelle aussi moyenne géométrique de a et b.
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1.2 Exposition de la méthode des équipollences

En 1867, Tait publie un Traité élémentaire des quaternions, encouragé en
cela par Sir William Hamilton, inventeur des quaternions. Le premier cha-
pitre de cet ouvrage s’intitule Des vecteurs et de leur composition et com-
mence par expliquer comment la découverte de l’emploi de

√
−1 comme

réalité géométrique a conduit Hamilton à fonder son Calcul des quater-
nions. Ensuite Tait expose le début de ce calcul qui n’est rien d’autre que
ce que nous appelons le calcul vectoriel et que Bellavitis appelle Méthode
des équipollences.

Le texte qui suit est le début du chapitre II de l’ouvrage Théorie et ap-
plications des équipollences de C. A. Laisant [1887], largement inspiré de
l’Exposition de la méthode des équipollences de G. Bellavitis [1854].

Après avoir défini les quantités géométriques qu’on soumet au calcul dans
la méthode des équipollences, et qu’on appelle droites (limitées)4, l’auteur
définit, dans le chapitre I, l’équipollence de deux droites, puis l’addition
et la soustraction de droites. Nous reconnaissons dans ces définitions les
notions de vecteur libre, d’égalité de deux vecteurs et les opérations d’ad-
dition et de soustraction de vecteurs qui nous sont familières. L’auteur
entreprend ensuite de définir une opération de multiplication des droites.

CHAPITRE II
Multiplication et division des droites.

Produit de deux droites. – Produits de plusieurs droites.

28. Jusqu’à présent, dans les calculs que nous avons effectués sur les droites, nous n’avons fait
intervenir que la multiplication par un nombre réel. Nous avons maintenant à considérer des
produits de droites multipliées les unes par les autres, et pour cela, nous devons tout d’abord
définir le produit de deux droites, que nous supposerons ramenées à la même origine O.

Le produit de deux droites OA, OB est une droite OC dont la longueur est égale au produit
des longueurs de OA et OB, et dont l’ inclinaison est égale à la somme des inclinaisons de
OA et OB.

Il suit de là que l’équipollence5 OA.OB = OC entrâıne les deux égalités6

gr.OA × gr.OB = gr.OC et inc.OA + inc.OB = inc.OC.

Une première remarque, indispensable à faire, c’est que, tandis que la somme de deux droites
était tout à fait indépendante de tout autre élément du plan, leur produit dépend au contraire
de l’origine des inclinaisons que l’on a choisie.

Malgré la multiplicité des inclinaisons d’une droite donnée, il ne peut y avoir aucune indécision
sur la direction du produit, puisque l’inclinaison de celui-ci ne peut jamais être altérée que d’un
nombre entier de circonférences, ce qui ne change rien à sa direction.

4 Bellavitis appelle droite ce que nous appellerions vecteur déplacement dans le
plan.

5 Il faut entendre l’égalité.
6 La notation gr.AB désigne la longueur (grandeur) d’une droite AB, indépendam-
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Sans contester ce qu’une définition comme celle que nous venons de donner peut en apparence
présenter d’arbitraire a priori, il est bon de montrer cependant qu’elle se justifie assez naturelle-
ment, à la condition qu’on admette pour unité la droite OI de longueur égale à l’unité et dirigée
suivant l’origine des inclinaisons.

D’après la définition de la multiplication admise en Arithmétique, on doit former le produit
OC, au moyen du multiplicande OA, comme le multiplicateur OB est formé au moyen de l’unité
OI. Or, quelles opérations a-t-on fait subir à OI pour l’amener en OB? On a modifié la longueur

dans le rapport
gr.OB
gr.OI

= gr.OB, puis on a fait tourner la droite ainsi obtenue, dans le sens

convenable, de l’angle β = inc.OB. L’analogie nous conduit donc à dire, que pour avoir le
produit OA.OB, nous devons modifier la longueur de OA dans le rapport gr.OB, ce qui donnera
une droite de longueur gr.OA × gr.OB dirigée suivant OA, puis faire tourner cette droite de
l’angle β. Or, elle avait pour inclinaison α = inc.OA. Son inclinaison après la rotation sera donc
α + β; c’est-à-dire que nous retombons précisément sur la droite OC, telle que nous l’avons
définie plus haut.

Le lecteur sera sans doute étonné de constater que cette multiplication des
droites ne correspond ni au produit scalaire de deux vecteurs, ni à leur
produit vectoriel. Par contre, l’analogie avec le produit de deux nombres
complexes écrits sous leur forme trigonométrique est assez frappante. Il
suffit d’identifier la longueur de la droite et le module du nombre complexe,
l’inclinaison de la droite et l’argument du nombre complexe pour se rendre
compte qu’il s’agit bien de la même opération.

Si Bellavitis définit ainsi le produit de deux droites, c’est dans le but
d’utiliser cette opération pour faire de la géométrie : la multiplication par
une droite est une opération qui permet d’effectuer une similitude directe.

2 Nombres complexes et transformations du plan

De quoi s’agit-il ? À partir de l’interprétation géométrique des opérations sur les nombres
complexes, écrire les principales transformations du plan sous forme de
relations liant l’affixe d’un point quelconque du plan complexe et celle de
son image par cette transformation.

Exprimer quelques situations géométriques sous forme de calcul avec des
nombres complexes.

Enjeux L’objectif est de mettre en place l’écriture en termes d’opérations sur les
nombres complexes de quelques transformations du plan, de façon à les
exploiter comme outils de démonstration pour établir des propriétés géo-
métriques de figures planes (voir la section 3 à la page 333). Les trans-
formations en question sont essentiellement les similitudes (et tous les cas
particuliers de similitude), ce qui tient à la nature même des fonctions
linéaires sur les complexes (voir la section 8.5 du chapitre 16).

ment de la direction de cette droite.
La notation inc.AB désigne l’inclinaison d’une droite AB. C’est l’angle formé par la

droite OM (OM=AB) et une droite OX appelée origine des inclinaisons. L’inclinaison
est positive si la rotation qui amène OX sur OM s’effectue dans le sens contraire à celui
des aiguilles d’une montre, sinon elle est négative.
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Compétences. – Construire une représentation géométrique des nombres
complexes et interpréter géométriquement les opérations.

De quoi a-t-on
besoin ?

Prérequis. – Les opérations sur les nombres complexes, y compris sous
leur forme trigonométrique.

2.1 Représentation géométrique des nombres complexes

Comment s’y
prendre ?

Dans le plan muni d’un repère orthonormé, prenons le sens trigonométrique
pour sens positif de rotation. Considérons un nombre complexe z = x+ iy

avec x et y réels. Il est représenté par le point P de coordonnées
(

x
y

)
.

Le point P est le point représentatif ou l’image du nombre complexe z.

A

B
v

z = z   ± z

y

xO

→

v B A→

Fig. 2

Le nombre complexe z s’appelle l’affixe du point P , ce qu’on note
parfois zP . Par extension, on dit encore que z est l’affixe du vecteur
−→v de composantes

(
x
y

)
et on le note z−→v . Le lien immédiat entre

l’affixe et les composantes d’un vecteur nous indique que l’affixe du
vecteur −→AB est égale à la différence entre l’affixe de son extrémité et
celle de son origine (figure 2). On a

z−→
AB

= zB − zA.

Propriétés

Les définitions précédentes permettent d’établir que

l’affixe de la somme de deux vecteurs est la somme de leurs affixes,

z−→u +−→v = z−→u + z−→v ;

l’affixe de l’opposé d’un vecteur est l’opposé de son affixe,

z−−→v = −z−→v ;

l’affixe de la multiplication d’un vecteur par le scalaire k est égale à son
affixe multipliée par k,

zk−→v = kz−→v .

L’affixe du milieu d’un segment est la moyenne arithmétique des affixes de
ses extrémités,

si M est le milieu de [AB], alors zM =
zA + zB

2
.

L’affixe du centre de gravité d’un triangle est la moyenne arithmétique des
affixes de ses sommets,

si G est le centre de gravité d’un triangle ABC,

alors zG =
zA + zB + zC

3
.
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2.2 Interprétation géométrique des opérations sur les
nombres complexes

Les quelques questions suivantes sont destinées à guider les élèves dans leur
découverte de la signification géométrique des opérations sur les nombres
complexes.

Si P est un point quelconque du plan complexe, d’affixe z = x+yi, quel
est le point P ′ représentatif du nombre complexe

z′ = z + a + bi ?

Quelques exemples devraient permettre aux élèves de constater que le point
P ′ est l’image du point P par la translation de vecteur −→v d’affixe a + bi.

Si P est un point quelconque du plan complexe, d’affixe z = x+yi, quel
est le point P ′ représentatif de son conjugué

z = x− yi ?

Des exemples montrent clairement que le point P ′ est l’image du point P
par la symétrie orthogonale d’axe Ox.

Si P est un point quelconque du plan complexe, d’affixe z = x+yi, quel
est le point P ′ représentatif du nombre complexe

z′ = k · z, où k est un nombre réel non nul ?

Ici encore, quelques exemples montrent clairement que le point P ′, d’affixe
z′ = kx+ kyi est l’image de P par l’homothétie de centre O et de rapport
k. Nous noterons H(O, k) cette homothétie.

Si P est un point quelconque du plan complexe, d’affixe z = x+yi, quel
est le point P ′ représentatif du nombre complexe

z′ = z · (cos θ + i sin θ) ?

L’interprétation de cette dernière opération nécessite d’écrire z sous forme
trigonométrique. Notons σ son module et τ son argument, nous avons

z′ = σ(cos τ + i sin τ)(cos θ + i sin θ) = σ(cos(θ + τ) + i sin(θ + τ)).

Le point P ′ est donc le point représentatif d’un nombre complexe de même
module que z, mais dont l’argument a été augmenté de θ. Il s’agit donc
de l’image de P par la rotation de centre O et d’angle θ. Nous noterons
R(O, θ) cette rotation.

Si P est un point quelconque du plan complexe, d’affixe z = x+yi, quel
est le point P ′ représentatif du nombre complexe

z′ = z · ρ(cos θ + i sin θ) ?
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En procédant comme pour la question précédente, nous écrirons

z′ = σ(cos τ + i sin τ)ρ(cos θ + i sin θ) = σρ(cos(θ + τ) + i sin(θ + τ)).

Le point P ′ est donc le point représentatif d’un nombre complexe dont
le module est le produit de celui de z par ρ, et dont l’argument est celui
de z augmenté de θ. Il s’agit donc de l’image de P par la composée de
l’homothétie H(O, ρ) et de la rotation R(O, θ). Une telle composée est
appelée similitude directe. Nous noterons SD(O, k, θ) la similitude directe
composée d’une homothétie de centre O et de rapport k et d’une rotation
de même centre et d’angle θ.

2.3 Quelques transformations

Comment s’y
prendre ?

Le travail précédent devrait permettre d’écrire les principales transforma-
tions du plan sous forme de calcul avec des nombres complexes.

Dans le plan des complexes, considérons des transformations qui à P d’af-
fixe z associent P ′ d’affixe z′.

La translation de vecteur −→v

y

x

P

v
P'

O

→

Fig. 3

La relation vectorielle
−−→
OP ′ = −→OP +−→v ,

se traduit, sur les affixes, par

z′ = z + α où α est l’affixe de−→v .

L’homothétie de centre Ω et de rapport k

y

x

P
P'

Q
Q'

O

Ω

Fig. 4

La relation vectorielle
−−→
ΩP ′ = k · −→ΩP ou

−−→
OQ′ = k · −→OQ,

où k un nombre réel non nul, se traduit, sur les
affixes, par

z′ − ω = k(z − ω) ou z′ = ω + k(z − ω),

où ω est l’affixe de Ω.
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La rotation de centre Ω et d’angle θ

y

x

Q

P

Q'

P'

O

Ω θ

θ

Fig. 5

Le vecteur
−−→
ΩP ′ est l’image du vecteur −→ΩP par

la rotation R(Ω, θ) de centre Ω et d’angle θ (ex-
primé en radians)
ou
le vecteur

−−→
OQ′ est l’image du vecteur −→OQ par

la rotation R(O, θ) de centre O et d’angle θ se
traduit, sur les affixes, par la multiplication de
l’affixe de −→OQ, ou de −→ΩP , par (cos θ + i sin θ).

On obtient z −→
ΩP ′

= z−→
ΩP
· (cos θ + i sin θ),

ou z −→
OQ′

= z−→
OQ
· (cos θ + i sin θ),

c’est-à-dire z′ − ω = (z − ω)(cos θ + i sin θ),

ou z′ = ω + (z − ω)(cos θ + i sin θ).

On peut encore décomposer la rotation R(Ω, θ) de la manière suivante,

Q est l’image de P par la translation de vecteur −→ΩO, d’affixe −ω,

z1 = z − ω ;

Q′ est l’image de Q par la rotation R(O, θ),

z′1 = (z − ω)(cos θ + i sin θ) ;

P ′ est l’image de Q′ par la translation de vecteur −→OΩ, d’affixe ω,

z′ = z′1 + ω = (z − ω)(cos θ + i sin θ) + ω.

La similitude directe de centre Ω, de rapport k et d’angle θ

y

x

P

P'

O

Ω

Fig. 6

En combinant les deux opérations précédentes,
nous pouvons dire que
le vecteur

−−→
ΩP ′ est l’image du vecteur −→ΩP par la

similitude SD(Ω, k, θ),
ou que
le vecteur

−−→
OQ′ est l’image du vecteur −→OQ par la

similitude SD(O, k, θ),
ce qui se traduit, sur les affixes, par la mul-
tiplication de l’affixe de −→OQ, ou de −→ΩP , par
k(cos θ + i sin θ).



2. Nombres complexes et transformations du plan 329

On obtient z −→
ΩP ′

= z−→
ΩP
· k(cos θ + i sin θ),

ou z −→
OQ′

= z−→
OQ
· k(cos θ + i sin θ),

c’est-à-dire z′ − ω = (z − ω) · k(cos θ + i sin θ),

ou z′ = ω + (z − ω) · k(cos θ + i sin θ).

La figure 6 illustre l’image d’un triangle par la similitude SD(Ω, 1.7, 75◦)

Prolongements
possibles

La symétrie orthogonale d’axe AB

O x

y

A

BP

P©

Fig. 7

Pour compléter cet exposé, nous montrons ici
une méthode qui permet de découvrir la rela-
tion liant les affixes z et z′ d’un point P quel-
conque du plan complexe et de son image P ′

par la symétrie orthogonale d’axe AB. Nous la
donnons pour information, mais nous n’en fe-
rons pas usage dans les exercices proposés à la
section 3.

Q C
f

O x

y

A

BP

d

Fig. 8

Notons a et b les affixes respectives des points A
et B.
Effectuons tout d’abord la translation de vecteur−→
AO. Elle envoie A sur O, B sur C et P sur Q.
On obtient

zC = b− a et zQ = z − a.

Cette première opération amène l’axe de symé-
trie d sur la droite f passant par O.
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Q C

R

f

1
O x

y

A

BP

d

θ

Fig. 9

Effectuons ensuite la similitude directe qui ap-
plique C sur le point d’affixe 1 + 0i. Cette simi-
litude, d’angle θ (sens horlogique sur la figure 9)
et dont le rapport est égal à l’inverse du module
de (b−a), applique Q sur R. L’opération sur les
affixes qui correspond à cette similitude est la
division par (b− a). On a

zR =
zQ

b− a
.

Notons que cette deuxième opération amène
l’axe de symétrie sur l’axe Ox, axe par rapport
auquel il est aisé de réaliser une symétrie ortho-
gonale.

Q C

R

R©

f

1
O x

y

A

BP

d

θ

Fig. 10

Nous sommes à présent en mesure d’écrire l’af-
fixe de R′, symétrique de R par rapport à Ox ;
l’affixe de R′ est le conjugué de celui de R. On a

zR′ =
(

zQ
b− a

)
=

(
z − a

b− a

)
=

z̄ − ā

b̄− ā
,

où ā, b̄ et z̄ sont les complexes conjugués de a, b
et z.

Q

Q©

C

R

R©

f

1
O x

y

A

BP

P©

d

θ

Fig. 11

La dernière étape consiste à effectuer la simili-
tude qui applique le point d’affixe 1 + 0i sur C,
puis la translation de vecteur −→OA. On obtient
successivement

zQ′ =
z̄ − ā

b̄− ā
(b− a),

puis

zP ′ =
z̄ − ā

b̄− ā
(b− a) + a.

Cette dernière relation peut encore s’écrire

z′ − a

b− a
=

z̄ − ā

b̄− ā
.
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2.4 Quelques situations géométriques

Comment s’y
prendre ?

Considérons les points A, B, C, D, . . . deux à deux distincts dont les affixes
respectives sont a, b, c, d, . . . (éléments de C).

Alignement. – Exprimer que les trois points A, B et C sont alignés.

y

x

A
B

C

O

Fig. 12

La condition vectorielle d’alignement

∃k ∈ R tel que −→AC = k · −→AB,

se traduit, sur les affixes, par

c− a = k · (b− a) avec k ∈ R,

ou encore A, B C sont alignés si et seulement si

c− a

b− a
∈ R.

Perpendicularité. – Exprimer que les deux droites AB et CD sont
perpendiculaires.

Le vecteur −→CD, d’affixe (d− c), est l’image du vecteur −→AB, d’affixe (b−a),
par une rotation de 90◦ et une homothétie de rapport k.

y

x

C

D

A

B

O

Fig. 13

Nous obtenons

d− c = (b− a) · i · k et donc
d− c

b− a
= k · i.

Ainsi AB ⊥ CD si et seulement si
d− c

b− a
est un imaginaire

pur.

La norme du rapport
d− c

b− a
vaut le rapport des longueurs des segments

[CD] et [AB].

Remarquons que si (b− a) = r + is, (d− c) = (r + is) · i · k = k(−s + ri).



332 Chapitre 10. Nombres complexes et géométrie

Triangle rectangle isocèle. – Exprimer que le triangle ABC est rec-
tangle isocèle de sommet A.

y

x

C

A

B

O

Fig. 14

Comme conséquence directe de la relation précédente, il
vient : ABC est rectangle isocèle de sommet A si et seule-
ment si

c− a

b− a
= i.

Carré. – Exprimer que la figure ABCD est un carré.

y

x

A
B

C
D

O

Fig. 15

Cela peut se faire en écrivant deux relations du type{
d− a = (b− a)i
a− b = (c− b)i.

Triangle équilatéral. – Exprimer que la figure ABC est un triangle
équilatéral.

y

x

A
B

C

O

Fig. 16

On peut écrire une relation du type

c− a = (b− a)(cos
π

3
+ i sin

π

3
).

Remarque. – Dans ce qui précède, lorsque l’on dit ✭✭ triangle ABC ✮✮, ou
carré ✭✭ ABCD ✮✮, cela signifie que l’on cite les sommets A, B, C, D dans
le sens trigonométrique (sens inverse des aiguilles d’une montre).



3. Faire de la géométrie avec les nombres complexes 333

Commentaires

Il est intéressant de noter que tout ce qui précède suffit à exposer la première démonstra-
tion que Gauss donne du théorème fondamental de l’algèbre : Toute équation algébrique
de degré n dans les complexes admet n racines (certaines d’entre elles pouvant être
confondues). À ce sujet, on peut consulter F. Enriques [1924–1927].

3 Faire de la géométrie avec les nombres com-
plexes

De quoi s’agit-il ? Résoudre quelques problèmes de géométrie plane au moyen des nombres
complexes7. C’est dans des problèmes faisant intervenir des déplacements
et similitudes du plan que les nombres complexes sont particulièrement
utiles.

Traiter une même application avec différents outils : propriétés de figures,
transformations, nombres complexes et comparer ces différentes approches.
D’autres méthodes n’ont pas été développées ici : le calcul vectoriel (qui
n’est évoqué qu’à titre indicatif) et la géométrie analytique.

Enjeux L’objectif est d’utiliser l’aspect géométrique des opérations sur les nombres
complexes pour établir des propriétés géométriques de figures planes. Bien
que cette méthode de démonstration ne diffère guère de celle qui utilise le
calcul vectoriel, il convient de mettre en évidence l’avantage que présente la
multiplication par le nombre complexe adéquat pour effectuer une rotation
d’un angle qui n’est pas un multiple de 90◦.

Par ailleurs, cette activité propose des applications dont les démonstrations
par la géométrie synthétique exploitent les propriétés des transformations
du plan. Ceci donne du sens à cette matière, dont l’étude semble parfois
stérile aux élèves et aux enseignants, de par son manque d’utilisation.

De manière plus générale, le but est aussi de rencontrer un nouvel outil de
démonstration en géométrie, de diversifier les méthodes, de les comparer
en évaluant les avantages de chacune d’elles.

Compétences. – Traiter des applications à caractère géométrique au
moyen des nombres complexes.

De quoi a-t-on
besoin ?

Prérequis. – La représentation géométrique des nombres complexes et
les principales transformations du plan sous forme d’opérations sur les
nombres complexes.

Fichiers Cabri. – Pour chacune des applications suivantes, un fichier
Cabri commenté est disponible sur le site du CREM à l’adresse

http://www.profor.be/crem/index.htm

Remarque. – Chaque fois qu’on désigne une figure par ses sommets,
ceux-ci sont donnés dans le sens trigonométrique.

7 Certains de ces exercices sont proposés dans A. Bajart [1998].
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3.1 Un point fixe

Comment s’y
prendre ?

Dans un plan, on considère trois points non alignés A, B et M . Au point
M , on associe le point R milieu de [BM ], le point S, symétrique de R
par rapport à A, ainsi que le point P , point d’intersection des droites
MS et AB. Qu’advient-il du point P lorsque le point M se déplace dans
le plan ?

A B

R

M

S

P

Fig. 17

Ce problème a déjà été traité par calcul vectoriel au chapitre 8. Nous
en proposons ici deux autres solutions : l’une par les nombres complexes,
l’autre par la géométrie synthétique.

Par les nombres complexes

Plaçons l’origine du repère en A et le point unité sur l’axe des réels en B.
Les affixes des points A, B sont respectivement a = 0 + 0i et b = 1 + 0i.

Notons m = λ + µi l’affixe du point mobile M .

L’affixe de R, milieu de [MB] est alors r = λ+1
2 +µ

2 i et celle de S symétrique
de R par rapport à l’origine A est s = −λ+1

2 −
µ
2 i.

L’alignement de M , P et S, qui s’exprime vectoriellement par −−→MP =
k · −−→MS, nous donne la relation p−m = k(s−m) pour les affixes.

L’affixe de P est donc

p = (λ + µi) + k(−λ + 1
2
− µ

2
i− λ− µi).

En regroupant les parties réelles et imaginaires, nous obtenons

p = λ− k
3λ + 1

2
+ µ

2− 3k
2

i.

Comme P est un point de l’axe réel, la partie imaginaire de son affixe est
nulle, ce qui donne k = 2

3 . En remplaçant k par cette valeur, on obtient

finalement p = −1
3

+ 0i.

Ce résultat s’interprète comme ceci : P est un point fixe, situé sur la droite
AB, à une distance |AB|

3 de A, du côté opposé à B.
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Par la géométrie synthétique

Suivons les indications de l’énoncé pour découvrir les transformations du
plan qui sont appliquées au point M , et voyons quelle est l’image du point
P par cette composition de transformations.

Tout d’abord, une homothétie de centre B et de rapport 1
2 , notée H(B, 1

2)
applique M sur R ; ensuite R est lui-même envoyé sur S par la symétrie
de centre A, notée SCA.

Si les élèves savent que la composée SCA ◦ H(B, 1
2) est une homothétie de

rapport −1
2 , ils peuvent en déduire que le point P est fixe. En effet, le

centre de cette dernière homothétie est à la fois un point de la droite AB,
qui est sa propre image par la composée SCA ◦ H(B, 1

2), et un point de la
droite MS. C’est donc le point P .

Comme de nombreux élèves ne sont plus familiarisés avec les propriétés de
composition des transformations, il faudra peut-être procéder autrement.

Quelle est l’image du point P par la composée SCA ◦ H(B, 1
2) ?

L’homothétie H(B, 1
2) applique P sur Q, milieu de [PB], ensuite Q est

envoyé sur Q′ symétrique de Q par rapport à A. Montrons que Q′ cöıncide
avec P .

H(B, 1
2) SCA SCA ◦ H(B, 1

2)

M −→ R R −→ S M −→ S

P −→ Q Q −→ Q′ P −→ Q′(= P ?)

A BQ

R

M

S

P

T

Fig. 18

Traçons la droite parallèle à SM passant par A et notons T le point d’in-
tersection de cette droite avec MB (figure 18). La configuration de Thalès
dans le triangle SRM nous indique que

puisque A est au milieu de [SR],

T est au milieu de [MR], et donc au quart de [MB], à partir de M .

Une configuration similaire dans le triangle PBM nous permet de déduire
que

puisque T est au quart de [MB], à partir de M ,
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A est au quart de [PB], à partir de P , et donc au milieu de [PQ].

Ainsi l’image de Q par la symétrie SCA est P , qui est donc un point fixe de
la similitude SCA◦H(B, 1

2). Ce point fixe P est le centre de cette similitude
et toutes les droites joignant un point M quelconque à son image S par
cette similitude passent par P . De plus, la position de P , sur la droite AB,
à une distance |AB|

3 de A, du côté opposé à B est une conséquence du fait
que A est au quart de [PB], à partir de P .

Remarque. – Une autre façon de justifier que l’image de Q par la symé-
trie SCA est P consiste à démontrer que les triangles SAP et RAQ sont
isométriques, ce qui permet de déduire que |AP | = |AQ|.

3.2 Problème des deux triangles rectangles isocèles

Comment s’y
prendre ?

On donne deux triangles isocèles OAB et OCD rectangles en O.
Montrer que la médiane issue du sommet O de l’un des deux triangles
AOD ou COB est hauteur de l’autre.
Envisager encore plusieurs types de démonstrations.

B

O

A

C

D

Fig. 19

Par les nombres complexes

Plaçons l’origine du plan en O, l’axe des réels sur OA et l’axe des imagi-
naires sur OB. Le repère OAB est orthonormé puisque le triangle OAB est
rectangle et isocèle. Les affixes respectives de A et B sont alors a = 1 + 0i
et b = 0 + 1i.

Notons c = r + si l’affixe du point C. Comme D est l’image du point C
par la rotation de centre O et d’angle π

2 , notée R(O, π
2 ), son affixe d vaut

ci et donc d = (r + si)i = −s + ri.

Plaçons M au milieu de [CB] et montrons que OM , médiane du triangle
OBC, est perpendiculaire à AD. Pour cela, calculons et comparons les
affixes des vecteurs −−→OM et −→AD. On a

z −→
OM

=
r

2
+

s + 1
2

i et z−→
AD

= −s− 1 + ri.
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Il reste à vérifier que, si on multiplie par i l’affixe de −−→OM , on retrouve bien
celle de −→AD, à un facteur près. Et en effet,

z −→
OM
· i = (

r

2
+

s + 1
2

i)i =
−s− 1

2
+

r

2
i =

1
2
(−s− 1 + ri) =

1
2
z−→
AD

.

Le facteur 1
2 nous indique de plus que |OM | = 1

2 |AD|.

Par le calcul vectoriel

La perpendicularité de OM et AD est établie en vérifiant que le produit
scalaire <

−−→
OM |−→AD > est nul ; le calcul des normes des vecteurs −−→OM et−→

AD montre que ‖−−→OM‖ = 1
2‖
−→
AD‖.

Par la géométrie synthétique

Recherchons une transformation du plan qui amène, par exemple, [AD]
sur [OM ]. La présence d’angles droits et d’un milieu nous suggère de nous
tourner vers les rotations d’un quart de tour ainsi que vers les homothéties
de rapport 1

2 .

B

O

A

C

D

M

Fig. 20

Voici une des façons de s’y prendre.

Effectuons tout d’abord la rotation R(O,−π
2 ). Elle applique D sur C et A

sur Q, où Q est le symétrique de B par rapport à O.

Ensuite, l’homothétie H(B, 1
2) applique C sur M et Q sur O.

R(O,−π
2 ) H(B, 1

2) H(B, 1
2) ◦ R(O,−π

2 )

D −→ C C −→M D −→M

A −→ Q Q −→ O A −→ O

Par conséquent, la composée H(B, 1
2)◦R(O,−π

2 ) applique le segment [DA]
sur le segment [MO], et on peut en déduire que ces deux segments sont
perpendiculaires, et que |OM | = 1

2 |AD|.
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3.3 Problème des trois triangles équilatéraux

Comment s’y
prendre ?

Le triangle ABC est équilatéral et G désigne son centre. Si D est un
point de [BC], on construit les triangles équilatéraux BED et DFC de
centres respectifs H et J , comme sur la figure 21.
Démontrer que le triangle GHJ est également équilatéral.

B C

A

E

D

F

G

H
J

Fig. 21

Par les nombres complexes

Plaçons l’origine du plan en B, l’axe des réels sur BC, avec le point unité
en C, et l’axe des imaginaires perpendiculaire à BC.

La recherche des affixes respectives des différents points de la figure 21
fournit l’occasion d’appliquer de manière systématique les propriétés et les
expressions des transformations du plan complexe exposées aux pages 325
à 328. Voici les résultats.

B : b = 0 + 0i ;

C : c = 1 + 0i ;

A : a = c · (cos π
3 + i sin π

3 ) = 1
2 +

√
3

2 i, car A est l’image de C par la
rotation R(B, π

3 ) ;

G : g = 1
2 +

√
3

6 i, car G est le centre de gravité du triangle ABC ;

D : d = k + 0i, car D est un point quelconque du segment [BC] ;

E : e = d · (cos π
3 − i sin π

3 ) = k
2 − k

√
3

2 i, car E est l’image de D par la
rotation R(B,−π

3 ) ;

H : h = k
2 − k

√
3

6 i, car H est le centre de gravité du triangle BED ;

F : f = d+(c−d)·(cos π
3−i sin π

3 ) = k+(1−k)(1
2−

√
3

2 i) = k+1
2 −

(1−k)
√

3
2 i,

car −→DF est l’image de −→DC par la rotation R(D,−π
3 ) ;

J : j = k+1
2 −

(1−k)
√

3
6 i, car J est le centre de gravité du triangle DFC.
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Pour justifier que le triangle GHJ est équilatéral, il suffit de vérifier, par
exemple, que le vecteur −→GJ est l’image du vecteur −−→GH par la rotation
R(G, π

3 ). Ou encore que le vecteur −−→HG est l’image du vecteur −→HJ par la
rotation R(H, π

3 ). D’autres possibilités de vérification peuvent être évo-
quées par les élèves ; rien ne s’oppose à ce que chacun poursuive les calculs
en suivant sa propre idée.

Calculons, par exemple, les affixes des vecteurs −−→GH et −→GJ .

z−→
GH

= h− g =
k − 1

2
− (k + 1)

√
3

6
i et z−→

GJ
= j − g =

k

2
+

(k − 2)
√

3
6

i.

Il reste à vérifier que

z−→
GH

(cos
π

3
+ i sin

π

3
) = z−→

GJ

c’est-à-dire que(
k − 1

2
− (k + 1)

√
3

6
i

) (
1
2

+
√

3
2

i

)
=

k

2
+

(k − 2)
√

3
6

i,

ce qui est bien le cas.

Cette application montre très clairement à quel point la méthode de dé-
monstration par les nombres complexes est efficace, même et surtout si des
rotations d’angles non multiples de π

2 interviennent dans le problème. En
effet, un seul calcul suffit à établir que deux côtés sont de même longueur
et qu’ils forment un angle de 60◦.

Par le calcul vectoriel

On peut démontrer que le triangle GHJ est équilatéral en calculant par
produit scalaire les longueurs des trois côtés, ou encore la mesure d’un
angle et les longueurs des deux côtés qui le bordent, . . .

Par la géométrie synthétique

Cette démonstration utilise des propriétés concernant la composition de
deux rotations, et la décomposition d’une rotation en composée de deux
symétries orthogonales.

Ces notions ne sont peut-être pas familières à tous les élèves, et le pro-
fesseur jugera de l’opportunité d’effectuer cet exercice de démonstration
en fonction des connaissances des élèves de sa classe. Nous proposons ci-
dessous un schéma de réflexion qui permet de guider les élèves pour leur
permettre de retrouver ces propriétés, et d’en déduire la démonstration de
l’énoncé proposé.

Il faut tout d’abord s’assurer que les élèves se souviennent que les tranfor-
mations du plan se répartissent en déplacements et retournements. Ensuite,
on pose quelques questions destinées à rafrâıchir leur mémoire.
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La composée de deux symétries orthogonales est-elle un déplacement ou
un retournement ?
Plus précisément, quelle est la transformation composée de deux symé-
tries orthogonales

d’une part, d’axes parallèles, distants d’une longueur , ?

d’autre part, d’axes sécants en O, formant un angle θ ?

Il s’agit bien entendu d’un déplacement. Dans le premier cas, il s’agit d’une
translation dont le vecteur est perpendiculaire aux axes des symétries et
de longueur 2, ; dans le second cas, il s’agit d’une rotation de centre O et
d’angle 2θ. L’ordre dans lequel on effectue la composée des deux symétries
détermine le sens de la translation ou de la rotation, suivant le cas.

Peut-on décomposer toute rotation de centre O et d’angle α en une
composée de deux symétries orthogonales ? De quelle manière ?

La figure 22 apporte des éléments de réponse à cette question.

O

A

A''

A'

a

b

θ
α

Fig. 22

La rotation de centre O et d’angle α est la composée de deux symétries
orthogonales dont les axes a et b se coupent en O et forment un angle θ = α

2 ,
θ étant l’angle allant de a vers b. Il convient d’être très attentif à l’ordre des
symétries dans la décomposition, car il s’agit d’angles orientés. La figure
montre que R(O,α) = SOb ◦ SOa, tandis que la composée SOa ◦ SOb

correspond à la rotation de même centre O et d’angle (−α).

Cette décomposition est-elle unique ?

Comme le montrent les figures 23 et 24, la position du point intermédiaire
A′′ (tel que |OA′′| = |OA|) est arbitraire et chaque choix de A′′ détermine
une position des axes de symétrie. Ceux-ci se coupent toujours en O et
forment un angle θ = α

2 .
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O

A

A''

A'

a

b

θ

Fig. 23

O

A

A'

c

d

A''

θ

Fig. 24

La composée de deux rotations s’obtient donc par la composée de quatre
symétries orthogonales. Nous allons voir qu’en vertu de ce qui précède, un
choix judicieux des axes de symétries permet d’obtenir cette composée de
deux rotations comme composée de deux symétries orthogonales.

Notons SOa la symétrie orthogonale d’axe a, et décomposons, par exemple,
la composée de deux rotations de 120◦ et de centres respectifs A et B en
composée de quatre symétries. On a

R(A, 120◦) = SOb ◦ SOa et R(B, 120◦) = SOd ◦ SOc

R(B, 120◦) ◦ R(A, 120◦) = SOd ◦ SOc ◦ SOb ◦ SOa.

a bc d

B A

60J 60J

Fig. 25

La mesure de l’angle de la rotation qui amène a sur b (ou c sur d) est bien
de 60◦. En amenant les axes b et c dans la position de la droite des centres
AB, comme le montre la figure 26, nous obtenons

R(B, 120◦) ◦ R(A, 120◦) = SOd′ ◦ SOc′ ◦ SOb′ ◦ SOa′ = SOd′ ◦ SOa′ .
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a'

b' = c'

d'

B A

C

60J 60J

60J

120J

Fig. 26

L’angle de la rotation qui amène a′ sur d′ mesure (−60◦) ou 120◦. La
composée SOd′ ◦SOa′ est donc une rotation de centre C et d’angle (−120◦)
ou 240◦, ce qui revient au même. On peut donc écrire

R(B, 120◦) ◦ R(A, 120◦) = R(C, 240◦).

De manière plus générale, déterminer sur un schéma le centre et l’angle
de la composée de deux rotations de centres respectifs A et B et d’angles
α et β.

Revenons au problème des trois triangles.

Nous observons que la rotation R(J, 120◦) applique C sur D, et que la
rotationR(H, 120◦) applique D sur B. Leur composée peut être déterminée
en vertu de ce qui précède (figure 26). Il s’agit de la rotation de 240◦ dont
le centre forme un triangle équilatéral avec J et H.

Voit-on sur le dessin de la figure 21 une rotation de 240◦ qui amène C
sur B ?

La rotation R(G, 240◦) répond à cette question. Il faudra encore expliquer
pourquoi il y a unicité de la rotation d’un angle donné qui amène un point
donné sur un autre, lorsqu’on connâıt l’angle de la rotation. Nous pourrons
alors conclure que GHJ forme un triangle équilatéral.

Prolongement
possible

Que se passe-t-il si le point D n’est plus sur la droite BC ?

Le fichier Cabri montre que l’énoncé reste vrai. Il reste à voir que la dé-
monstration synthétique inclut ce cas. Cette propriété, appelée par certains
théorème de Napoléon, peut également être démontrée par les nombres
complexes.
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3.4 Problème des trois carrés

Comment s’y
prendre ? On donne un segment [OB] et un point A de ce segment. D’un même

côté de OB, on construit les carrés de côtés [OA] et [AB], de l’autre
côté, le carré de côté [OB].
Désignons par C, D et E les centres respectifs de ces trois carrés.
Démontrer que BC est perpendiculaire à DE. Montrer en outre que
|BC| = |DE|.

E

C

D

O B
A

Fig. 27

Remarque. – On pourrait également démontrer que les segments [OD]
et [CE] sont perpendiculaires et de même longueur.

Par les nombres complexes

Pour établir la thèse, il suffit de montrer que le vecteur −→DE est l’image du
vecteur −→BC par une rotation d’angle π

2 , ce qui peut se vérifier facilement
au moyen des affixes de ces deux vecteurs.

Plaçons l’origine du plan en O, l’axe des réels sur OB, avec le point unité
en B, et l’axe des imaginaires perpendiculaire à OB.

Déterminons tout d’abord les affixes des points de la figure 27 nécessaires
au calcul des affixes des vecteurs −→BC et −→DE:

O : o = 0 + 0i ;

B : b = 1 + 0i ;

A : a = k + 0i ;

C : c = k
2 + k

2 i ;

D : d = k+1
2 + 1−k

2 i ;

E : e = 1
2 − 1

2 i.
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Calculons ensuite les affixes des vecteurs −→BC et −→DE. On obtient

z−→
BC

= c− b =
k − 2

2
+

k

2
i et z−→

DE
= e− d = −k

2
+

k − 2
2

i.

Il reste à vérifier que
z−→
BC
· i = z−→

DE

c’est-à-dire que (
k − 2

2
+

k

2
i

)
· i = −k

2
+

k − 2
2

i,

ce qui est bien le cas.

Le fait qu’il n’est pas nécessaire de connâıtre le centre de la rotation pour ef-
fectuer cette vérification étonnera peut-être les élèves et suscitera quelques
commentaires.

Par le calcul vectoriel

La perpendicularité des segments [BC] et [DE] est établie en vérifiant que
le produit scalaire <

−→
BC|−→DE > est nul ; l’égalité de leurs longueurs est

vérifiée en calculant les normes des vecteurs −→BC et −→DE.

Par la géométrie synthétique

Nous cherchons une rotation d’angle 90◦ qui applique [BC] sur [DE], ou
ce qui revient au même, une rotation d’angle −90◦ qui applique [DE] sur
[BC].

E

C

D

F

O B
A G

Fig. 28

La rotation de centre G et d’angle −90◦ envoie D sur B, elle applique aussi
B sur F et BE sur FC (figure 28). En effet, |BE| vaut la mesure de la
demi-diagonale du carré construit sur [OB], et |FC| = |FA|+ |AC|, vaut
la somme des mesures des demi-diagonales des carrés construits sur [AB]
et [OA]. Comme la mesure de la diagonale du carré construit sur [OB] est
égale à la somme des mesures des diagonales des carrés construits sur [AB]
et [OA], on a bien |BE| = |FC|. Il en résulte que E est envoyé sur C, et
donc DE sur BC.
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R(G,−π
2 )

B −→ F
D −→ B

[BE] −→ [FC]
E −→ C

[DE] −→ [BC]

On peut déduire de tout ceci que les segments [DE] et [BC] sont perpen-
diculaires et de même longueur.

3.5 Problème des quatre carrés (et plus. . .)

Comment s’y
prendre ?

On construit quatre carrés sur les côtés d’un parallélogramme exté-
rieurement à celui-ci. Démontrer que les centres de ces carrés sont les
sommets d’un carré.

A B

CD

P

N

M

Q

Fig. 29

Par les nombres complexes

Plaçons l’origine du plan en D, l’axe des réels sur DC, avec le point unité
en C, et l’axe des imaginaires perpendiculaire à DC.

Déterminons tout d’abord les affixes des points de la figure 29.

D : d = 0 + 0i ;

C : c = 1 + 0i ;

A : a = k + ,i ;

B : b = k + 1 + ,i, car B est l’image de A par la translation de vecteur−→
DC, d’affixe 1 + 0i ;

P : p = 1
2 + 1

2 i ;
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M : m = (k + 1
2) + (,− 1

2)i.

Q : Le point Q est l’image de A par une similitude directe de centre D,
de rapport

√
2

2 et d’angle −π
4 , notée SD(D,

√
2

2 ,−π
4 ). Nous obtenons

donc q par la relation

q = a ·
√

2
2

(cos
π

4
− i sin

π

4
) = a ·

√
2

2
(
√

2
2
−
√

2
2

i),

et donc
q = (k + ,i)(

1
2
− 1

2
i) =

k + ,

2
+

,− k

2
i.

N : Le vecteur −−→CN est l’image du vecteur −→CB par une similitude directe
de centre C, de rapport

√
2

2 et d’angle π
4 , notée SD(C,

√
2

2 , π
4 ). Nous

obtenons donc n par la relation

n− c = (b− c) ·
√

2
2

(cos
π

4
+ i sin

π

4
),

n = c + (b− c) ·
√

2
2

(
√

2
2

+
√

2
2

i),

et donc

n = 1 + (k + ,i)(
1
2

+
1
2
i) = 1 +

k − ,

2
+

k + ,

2
i.

Les affixes de ces deux derniers points Q et N peuvent être calculées par
différents procédés comme l’indique la remarque ci-après.

Démontrons à présent que MNPQ est un carré. Pour cela, calculons par
exemple les affixes des vecteurs −−→QM et −→QP . Nous obtenons

z −→
QM

= m− q =
1 + k − ,

2
+
−1 + k + ,

2
i,

z−→
QP

= p− q =
1− k − ,

2
+

1 + k − ,

2
i,

et nous vérifions que
(m− q)i = (p− q).

Ceci démontre que les segments [QP ] et [QM ] sont perpendiculaires et de
même longueur, mais ne suffit pas à prouver que MNPQ est un carré. Il
faut encore calculer, par exemple,

z −→
MN

= n−m =
1− k − ,

2
+

1 + k − ,

2
i,

et constater que
(n−m)i = (q −m),

ce qui termine la démonstration.

Remarque. – Une autre manière d’obtenir les affixes des points Q et
N est de calculer les affixes d’un troisième sommet de chacun des carrés
construits sur [AD] et [BC], et d’exprimer ensuite que Q et N sont les
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milieux des diagonales de ces carrés. Par exemple, si on désigne par A′ le
sommet opposé à A dans le carré construit sur [AD], son affixe a′ vaut
a · (−i), ce qui donne a′ = ,− ki et pour Q, milieu de [AA′],

q =
k + ,

2
+

,− k

2
i.

Il est fort possible que cette méthode de détermination des affixes de Q
et N soit suggérée par les élèves. Elle ne doit pas être rejetée puisqu’elle
est correcte, mais elle nécessite de calculer les affixes de points supplé-
mentaires. Le professeur peut cependant faire observer que les affixes q
et n peuvent être obtenues directement grâce aux similitudes. C’est une
excellente occasion de voir fonctionner l’expression de la similitude et d’en
montrer toute la puissance.

Par le calcul vectoriel

On peut vérifier, par exemple, que

• <
−−→
MN |−−→MQ >= 0 et <

−−→
QM |−→QP >= 0, ce qui établit que la figure

possède des angles droits en M et Q,

• ‖−−→NM‖ = ‖−−→MQ‖ = ‖−→QP‖, ce qui établit l’égalité des longueurs de
trois côtés.

Ceci suffit à établir que MNPQ est un carré.

Par la géométrie synthétique

Nous donnons ci-dessous un schéma de démonstration. Les élèves sont
invités à apporter des justifications aux étapes successives.

Il est possible de compléter la figure 29 pour obtenir un pavage du plan
(figure 30). En effet, si on considère comme motif de base un polygone
constitué de deux carrés et de deux parallélogrammes ayant un sommet en
commun, on obtient, en reproduisant indéfiniment ce motif, un assemblage
de polygones isométriques qui peut être étendu à tout le plan, et tel que
ces polygones ne se recouvrent pas et ne laissent entre eux aucune lacune
(c’est ce qu’on appelle un pavage).

Il faudra justifier qu’en chaque sommet du pavage la somme des angles
vaut bien 360◦.

Désignons par ✭✭ petits carrés ✮✮ les carrés identiques à celui construit sur
[AD] et par ✭✭ grands carrés ✮✮ les carrés identiques à celui construit sur
[DC] (dans l’hypothèse où, comme dans la figure 29, |AD| est plus petit
que |DC|, sinon il suffit d’intervertir les mots ✭✭ grand ✮✮ et ✭✭ petit ✮✮). La
figure 31 montre que chaque centre d’un ✭✭ petit carré ✮✮ est le centre d’une
rotation de 90◦ qui applique les uns sur les autres les ✭✭ grands carrés ✮✮

et donc leurs centres, ce qui signifie que les centres des quatre ✭✭ grands
carrés ✮✮ situés autour d’un même ✭✭ petit carré ✮✮ forment aussi un carré.
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Fig. 30 Fig. 31

Dessinons deux de ces carrés, comme le montre la figure 32 et traçons leurs
diagonales (figure 33).

Fig. 32 Fig. 33

Nous voyons apparâıtre un nouveau carré dont les côtés sont formés des
demi-diagonales des précédents, ce qui achève la démonstration.
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Échos des classes L’expérience s’est déroulée dans une classe de 6e année de l’enseignement
général, option mathématique 6h. Elle s’est déroulée en approximativement
4h de cours. Les sections 2 et 3 de ce chapitre ont été abordées d’une
manière plus ou moins semblable à celle décrite dans le texte. Il s’agissait
en effet de raccrocher ces deux points à ce qui avait été vu auparavant,
conformément au programme officiel (principales propriétés algébriques
des nombres complexes, forme trigonométrique et plan de Gauss).

On a commencé par montrer le lien entre les nombres complexes et les
principales transformations du plan (z → z + c, z → −z, z → z, z → −z,
z → z ·(cosϕ+i sinϕ) et z → r ·z (r ∈ R)). Cette approche des transforma-
tions a tout de suite plu aux élèves, qui voyaient là une application concrète
des nombres complexes et une façon tout à fait nouvelle pour eux d’aborder
les transformations du plan, d’une manière analytique rassurante.

On est ensuite passé aux propriétés des affixes décrites au paragraphe 2.1.
Là aussi, les élèves ont rapidement accroché et ont découvert par eux-
mêmes plusieurs de ces propriétés.

Les Quelques situations géométriques du 2.4 ont été proposées en guise
d’exercices avec le même succès. En particulier, la traduction en termes
de nombres complexes d’une rotation non centrée à l’origine est apparue
comme tout à fait naturelle.

Dans la section 3, les problèmes 3.2, 3.3 et 3.4 ont été résolus en classe mais
uniquement par les nombres complexes. Des élèves plus curieux ont cepen-
dant demandé s’il était possible d’aborder les choses par des méthodes plus
✭✭ classiques ✮✮ de géométrie synthétique ou autre, et nous nous sommes at-
tardés à résoudre ainsi certains passages des problèmes proposés, ce qui a
été l’occasion de revoir des propriétés des transformations du plan étudiées
durant les premières années du secondaire.

Par exemple, dans le problème 3.4, certains élèves ont été très étonnés de
constater que prouver l’existence d’une rotation appliquant un segment
sur un autre ne nécessitait nullement que l’on détermine son centre. La
résolution de ce problème par la géométrie synthétique leur a prouvé la
puissance de l’outil ✭✭ nombres complexes ✮✮.

L’application 3.5 a, quant à elle, été proposée en interrogation. Les résul-
tats furent assez médiocres et décevants car les élèves, quelque peu dé-
passés par le problème, ne savaient pas toujours par où l’entreprendre, et
se focalisaient davantage sur les calculs en oubliant l’aspect géométrique
de la question. Certains, par exemple, ont confondu carré et losange, ou
carré et rectangle. À ce stade, poser cette question sous cette forme lors
d’un contrôle fut une erreur, les difficultés calculatoires étant encore trop
présentes.

Après une correction approfondie faite en classe, un exercice similaire a été
proposé en contrôle. Les résultats furent nettement meilleurs et certains
élèves, généralement faibles, sont presque arrivés au bout de la démons-
tration.
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Commentaires

Certains calculs liés à la résolution de ces exercices peuvent parâıtre longs et fastidieux,
mais le contenu géométrique des problèmes leur donne une signification. Il nous parâıt
de loin préférable d’exercer les élèves au calcul avec les nombres complexes dans un tel
contexte, plutôt que de leur soumettre des listes d’exercices vides de sens.

Par ailleurs, ces différentes applications montrent bien la puissance du calcul avec les
nombres complexes comme outil de démonstration. À partir des expressions des simili-
tudes du plan en termes d’affixes, on dispose d’une méthode générale et systématique
pour démontrer toute une classe de propriétés de figures.
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Dessins en PostScript et

géométrie analytique

1 Utiliser les coordonnées pour dessiner

De quoi s’agit-il ? Réaliser quelques dessins en PostScript.

Enjeux Mettre en œuvre de manière plaisante les premiers rudiments de géométrie
analytique en découvrant le PostScript.

La géométrie analytique prend place dans la construction de l’idée de li-
néarité d’une part par la correspondance linéaire, sur chaque axe, entre
distances (munies d’un signe) à l’origine et abscisses, et d’autre part par la
représentation des droites et plans à l’aide d’équations linéaires et affines,
voir sections 5 et 6 du chapitre 16.

De quoi a-t-on
besoin ?

Un éditeur de texte et un interpréteur PostScript1.

Prérequis. – Repérages : pour repérer un point sur une feuille de papier,
il faut par exemple deux directions (deux axes), une origine, une orienta-
tion et une unité de mesure sur chacune des deux directions, ainsi qu’une
convention quant à l’ordre des informations qui sont données.

Comment s’y
prendre ?

Le PostScript permet de représenter des points, des lignes droites ou des
courbes à partir des coordonnées de points. Il possède deux axes (invi-
sibles). Au départ, le premier est horizontal et cöıncide avec le bord infé-
rieur de la feuille de papier. L’autre est vertical et cöıncide avec le bord
gauche de la feuille. L’origine des deux axes est donc le coin inférieur gauche

1 On écrit les commandes du PostScript avec n’importe quel éditeur de texte, par
exemple Alpha sur Macintosh ou NotePad.exe (le Bloc-notes) sous Windows.

Les commandes sont ensuite interprétées à l’aide d’un interpréteur PostScript. Sur
Macintosh on utilisera MacGS ou GSview que l’on trouve sur le site internet :

<http://www.cs.wisc.edu/˜ghost/macos/index.htm>.

Pour Windows, on trouve GSview sur le site internet :

<http://www.cs.wisc.edu/˜ghost/gsview/index.html>.

Ces programmes sont gratuits, sauf l’éditeur Alpha qui est un shareware. Il est à noter
que les imprimantes PostScript possèdent un interpréteur PostScript incorporé.

351
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de la feuille. Le sens des axes est habituel : sur l’axe horizontal, le sens po-
sitif va de gauche à droite et sur l’axe vertical, il va de bas en haut. Ce
qui est moins habituel, c’est l’unité de longueur sur chacun des axes : elle
vaut exactement 1

72 pouce. C’est une très petite unité qui permet de dessi-
ner sans devoir utiliser trop de chiffres après la virgule, ou plutôt après le
point, car en PostScript la virgule est remplacée par un point. Dans cette
unité, la largeur d’une feuille A4 vaut 612 et la hauteur 792. Autrement
dit, le coin supérieur droit de la feuille possède par défaut (612,792) comme
coordonnées2.

Les premières commandes. – Pour le PostScript, un dessin est un
ensemble de lignes droites et de courbes qui sont soit tracées, soit remplies
(avec une certaine couleur). L’ensemble des lignes droites et courbes est
appelé chemin, en anglais path. La première chose à faire pour commencer
un dessin ou une partie de dessin est de dire que l’on commence un nouveau
chemin en écrivant : newpath.

L’idée de départ est assez simple : un morceau de ligne droite (un segment)
va d’un point à un autre. Sur cette base, une ligne brisée, en un ou plusieurs
morceaux, se définit grâce aux instructions suivantes :

– moveto : on (dé)place le point courant à l’endroit spécifié ; cela corres-
pond au fait d’aller placer son crayon en un point de la feuille (sans
tracer quoi que ce soit).

– lineto : on déplace le point courant à l’endroit spécifié tout en définis-
sant une partie de chemin qui devra être tracé ; c’est un segment qui va
du point où l’on se trouvait au point indiqué.

– rmoveto : c’est la même chose que moveto, mais ce sont les coordonnées
du déplacement qui sont indiquées et non celles du point d’arrivée ; c’est
un déplacement relatif.

– rlineto : c’est la même chose que lineto, mais ce sont les coordonnées
du déplacement qui sont indiquées et non celles du point d’arrivée.

Lorsque le chemin a été défini au moyen de ces commandes, il n’apparâıt
pas encore sur le dessin. Il faut encore le tracer, ce qui se fait au moyen de
la commande stroke.

Voici un premier dessin.

newpath
0 0 moveto
400 500 lineto
0 200 rmoveto
-100 -200 rlineto
stroke

On peut observer que

– les coordonnées des points sont indiquées avant l’instruction qui leur
correspond ; par exemple
2 Il y a une différence entre les dimensions réelles de la feuille et la partie qui peut en

être imprimée. Il y a en effet une bordure inaccessible à l’imprimante, dont les dimensions
varient d’une imprimante à l’autre.
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0 0 moveto

signifie : déplacer le point courant en (0, 0) ;

– on ne peut tracer de segment ou se déplacer de manière relative que si
l’on se trouve déjà quelque part, c’est-à-dire s’il existe un point courant ;
après un newpath, il n’y a pas de point courant et il faut donc commencer
le chemin par un moveto avant d’utiliser lineto, rlineto ou rmoveto.

Modifier le système d’axes. – On peut modifier le système d’axes de
plusieurs manières différentes. En voici deux qui sont utiles pour les dessins
de cette activité.

1. Pour déplacer les axes, sans les changer de direction, de sens, ni
d’unité, on utilise l’instruction translate qui en change uniquement
l’origine. Par exemple 100 100 translate déplace l’origine au point
(100, 100).

2. Pour faire tourner le système d’axes, on utilise l’instruction rotate.
Par exemple, 45 rotate fait tourner le système d’axes de 45 degrés,
autour de l’origine, dans le sens opposé à celui des aiguilles d’une
montre.

Les commandes translate et rotate sont toujours relatives au système
d’axes en vigueur au moment où on les écrit.

Un carré

Dessiner un carré dont le côté mesure 200 unités et dont le coin inférieur
gauche cöıncide avec le coin inférieur gauche de la feuille.

On travaille avec des coordonnées relatives pour devoir modifier les ins-
tructions le moins possible si on en change le point de départ.

newpath
0 0 moveto
200 0 rlineto
0 200 rlineto
-200 0 rlineto
0 -200 rlineto
stroke

Le carré se trouve en bas et à gauche de la feuille. On n’en voit bien que
deux côtés, ce qui peut être gênant.

Dessiner le même carré mais avec son coin inférieur gauche au centre de
la feuille.

Voici deux possibilités pour déplacer le carré vers le centre de la feuille :

1. Placer le coin inférieur gauche au centre.

2. Déplacer les axes.

Placer le coin inférieur gauche du carré au centre de la feuille, c’est-à-dire
en (306, 396), se fait en remplaçant 0 0 moveto au début par 306 396 mo-
veto.
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newpath
306 396 moveto
200 0 rlineto
0 200 rlineto
-200 0 rlineto
0 -200 rlineto
stroke

En déplaçant l’origine du système d’axes au moyen de translate, le coin
inférieur gauche du carré reste (0, 0) ; ce dernier point n’est toutefois plus
le coin inférieur gauche de la feuille mais le point dont les coordonnées ont
été transmises à l’opérateur translate.

306 396 translate
newpath
0 0 moveto
200 0 rlineto
0 200 rlineto
-200 0 rlineto
0 -200 rlineto
stroke

Faire tourner le carré

Dessiner le même carré ✭✭ sur une pointe ✮✮.

Il s’agit par exemple de faire tourner le carré de 45◦ (sens trigonométrique)
autour du sommet inférieur gauche. Une manière de le faire est de calculer
les coordonnées de chacun des sommets du carré dans cette position. Une
autre manière, beaucoup plus facile, consiste à faire tourner les axes de
45◦ au moyen de l’instruction rotate et à dessiner le carré dans ce nou-
veau système d’axes : si on garde les mêmes coordonnées, le carré suit le
mouvement.

On voit ici l’intérêt d’avoir déplacé l’origine du système d’axes au milieu
de la feuille : faire tourner le système d’axes se fait autour de son origine.
Si l’on gardait l’origine située au coin inférieur gauche de la feuille et que
l’on faisait tourner le système d’axes, le carré, en suivant ce mouvement,
sortirait de la feuille.

306 396 translate
newpath
0 0 moveto
200 0 rlineto
0 200 rlineto
-200 0 rlineto
0 -200 rlineto
stroke

45 rotate
newpath
0 0 moveto
200 0 rlineto
0 200 rlineto
-200 0 rlineto
0 -200 rlineto
stroke

Dessiner les mêmes carrés de telle manière que le deuxième soit obtenu
par une rotation de 45◦ autour du centre du premier et non pas autour
de son sommet inférieur gauche.
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Il suffit que le centre du carré cöıncide avec l’origine du système d’axes.
Pour cela on place son sommet inférieur gauche en (−100,−100).

306 396 translate
newpath
-100 -100 moveto
200 0 rlineto
0 200 rlineto
-200 0 rlineto
0 -200 rlineto
stroke

45 rotate
newpath
-100 -100 moveto
200 0 rlineto
0 200 rlineto
-200 0 rlineto
0 -200 rlineto
stroke

Les instructions pour dessiner les deux carrés sont identiques ! On peut
✭✭ mémoriser ✮✮ ces instructions pour ne devoir les écrire qu’une seule
fois. Ceci sera utile lorsque l’on voudra dessiner plus de deux fois un tel
carré. . . Pour mémoriser une suite d’instructions, il faut choisir un nom,
par exemple carre. Ce nom ne peut pas comporter de caractère accentué.
Pour la définition on fait précéder ce nom du caractère /. En écrivant

/carre { ... } def

on mémorise la suite d’instructions entre les accolades dans carre. Lorsque
l’on écrira ensuite carre, cela aura exactement le même effet que d’écrire
directement cette suite d’instructions.

/carre {
newpath
-100 -100 moveto
200 0 rlineto
0 200 rlineto
-200 0 rlineto
0 -200 rlineto
stroke

} def

306 396 translate
carre
45 rotate
carre

Dessiner trois ou quatre carrés identiques ayant même centre et placés
régulièrement autour de ce centre.

La solution s’inspire directement de ce qui précède. La voici par exemple
pour trois carrés :

/carre {
newpath
-100 -100 moveto
200 0 rlineto
0 200 rlineto
-200 0 rlineto
0 -200 rlineto
stroke

} def

306 396 translate
carre
30 rotate
carre
30 rotate
carre
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2 Parallélisme

De quoi s’agit-il ? Traiter, en PostScript, de questions concernant les parallélogrammes et les
cubes.

Enjeux Utiliser des vecteurs pour dessiner et prouver.

Sur la place des vecteurs dans le développement de l’idée de linéarité, voir
la section 7 du chapitre 16.

De quoi a-t-on
besoin ?

Les outils informatiques pour travailler en PostScript (voir page 351).

Prérequis. – Une première initiation au PostScript, par exemple la sec-
tion 1 de ce chapitre. Une description plus complète de quelques principes
et des opérateurs de base se trouvent dans l’annexe 4 à la page 501. Le
lecteur est invité à s’y référer lorsque les aspects du PostScript utilisés ici
nécessitent un peu plus d’explications.

Comment s’y
prendre ?

En PostScript, on met toujours les arguments avant le nom de la fonction.
Pour la suite des activités, il est utile de préciser cela : le PostScript,
comme d’autres langages informatiques, travaille avec ce qu’on appelle
une pile. Bornons-nous à dire ici qu’une pile est une mémoire dans laquelle
s’entassent les uns au-dessus des autres (ou les uns à côté des autres) les
éléments que l’on y met. Chaque opérateur y prend, en commençant par
le dessus, les arguments dont il a besoin. Pour plus de détails, le lecteur
est invité à consulter la section 1.1 de l’annexe 4 à la page 501.

Pour faciliter le travail d’écriture des dessins, nous proposons d’utiliser des
opérateurs qui ne sont pas standard en PostScript, mais qui permettent
de travailler directement avec des vecteurs à deux ou à trois dimensions.
Ces opérateurs sont décrits dans l’annexe 5 à la page 509. Pour les avoir
à sa disposition, il suffit de les copier avant les instructions PostScript du
dessin que l’on souhaite réaliser3.

Les vecteurs s’introduisent entre crochets, avec un (ou plusieurs) espace(s)
pour séparer les composantes. Lorsque nous disons ✭✭ vecteurs ✮✮, il s’agit de
n-uples de réels qui représentent, selon le contexte et l’opérateur PostScript
utilisé, tantôt une position, tantôt un déplacement.

Les nouveaux opérateurs définis ont leur nom qui commence par une ma-
juscule. Par exemple Add permet d’additionner deux vecteurs. Comme tou-
jours en PostScript, les vecteurs que l’on additionne se placent avant l’opé-
rateur.

Les opérateurs disponibles sont :

Add et Sub : addition et soustraction de deux vecteurs.

Mul : multiplication d’un vecteur par un scalaire. On écrit d’abord le
vecteur et ensuite le scalaire.
3 Ils peuvent être téléchargés à partir du site internet du CREM,

http://www.profor.be/crem/index.htm
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Div : division d’un vecteur par un scalaire. On écrit d’abord le vecteur
et ensuite le scalaire.

Neg : multiplication du vecteur par −1.

Moveto, RMoveto, Lineto et Rlineto : définition de chemins à partir
de vecteurs à deux ou trois dimensions. Lorsque les vecteurs ont trois
dimensions, il y a implicitement une perspective parallèle qui projette
les vecteurs sur le plan du dessin. Il s’agit d’une perspective dont la
fuyante est à 30◦ et dont le rapport vaut un demi. On peut modifier les
paramètres de la perspective cavalière.

Point : dessine un point (un petit disque noir) à l’endroit mentionné.
On peut modifier le rayon du disque en introduisant, par exemple

/RayonPoint 3 def

Par défaut, ce rayon vaut 5.

2.1 Le quadrilatère passant par les milieux

Comment s’y
prendre ?

Soit les points

A =
(

250
200

)
, B =

(
500
600

)
, C =

(
50

550

)
et D =

(
80

300

)
.

Dessiner le quadrilatère ABCD et le quadrilatère joignant les milieux
des côtés de ABCD.
Que peut-on dire de ce dernier quadrilatère ?

Cette activité demande un aller-retour entre l’ordinateur et la feuille de
papier : certaines parties du travail demandent en effet de mettre au point,
ou de revoir, les outils mathématiques nécessaires à leur réalisation.

Lorsque l’on a recopié les opérateurs permettant de travailler directement
avec des vecteurs, on ✭✭ écrit ✮✮ le dessin de ABCD en PostScript par
exemple de la manière suivante :

[...]
/a [250 200] def
/b [500 600] def
/c [50 550] def
/d [80 300] def

newpath
a Moveto b Lineto c Lineto
d Lineto a Lineto stroke

Il faut ensuite déterminer le milieu de chaque côté. Prenons le milieu de
[AB]. Les coordonnées de A correspondent aux composantes du vecteur−→
OA. Rappelons qu’en PostScript, l’origine O se trouve au départ dans le
coin inférieur gauche de la feuille de dessin. Les coordonnées du point milieu
M sont les composantes du vecteurs −−→OM que l’on peut trouver grâce à −→OA
et à −→AB :

−−→
OM = −→

OA +
1
2
−→
AB.
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Si l’on décompose −→AB en fonction de −→OA et −→OB, on a :

−−→
OM = −→

OA +
1
2
(−→OB −−→OA),

et l’on trouve finalement :

−−→
OM =

1
2
(−→OA +−→OB).

Pour trouver les coordonnées de M , il suffit donc d’additionner celles
de A et de B et de diviser le résultat par 2. En PostScript, cela donne
a b Add 2 Div. Regardons ce calcul en détail4 :

États successifs de la pile

a [250 200]

b [250 200] [500 600]

Add [750 800]

2 [750 800] 2

Div [375 400]

On peut donc ajouter maintenant le quadrilatère reliant les milieux des
côtés :

[...]

newpath
a b Add 2 Div Moveto
b c Add 2 Div Lineto

c d Add 2 Div Lineto
d a Add 2 Div Lineto
a b Add 2 Div Lineto
stroke

Le quadrilatère ressemble à s’y méprendre à un parallélogramme. On vérifie
que c’en est un grâce aux vecteurs. Appelons M1 M2, M3 et M4 les quatre
milieux (figure 1). Vérifier que M1M2M3M4 est un parallélogramme revient
à vérifier, par exemple, que −−−−→M1M2 = −−−−→M4M3.

A

M1

BM2

C

M3

D

M4

Fig. 1

4 Dans beaucoup d’ouvrages, la pile est dessinée verticalement. Dans les représenta-
tions qui suivent, les piles sont dessinées horizontalement pour gagner de la place. Cela
n’a bien sûr aucune importance. Ce qu’il faut garder en tête, c’est que les éléments de
la pile ✭✭ sortent ✮✮ du côté où ils ✭✭ entrent ✮✮.
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Calculons les coordonnées de ces quatre milieux :

−−→
OM1 = 1

2(−→OA +−→OB) =
(

375
400

)
;

−−→
OM2 = 1

2(−→OB +−→OC) =
(

275
575

)
;

−−→
OM3 = 1

2(−→OC +−→OD) =
(

65
425

)
;

−−→
OM4 = 1

2(−→OD +−→OA) =
(

165
250

)
.

La conclusion vient du calcul suivant :

−−−−→
M1M2 = −−→OM2 −−−→OM1 =

(
275
575

)
−

(
375
400

)
=

(
−100

175

)
;

−−−−→
M4M3 = −−→OM3 −−−→OM4 =

(
65

425

)
−

(
165
250

)
=

(
−100

175

)
.

Obtient-on un parallélogramme quel que soit le quadrilatère ABCD
de départ, ou bien les coordonnées ont-elles été choisies de manière à
donner ce résultat ?

Les élèves peuvent essayer avec d’autres coordonnées et constater que la
propriété se répète. On peut le prouver en se ramenant, comme on l’a fait
dans l’exemple précédent, aux coordonnées, mais le calcul algébrique qui
en résulte est assez lourd. Faire le calcul directement avec les vecteurs est
beaucoup plus simple. On veut donc vérifier que

−−−−→
M1M2 = −−−−→M4M3.

Calculons ces deux vecteurs en fonction de A, B, C et D :
−−−−→
M1M2 = −−→OM2 −−−→OM1 =

−→
OB+

−→
OC

2 −
−→
OA+

−→
OB

2 =
−→
OC−

−→
OA

2 =
−→
AC

2 ;

−−−−→
M4M3 = −−→OM3 −−−→OM4 =

−→
OC+

−→
OD

2 −
−→
OD+

−→
OA

2 =
−→
OC−

−→
OA

2 =
−→
AC

2 .

2.2 Les parallélogrammes par trois points

Comment s’y
prendre ?

Soit les points

A =
(

150
180

)
, B =

(
250
110

)
et C =

(
180
280

)
.

Dessiner tous les parallélogrammes qui ont ces points pour sommets.

Soit un point D tel que ABCD est un parallélogramme. Si les sommets
sont dans cet ordre-là (figure 2 à la page suivante), alors on doit avoir

−→
AB = −→DC.
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On peut trouver les coordonnées de D à partir de l’égalité
−→
OD = −→

OC +−→BA.
En traduisant cela en coordonnées, on obtient D = C + A−B.

A

B

C

D

Fig. 2

Selon l’ordre dans lequel on effectue les opérations, on obtient plusieurs
manières d’écrire cela en PostScript. Par exemple, D = C +(A−B) s’écrit

/d c a b Sub Add def

tandis que D = (C + A)−B s’écrit
/d c a Add b Sub def

Regardons ces calculs en détail :

/d c a b Sub Add def /d c a Add b Sub def

États successifs de la pile

/d d

c d [180 280]

a d [180 280] [150 180]

b d [180 280] [150 180] [250 110]

Sub d [180 280] [-100 70]

Add d [80 350]

def

États successifs de la pile

/d d

c d [180 280]

a d [180 280] [150 180]

Add d [330 460]

b d [330 460] [250 110]

Sub d [80 350]

def

On peut alors écrire la séquence d’instructions qui dessine le parallélo-
gramme ABCD.

[...]

/a [150 180] def
/b [250 110] def
/c [180 280] def
/d c a b Sub Add def

newpath
a Moveto b Lineto c Lineto
d Lineto a Lineto
stroke

Pour trouver les autres parallélogrammes, il suffit de considérer les autres
ordres possibles pour les sommets. Il n’y a que deux autres possibilités.
1. ACBD : dans ce cas, −→OD = −→OB +−→CA.

2. ABDC : dans ce cas, −→OD = −→OC +−→AB.

On peut dessiner les trois parallélogrammes sur la même feuille.

[...]
/d b a c Sub Add def
newpath
a Moveto c Lineto
b Lineto d Lineto
a Lineto
stroke

/d c b a Sub Add def
newpath
a Moveto b Lineto
d Lineto c Lineto
a Lineto
stroke
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2.3 Cubes

Soit un cube dont la base inférieure est ABCD et la base supérieure
A′B′C ′D′ (A′ se trouvant au dessus de A, . . .) avec

A =

 100
200

0

, B =

 300
200

0

, D =

 100
400

0

 et A′ =

 100
200
200

.

Dessiner le cube de telle manière que

(a) toutes les arêtes soient visibles (le cube est transparent) ;

(b) le cube soit opaque.

Un schéma peut aider à visualiser la situation (figure 3).

0 100 200 300 400

100

200

300

100

200

300

A B

A′

D C

B′

C′
D′

Fig. 3

Pour trouver les coordonnées du point C, on utilise les égalités vectorielles

−→
AD = −→

OD −−→OA ;
−→
OC = −→

OB +−→AD.

Pour trouver les coordonnées des points B′, C ′ et D′, on utilise les égalités
vectorielles

−−→
AA′ =

−−→
OA′ −−→OA ;

−−→
OB′ = −→

OB +
−−→
AA′ ;

−−→
OC ′ = −→

OC +
−−→
AA′ ;

−−→
OD′ = −→

OD +
−−→
AA′.

Pour dessiner le cube transparent, on écrit alors le programme PostScript,
par exemple, comme ci-après.
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[...]
/a [100 200 0] def
/b [300 200 0] def
/d [100 400 0] def
/ap [100 200 200] def

/c b d a Sub Add def
/bp b ap a Sub Add def
/cp c ap a Sub Add def
/dp d ap a Sub Add def

newpath
a Moveto b Lineto c Lineto
d Lineto a Lineto
ap Lineto bp Lineto cp Lineto
dp Lineto ap Lineto
b Moveto bp Lineto
c Moveto cp Lineto
d Moveto dp Lineto
stroke

Pour le cube opaque, il faut uniquement modifier la deuxième partie du
programme, ce qui donne

[...] newpath
a Moveto b Lineto bp Lineto
ap Lineto a Lineto
b Moveto c Lineto cp Lineto
bp Lineto b Lineto
ap Moveto bp Lineto cp Lineto
dp Lineto ap Lineto
stroke

Prolongement
possible

Dessiner un octaèdre régulier.

Indication : chaque sommet d’un octaèdre régulier est le centre d’une face
d’un cube.

2.4 Sections de cubes

Comment s’y
prendre ? Dessiner en PostScript la section du cube ABCDA′B′C ′D′ ci-dessus

par le plan PQR où

– P se trouve au tiers de l’arête [AB], du côté de A ;

– Q est au milieu de l’arête [BC] ;

– R est au milieu de l’arête [CC ′].

Pour ce faire, déterminer des procédures générales pour trouver l’inter-
section d’une droite avec les différentes faces du cube.

Dans un premier temps, dessinons les points P , Q et R. Les milieux de
segments n’ont plus de secret pour nous. Pour le tiers, on a

−→
OP = −→OA + 1

3

−→
AB.

Ceci peut s’écrire immédiatement en PostScript

/p a b a Sub 3 Div Add def
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En détail,

États successifs de la pile

/p p

a p [100 200 0]

b p [100 200 0] [300 200 0]

a p [100 200 0] [300 200 0] [100 200 0]

Sub p [100 200 0] [200 0 0]

3 p [100 200 0] [200 0 0] 3

Div p [100 200 0] [ 200

3
0 0]

Add p [ 500

3
200 0]

def

Pour placer un point (un petit disque noir) aux endroits requis, on utilise
l’opérateur (non standard) Point. (On peut modifier la grosseur du point
en redéfinissant le paramètre RayonPoint.)

[...]
/p a b a Sub 3 Div Add def
/q b c Add 2 Div def
/r c cp Add 2 Div def

p Point q Point r Point
[...]

Pour déterminer les autres sommets de la section, il est nécessaire de trou-
ver des points intermédiaires. Ce sont les intersections de droites contenues
dans le plan de section avec une face du cube (ou plus précisément un plan
contenant une face). Par exemple, on peut rechercher le point S, intersec-
tion de la droite PQ avec le plan contenant la face DCC ′D′ (figure 4).

0 100 200 300 400

100

200

300

100

200

300

A B

A′

D C

B′

C′
D′

P

Q

R

S

Fig. 4
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Le point S se trouve sur la droite PQ. On peut donc écrire
−→
OS = −→

OP + λS
−→
PQ,

où λS est un scalaire. Comme le point S se trouve dans la face verticale
à l’arrière du cube, on sait que sa deuxième coordonnée yS vaut 400. Par
conséquent,

400 = yP + λS(yQ − yP ),

ou encore
λS = 400−yP

yQ−yP
= 400−200

300−200 = 2.

Remarquons qu’une simple considération sur les triangles isométriques
QBP et QCS amène également ce résultat.

En PostScript, les coordonnées du point S se calculent alors de cette ma-
nière qui suit

/s p q p Sub 2 Mul Add def

Pour trouver les coordonnées du point T , intersection de la droite SR avec
la face horizontale supérieure du cube (figure 5), on recommence le même
genre de calcul. On sait que

−→
OT = −→

OS + λT
−→
SR,

et que la troisième coordonnée zT de T vaut 200, ce qui entrâıne que

200 = zS + λT (zR − zS),

ou encore
λT = 200−zS

zR−zS
= 200−0

100−0 = 2.
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Fig. 5

En PostScript, les coordonnées du point T se calculent alors comme suit

/t s r s Sub 2 Mul Add def.

Il faut rechercher les coordonnées du point U , intersection de la droite
passant par T et parallèle à PS (elle se trouve dans la face supérieure du
cube) avec la face gauche du cube (figure 6). On sait qu’il existe un scalaire
λU tel que

−→
OU = −→

OT + λU
−→
PQ.
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Comme U de trouve dans la face verticale à gauche du cube, on sait aussi
que xU = 100. Il en découle que

100 = xT + λU (xQ − xP ),
ou encore

λU =
100− xT

xQ − xP
.
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Fig. 6

Les coordonnées de T (et donc xT ) ont été calculées en PostScript. Nous
pouvons récupérer xT au moyen de l’opérateur get. Pour avoir la première
coordonnée de t, il faut écrire

t 0 get

car, en PostScript, les indices sont numérotés à partir de zéro. De même,
nous pouvons utiliser get pour obtenir xQ−xP . Nous pouvons donc pour-
suivre le programme par

/lu 100 t 0 get sub q p Sub 0 get div def
/u t q p Sub lu Mul Add def

Regardons le premier de ces calculs en détail5,
États successifs de la pile

/lu lu

100 lu 100

t lu 100 [xT yT zT ]

0 get lu 100 xT

sub lu 100 − xT

q p Sub lu 100 − xT [xQ − xP yQ − yP zQ − zP ]

0 get lu 100 − xT xQ − xP

div lu 100 − xT
xQ − xP

def

5 Dans la description de la pile, les noms de variables en italique indiquent une valeur
numérique dans la pile tandis que les noms en caractères droits indiquent des noms
PostScript.
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Il nous reste à trouver l’intersection W de l’arête AA′ avec le plan de sec-
tion. C’est le point d’intersection de la droite passant par U et parallèle à
QR avec la face avant du cube (figure 7). Nous avons donc

−−→
OW = −→

OU + λW
−→
QR,

et

200 = yU + λW (yR − yQ).

Par conséquent,

λW =
200− yU

100
.

Nous pouvons donc écrire en PostScript

/lw 200 u 1 get sub 100 div def
/w u r q Sub lw Mul Add def
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Fig. 7

Nous avons tous les points permettant de dessiner la section. Il reste main-
tenant à les relier, et éventuellement à dessiner la section en grisé. Ceci se
fait au moyen de l’opérateur setgray qui prend un argument dans la pile :
le niveau de gris. La couleur blanche se définit par 1 setgray et le noir par
0 setgray. Les niveaux de gris intermédiaires6 se définissent en donnant
une valeur entre 0 et 1. Si on utilise ensuite l’opérateur stroke, les traits
seront dessinés dans le gris choisi. Pour dessiner une surface en gris, il faut
utiliser l’opérateur fill qui remplit l’intérieur du chemin courant dans
la couleur choisie. Comme l’opérateur fill rend le dessin opaque, l’ordre
dans lequel on place les instructions de dessin a son importance.

6 Le niveau de gris est en fait le rapport entre le nombre de pixels blancs et le nombre
total de pixels dans une surface donnée.
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0.85 setgray
newpath
p Moveto q Lineto
r Lineto t Lineto
u Lineto w Lineto
p Lineto fill

0 setgray
newpath
p Moveto q Lineto
r Lineto t Lineto
u Lineto w Lineto
p Lineto stroke

[ dessin du cube ]

Prolongement
possible

Les procédures mises en œuvre pour trouver les coordonnées de S, T , U et
W sont semblables. La seule vraie différence se trouve dans la composante
utilisée pour déterminer la valeur du paramètre (λS , λT , λU ou λW ). Il
s’agit en effet dans tous les cas de trouver l’intersection d’une droite avec
un plan dont la principale caractéristique (du point de vue algébrique) est
précisément que tous ses points ont une de leurs coordonnées constante.

Écrire une procédure automatique permettant de déterminer la valeur
de λ en fonction des données suivantes :

– deux points de la droite ;

– l’indice de la composante constante des points du plan ;

– la valeur de cette constante.

Un telle procédure demande donc quatre arguments (à prendre dans la
pile) :

1. Le premier point de la droite.

2. Le deuxième point de la droite.

3. L’indice de la composante constante des points du plan (1 pour x, 2
pour y et 3 pour z).

4. La valeur de cette constante.

Pour trouver la valeur de λS avec une telle procédure, appelée par exemple
lambda et qui est détaillée ci-après, on aura à introduire

p q 2 400 lambda

et pour trouver λT

s r 3 200 lambda

Construisons la procédure en suivant pas à pas ce qu’elle doit faire dans le
premier cas. Au moment où l’on écrit lambda, il y a donc dans la pile

[xP yP zP] [xQ yQ zQ] 2 400

Pour pouvoir utiliser facilement les données qui se trouvent dans la pile,
nous les mettons dans des variables ayant un nouveau nom (leur nom
d’origine ne sert à rien car d’une fois à l’autre il sera différent) :

/@valeur exch def
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mettra 400 dans la variable @valeur.

Une remarque technique s’impose ici. Pourquoi utiliser le caractère ✭✭ @ ✮✮ ?
Il peut être considéré comme une lettre au même titre que les autres ca-
ractères de l’alphabet. Il convient relativement bien pour ✭✭ protéger ✮✮ les
noms de variables. Supposons que nous utilisons le nom valeur. Il y a un
risque qu’un utilisateur de la macro fasse appel à la macro lambda sans sa-
voir (ou en ayant oublié) qu’une variable avec ce nom y est définie. Il n’est
donc pas impossible que l’utilisateur définisse une variable avec ce même
nom. Dans un tel cas, la valeur de la variable valeur sera ✭✭ écrasée ✮✮ par
celle que lui attribue la macro lambda. Celui qui programme la macro doit
donc ✭✭ protéger ✮✮ les noms. Ceci est une problématique générale en infor-
matique. Elle donne lieu aux notions de variables locales et globales. Une
manière de réaliser une bonne protection à peu de frais est de réserver un
caractère comme ✭✭ @ ✮✮ pour ne l’utiliser que dans des noms intermédiaires7.

Regardons la définition de @valeur en détail,

États successifs de la pile

[xP yP zP ] [xQ yQ zQ] 2 400

/@valeur [xP yP zP ] [xQ yQ zQ] 2 400 @valeur

exch [xP yP zP ] [xQ yQ zQ] 2 @valeur 400

def [xP yP zP ] [xQ yQ zQ] 2

Nous récupérons ensuite l’indice de la composante utile. Nous avons vu
qu’en PostScript les indices des composantes sont numérotés à partir de
0. Nous devons donc retirer 1 pour que l’utilisateur puisse introduire la
valeur usuelle (numérotée à partir de 1)

1 sub /@indice exch def

mettra 1 dans la variable @indice. En détail :

États successifs de la pile

[xP yP zP ] [xQ yQ zQ] 2

1 [xP yP zP ] [xQ yQ zQ] 2 1

sub [xP yP zP ] [xQ yQ zQ] 1

/@indice [xP yP zP ] [xQ yQ zQ] 1 @indice

exch [xP yP zP ] [xQ yQ zQ] @indice 1

def [xP yP zP ] [xQ yQ zQ]

Les instructions

@indice get /@q exch def

mettront yQ dans la variable @q. En détail,
7 Même si le PostScript ne possède pas de variables locales liées à des opérateurs,

il existe une notion de noms locaux : ceux de variables ou opérateurs associés à un
dictionnaire. Ceci devient trop technique pour le travail suggéré ici, mais peut faire
l’objet d’un travail au cours d’informatique.
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États successifs de la pile

[xP yP zP ] [xQ yQ zQ]

@indice [xP yP zP ] [xQ yQ zQ] 1

get [xP yP zP ] yQ

/@q [xP yP zP ] yQ @q

exch [xP yP zP ] @q yQ

def [xP yP zP ]

Les instructions

@indice get /@p exch def

mettront yP dans la variable @p.

Il reste alors à effectuer le calcul

400− yP
yQ − yP

,

c’est-à-dire

@valeur @p sub @q @p sub div

Reprenant les instructions les unes à la suite des autres, nous avons

/@valeur exch def
1 sub /@indice exch def
@indice get /@q exch def
@indice get /@p exch def
@valeur @p sub @q @p sub div

Définir l’opérateur lambda revient à compléter ces instructions de la ma-
nière suivante.

/lambda{
/@valeur exch def
1 sub /@indice exch def
@indice get /@q exch def
@indice get /@p exch def
@valeur @p sub @q @p sub div
} def

On peut alors définir les point S et T comme ci-dessous.

[...]
/lambda{
/@valeur exch def
1 sub /@indice exch def
@indice get /@q exch def
@indice get /@p exch def
@valeur @p sub @q @p sub div

} def

/ls p q 2 400 lambda def
/s p q p Sub ls Mul Add def
/lt s r 3 200 lambda def
/t s r s Sub lt Mul Add def

Pour déterminer U , il faut trouver un deuxième point de la droite qui passe
par T et qui est parallèle à une direction donnée par un vecteur. Ceci est
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très facile (figure 8) : on prend le point U ′ (up) défini par
−−→
OU ′ = −→

OT +−→PQ.

Lorsque U sera défini, pour déterminer W , on trouvera W ′ (wp) par
−−→
OW ′ = −→

OU +−→QR.

/up t q p Sub Add def
/lu t up 1 100 lambda def
/u t up t Sub lu Mul Add def

/wp u r q Sub Add def
/lw u wp 2 200 lambda def
/w u wp u Sub lw Mul Add def
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Fig. 8

3 Vu et caché

De quoi s’agit-il ? Déterminer les parties vues et cachées d’une droite traversant un tétraèdre
opaque.

Enjeux Approfondir la question du vu et du caché.

Travailler la vision dans l’espace.

De quoi a-t-on
besoin ?

Les outils informatiques pour travailler en PostScript (voir page 351).

Les opérateurs PostScript (non standard) pour travailler directement avec
des vecteurs à deux ou trois composantes (voir page 356).

L’opérateur PostScript (non standard) PPDP qui permet de déterminer le
point de percée d’une droite dans un plan, dont la définition est en annexe
(page 511).

Prérequis. – Les sections 1 et 2 de ce chapitre, ainsi que la question
concernant le point de percée d’une droite dans un plan, à la page 273
(chapitre 8, section 2.4).
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Comment s’y
prendre ?

Soit A =

 200
120
300

, B =

 0
200

0

, C =

 300
0
0

 et D =

 400
200

0

.

Dessiner en PostScript le tétraèdre opaque ABCD.
A

B

C

D

Il y a une manière très rapide de représenter le tétraèdre (seules les faces
ABC et ACD sont visibles) :

0 100 translate

/A [200 120 300] def
/B [0 200 0] def
/C [300 0 0] def
/D [400 200 0] def

newpath
A Moveto B Lineto
C Lineto D Lineto
A Lineto C Lineto
stroke

Même si la représentation du tétraèdre le fait apparâıtre opaque, le dessin
ci-dessus n’est pas opaque. Un dessin est opaque lorsqu’il cache les dessins
qui se trouvent en dessous de lui. En PostScript, c’est l’ordre dans lequel
sont écrites les instructions de dessin qui détermine ce qui se trouve au-
dessus ou en dessous : ce qui est dessiné d’abord se trouve en dessous.
Travailler avec des dessins opaques est utile entre autres lorsque l’on veut
représenter des parties vues et cachées.

Pour rendre opaque le dessin du tétraèdre, on peut procéder comme suit.
L’opérateur fill permet de remplir une surface (c’est-à-dire l’intérieur
d’un chemin) avec une certaine couleur. On va donc ✭✭ peindre ✮✮ le tétraèdre
en blanc avant d’en dessiner les arêtes. L’opérateur setgray permet de
déterminer le niveau de gris d’un dessin. Il prend une valeur dans la pile :
1 pour blanc, 0 pour noir, et toutes les valeurs intermédiaires pour les
nuances de gris. On remplace alors les cinq dernières lignes ci-dessus par

1 setgray newpath A Moveto B Lineto
C Lineto D Lineto A Lineto fill
0 setgray newpath A Moveto B Lineto C Lineto D Lineto
A Lineto C Lineto stroke

Ajouter au dessin du tétraèdre opaque ABCD la droite PQ, en ne
représentant que ses parties visibles. Quatre positions différentes sont
proposées pour P et Q.
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Premier cas. – Soit P =

 20
30
50

 et Q =

 400
400
400

. Pour dessiner la

ligne PQ, on ajoute

/P [20 30 50] def
/Q [400 400 400] def

newpath P Moveto Q Lineto stroke

On obtient la figure 9. Ceci ne donne aucune indication sur la visibilité
de cette droite. On a évidemment l’impression qu’elle se trouve devant
le tétraèdre. Mais c’est uniquement parce qu’elle a été dessinée après le
tétraèdre. Si on la dessine avant (ce qui se fait simplement en écrivant les
dernières instructions avant celles qui dessinent le tétraèdre), on obtient
la figure 10. On a alors l’impression que la droite se trouve derrière le
tétraèdre. Qu’en est-il exactement ?

A

B

C

DP

Q

Fig. 9

A

B

C

DP

Q

Fig. 10

Utilisons la macro PPDP pour déterminer la position du point de percée de
la droite PQ dans le plan ABC :

A B C P Q PPDP Point.

On obtient la figure 11, ce qui montre que la droite PQ rencontre le tétra-
èdre à l’intérieur de cette face.

A

B

C

DP

Q

R

Fig. 11

Il reste deux possibilités pour dessiner la droite. Appelons R le point de
percée de PQ dans ABC.

1. On dessine d’abord [RQ], ensuite le tétraèdre et ensuite [PR] (figure 12).
On voit l’intérêt de travailler avec un dessin opaque. Si le dessin était
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transparent, il aurait fallu déterminer les coordonnées de l’intersection
de la droite représentant RQ avec le segment représentant l’arête AD
du tétraèdre.

2. On dessine d’abord [PR], ensuite le tétraèdre et ensuite [RQ] (figure
13).

A

B

C

DP

Q

R

Fig. 12

A

B

C

DP

Q

R

Fig. 13

Pour déterminer laquelle de ces deux représentations est correcte, on re-
cherche l’intersection de la droite PQ avec le plan ACD :

A C D P Q PPDP Point.

La figure 14 montre que le point de percée se trouve cette fois en dehors
du tétraèdre. Il ressort de la position du point S dans cette figure, que le
deuxième point de rencontre de la droite et du tétraèdre se trouve dans
la face ✭✭ arrière ✮✮. Ceci n’est compatible qu’avec la figure 12, qui est par
conséquent la bonne représentation.

A

B

C

DP

Q

R

S

Fig. 14

Deuxième cas. – Soit P =

 20
30
50

 et Q =

 400
50
400

. On représente

sur un seul dessin le tétraèdre, la droite PQ et les points de percée de PQ
dans les faces ABC et ACD. La figure 15 semble montrer que la situation
est la même que dans le cas précédent. Pourtant, lorsque l’on dessine la
même chose, c’est-à-dire le segment [RQ], le tétraèdre et ensuite le segment
[PR], on obtient la figure 16, qui n’est pas la même. En fait, les positions
des représentations des points de percée ont pratiquement permuté. Pour
s’en rendre compte, on dessine à nouveau les deux points de percée sur
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deux dessins différents8. Dessinons le point de percée R de PQ dans ABC
(figure 17), ce qui permet d’identifier les deux points de la figure 15. Les
positions des points de percée indiquent que la droite PQ ne rencontre
pas le tétraèdre et qu’elle se trouve devant lui. La figure 16 est donc la
représentation correcte.

A
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DP

Q

Fig. 15
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Q

Fig. 16

A
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DP

Q

R

Fig. 17

Troisième cas. – Soit P =

 20
40
50

 et Q =

 400
180
400

. La figure 18 donne

la représentation du point de percée R de PQ dans ABC. On complète
cette représentation avec le deuxième point de percée (figure 19). On voit
que la droite PQ rencontre les deux faces. La représentation des parties
vues de la droite est donnée par la figure 20. Elle s’obtient en dessinant
simplement les segments [PR] et [SQ].
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Fig. 18
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Fig. 19
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Fig. 20

Quatrième cas. – Soit P =

 −50
200

0

 et Q =

 400
50
400

. La figure 21

donne la représentation du premier point de percée R dans le plan de la
face ABC. On complète cette représentation avec le deuxième point de
percée (figure 22). On voit que la droite PQ rencontre la face ACD mais
pas la face ABC. La représentation est donnée par la figure 23.

8 Lorsque le dessin est fait en PostScript, les deux points ne sont pas distincts l’un
de l’autre et il faut donc trouver un moyen de les distinguer. Au lieu de le faire en
produisant deux dessins différents, on peut dessiner deux points dont les apparences
sont différentes.
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Fig. 21
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Fig. 22
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Fig. 23

Prolongement
possible

Dans les situations précédentes, nous avons vu qu’il pouvait y avoir plu-
sieurs possibilités pour dessiner les parties vues et cachées pour un même
dessin. La position des points de percée de PQ dans les plans des faces
visibles du tétraèdre permet de choisir celle qui convient. Deux questions
assez différentes peuvent prolonger cette problématique.

Une même représentation pour plusieurs situations spatiales dif-
férentes. – Reprenons le dernier cas. En gardant les mêmes positions
apparentes de tous les points, on peut dessiner la figure 24. Cette figure
peut-elle représenter une situation réelle ?

A

B

C

DP

Q

Fig. 24

Trouver des points P et Q tels que la représentation des parties vues et
cachées de la droite PQ soit exactement celle de la figure 24.

Pour trouver de tels points ✭✭ expérimentalement ✮✮, il faut pouvoir modifier
les positions des points P et Q (dans l’espace) sans modifier la position
de leur représentation. Résoudre la question ci-dessus passe donc par une
question intermédiaire, à savoir

Soit un point A =

 xA

yA
zA

. Trouver tous les points B =

 xB

yB
zB


ayant la même représentation en perspective que A.

Il faut examiner en détail comment une telle perspective est réalisée concrè-
tement. C’est l’occasion de regarder de plus près l’opérateur PostScript
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Perspective qui est utilisé avec les macros permettant le travail avec les

vecteurs. Les coordonnées de la représentation d’un point A =

 xA

yA
zA


sont obtenues par le calcul

xAe1 + yAe2 + zAe3,

où les ei sont les coordonnées des images des points 1
0
0

 ,

 0
1
0

 et

 0
0
1

 .

Pour la représentation avec une fuyante à 30◦ et de rapport un demi, on a

(
1
0

)0.5

(
cos 30◦

sin 30◦

)

(
0
1

)

(
0
0

)

Fig. 25

les coordonnées suivantes (cf. figure 25)

e1 =
(

1
0

)
, e2 =

(
0.5 cos 30◦

0.5 sin 30◦

)
et e3 =

(
0
1

)
.

Les points A et B ont donc même représentation si et seulement si{
xB + 0.5 cos 30◦yB = xA + 0.5 cos 30◦yA

0.5 sin 30◦yB + zB = 0.5 sin 30◦yA + zA.

Supposons que l’on fixe une valeur pour yB. On trouve alors que{
xB = xA + 0.5 cos 30◦(yA − yB)
zB = zA + 0.5 sin 30◦(yA − yB).

On peut encore écrire ceci d’une autre manière, à savoir
xB = xA + (yB − yA)(−0.5 cos 30◦)
yB = yA + (yB − yA)
zB = zA + (yB − yA)(−0.5 sin 30◦),

ou encore xB

yB
zB

 =

 xA

yA
zA

 + (yB − yA)

 −0.5 cos 30◦

1
−0.5 sin 30◦

 .

La forme que l’on obtient n’est pas tellement étonnante. Les points B qui
ont même représentation que A sont les points de la droite passant par A
et parallèle à la direction de projection, et ce que l’on vient d’obtenir est
bien l’équation vectorielle ou paramétrique d’une droite

−→
OB = −→OA + λ−→v ,

avec

λ = yB − yA et −→v =

 −0.5 cos 30◦

1
−0.5 sin 30◦

 .
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Ceci permet de programmer facilement un opérateur pour donner un autre
point à partir du paramètre yB − yA, qui donne l’écart entre la nouvelle et
l’ancienne valeur de la deuxième coordonnée. Pour l’utiliser, il faut placer
dans la pile les coordonnées (sous forme vectorielle) du point de départ et
la valeur de yB − yA. On a

/AutrePoint {
/@d exch def [30 cos -2 30 sin] -0.5 Mul @d Mul Add

} def

Nous pouvons revenir maintenant à la figure 24. Nous allons faire varier

A

B

C

DP

P ′

S

Q
Q′

Fig. 26

un segment [P ′Q′] de manière qu’il ait même projection (représentation en
perspective) que le segment [PQ] et que son point de percée dans la face
ACD reste S (figure 26). Pour que le vu et caché corresponde à la figure
24, il faudra que le point de percée R′ de [P ′Q′] dans le plan de la face
ABC se situe à gauche de S, mais à droite de la face ABC.

Si S reste fixe et que Q se déplace en Q′, la position de P ′ est entièrement
fixée : P ′ est aligné sur Q′ et S ; sa projection cöıncide avec celle de P .
Considérons le plan contenant les droites PQ et P ′Q′ qui se coupent en
S. Puisque tous ces points ont même projection (représentation en pers-
pective) les droites de projection sont contenues dans ce plan : ce sont les
droites PP ′ et QQ′ qui sont parallèles. Une telle situation est représentée
à la figure 27.

P

QP ′

Q′

S

Fig. 27

Grâce au théorème de Thalès, nous savons que si µ est un scalaire tel que
−→
SP = µ

−→
QS, alors on doit avoir

−−→
SP ′ = µ

−−→
Q′S. Pour trouver la valeur de µ,

on peut faire le rapport entre les différences des premières composantes

µ =
xP − xS

xS − xQ
,

ce que l’on traduit en PostScript par

/mu P S Sub 0 get S Q Sub 0 get div def.

On peut alors déterminer le point P ′ en fonction du point Q′. Dans ce
qui suit, nous notons Pp le point P ′ et Qp le point Q′. Voici un exemple
où la valeur 5 a été choisie pour yQ′ − yQ, ce qui correspond donc à une
augmentation de 5 pour la deuxième coordonnée de Q.

/Qp Q 5 AutrePoint def

/Pp S S Qp Sub mu Mul Add def

Le dernier calcul correspond à

P ′ = S + µ(S −Q′).
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La valeur 5 choisie signifie donc que le point Q′ ✭✭ s’éloigne ✮✮ puisque y
augmente. Comme S reste fixe, le point P ′ ✭✭ se rapproche ✮✮. Lorsqu’on
augmente cette valeur, ce point se rapproche encore plus et le point de
percée R′ de P ′Q′ dans la face ABC se déplace vers la droite.

La figure 28 montre diverses situations des points de percée pour des va-
leurs de yQ′ − yQ de plus en plus grandes.
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yQ′ − yQ = 5
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D
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S

Q′

yQ′ − yQ = 100

A

B

C

D
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S

Q′

yQ′ − yQ = 500

Fig. 28

Une situation qui répond à la question posée est donnée par yQ′−yQ = 500.

On peut terminer ce prolongement en examinant ce qui se passe lorsque
l’on donne des valeurs négatives à yQ′−yQ. La figure 29 en montre quelques
exemples. Une problématique intéressante est l’analyse de ce qui se passe
entre yQ′ − yQ = −5 et yQ′ − yQ = −50.
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yQ′ − yQ = −50
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yQ′ − yQ = −500

Fig. 29

Commentaires

Les logiciels graphiques 3D, qui traitent les représentations en perspective d’objets de
l’espace, ont des procédures pour déterminer automatiquement les parties vues et ca-
chées. Il est hors de propos de vouloir ✭✭ vider ✮✮ cette question ici. Toutefois il est possible,
pour ceux qui ont envie d’en savoir un peu plus, d’avoir une idée relativement générale de
cette problématique qui prolonge celle que l’on a traitée dans cette activité, en avançant
encore un peu vers l’automatisation des procédures de détection du vu et du caché.

Soit une figure plane opaque. Écrire un programme PostScript qui permet de re-
présenter cette figure ainsi que les parties vues et cachées d’un segment [PQ]. Pour
simplifier le programme, on suppose que ni P ni Q ne sont dans le plan de la figure.



3. Vu et caché 379

Il faut déterminer les positions relatives de P et de Q relativement au plan de la figure.
Soit R le point de percée de la droite PQ dans ce plan. Il y a quatre possibilités, à
savoir

1. P et Q sont devant le plan : il faut dessiner la figure et ensuite le segment [PQ].

2. P et Q sont derrière le plan : il faut dessiner le segment [PQ] et ensuite la figure.

3. P est devant et Q est derrière : il faut dessiner le segment [RQ], ensuite la figure et
le segment [PR] pour terminer.

4. P est derrière et Q est devant : il faut dessiner le segment [PR], ensuite la figure et
le segment [RQ] pour terminer.

Il faut donc pouvoir déterminer si un point X est devant ou derrière le plan. Considérons
le point X ′ qui se trouve dans le plan de la figure et dont la représentation en perspective
cöıncide avec celle de X. Si X est devant ce plan, X sera devant X ′. Dans le système
d’axes utilisé jusqu’ici (voir figure 25), ce sera le cas si la deuxième coordonnée de X est
plus petite que celle de X ′. Supposons que A, B et C soient trois sommets non alignés
de la figure considérée. Le point X ′ est donné par le point de percée de la droite de
projection passant par X dans le plan ABC. Les coordonnées d’un deuxième point de
la droite de projection sont données par

−−→
OX + −→v où

−→v =

 −0.5 cos 30◦

1
−0.5 sin 30◦


donne la direction de projection.

Il y a plusieurs manières de programmer cela en PostScript, notamment en utilisant les
opérateurs if ou ifthen pour réaliser des tests. Ci-dessous, nous présentons une manière
de programmer moins classique qui évite ces tests.

Supposons que la figure soit un parallélogramme ABCD tel que

A =

 150
50
150

, B =

 300
400
250

 et C =

 400
200
400

.

La figure en question poura être dessinée par une macro figure définie comme suit :

/A [150 250 150] def
/B [300 400 250] def
/C [400 200 400] def
/D C A B Sub Add def
/figure {1 setgray newpath

A Moveto B Lineto C Lineto D Lineto A Lineto fill
0 setgray newpath
A Moveto B Lineto C Lineto D Lineto A Lineto stroke
} def

Supposons aussi que les points P et Q soient définis par :

/P [100 100 000] def
/Q [400 300 500] def

Nous allons maintenant définir la fonction TestDevantDerriere qui prend dans la pile
les coordonnées du point à tester et qui renvoie dans la pile la valeur 1 ou 0 selon que le
point est devant ou derrière le plan ABC. Le principe en est le suivant. Soit X le point
à tester. On calcule y′−y où y′ est la 2e coordonnée du point du plan ABC ayant même
représentation que X. Cette valeur est positive ou négative selon que X est devant ou
derrière le plan ABC. En la divisant par sa valeur absolue, on obtient 1 ou −1. En
ajoutant 1, cela fait 2 ou 0. En la divisant par 2, on obtient 1 ou 0. Appelons iP et iQ
les valeurs ainsi obtenues pour P et Q. Le nombre

i = 2 × iP + iQ

est entier et varie entre 0 et 3. Il vaut
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0 si P et Q sont tous deux derrière le plan ;

1 si P est derrière et Q est devant le plan ;

2 si P est devant et Q est derrière le plan ;

3 si P et Q sont tous deux devant le plan.

Appelons

DerriereDerriere,

DerriereDevant,

DevantDerriere et

DevantDevant

les macros à exécuter dans chacun de ces cas. Il s’agit donc d’éxécuter la ie composante
de la liste

[{DerriereDerriere} {DerriereDevant}{DevantDerriere} {DevantDevant}].

Pour pouvoir choisir cette ie composante, il faut que i soit considéré par PostScript
comme entier. Or, même si sa valeur est entière, il est considéré comme réel (au niveau
de sa représentation informatique) et il faut le convertir en entier. C’est ce que fait
l’opérateur cvi.

Pour exécuter la macro choisie, on utilise l’opérateur exec.

Voici les différentes macros :

/R A B C P Q PPDP def

/DevantDevant {figure newpath P Moveto Q Lineto stroke} def
/DerriereDerriere {newpath P Moveto Q Lineto stroke figure} def
/DevantDerriere {newpath R Moveto Q Lineto stroke figure

newpath P Moveto R Lineto stroke} def
/DerriereDevant {newpath P Moveto R Lineto stroke figure

newpath R Moveto Q Lineto stroke} def

/v [30 cos -2 30 sin] -0.5 Mul def

/TestDevantDerriere{/X@ exch def A B C X@ X@ v Add PPDP X@ Sub
1 get dup abs div 1 add 2 div cvi
} def

/i P TestDevantDerriere 2 mul Q TestDevantDerriere add def

[{DerriereDerriere} {DerriereDevant} {DevantDerriere}
{DevantDevant}] i get exec

La figure 30 montre le résultat de cette macro pour les valeurs indiquées.Fig. 30
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Problèmes d’équilibre

1 Le levier

De quoi s’agit-il ? Déterminer le barycentre de points affectés d’un poids lorsque tous les
points sont alignés.

Enjeux Établir une formule générale donnant le point d’équilibre d’une tige à la-
quelle plusieurs objets sont suspendus. Les questions de barycentres offrent
une introduction significative à la notion de combinaison linéaire (voir la
section 7 du chapitre 16).

De quoi a-t-on
besoin ?

Matériel. – De quoi expérimenter l’équilibre d’une tige où sont suspendus
plusieurs objets, par exemple : des règles graduées en bois, des écrous (tous
de même poids), des élastiques et du fil de nylon.

Prérequis. – Calcul avec les nombres négatifs, calcul algébrique.

1.1 Le cas de deux objets

Comment s’y
prendre ?

Préparation du matériel. – On fore un petit trou au milieu de chaque
règle graduée de manière à pouvoir y attacher une ficelle par laquelle on
pourra la suspendre. Il faut que la règle graduée tienne en équilibre avec
les graduations tournées vers le bas. Pour cela, il est sans doute nécessaire
de forer un deuxième trou de manière à compenser celui qui a été prévu
par le fabriquant d’un côté de la règle. Plus le point de suspension est
placé haut, plus l’équilibre sera stable. Il est préférable que l’enseignant
choisisse un modèle de règle, qu’il fasse l’expérience lui-même au préalable
et qu’il prépare ensuite suffisamment de règles pour les groupes de travail
qu’il aura prévus.

Des écrous sont attachés à un bout de fil, lui-même attaché à un élastique
qui est placé autour de la règle et qui peut être déplacé le long de celle-ci.
Dans la suite, nous appellerons poids un ou plusieurs écrous attachés de la
sorte. Les graduations permettront alors de déterminer de manière assez
précise les positions des différents poids qui seront suspendus à la règle.

381
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Remarque. – Le fait d’utiliser une tige suspendue en son milieu a pour
effet de supprimer l’effet du poids de la tige sur l’expérience.

Une tige est attachée en son milieu à un fil, lui-même tenu en main. On
y suspend deux poids. Où peut-on les placer de telle sorte que la tige
reste parfaitement horizontale ? Donner si possible plusieurs solutions.

Les élèves sont répartis en différents groupes et expérimentent en choisis-
sant différents poids.

En exprimant les distances à partir du point de suspension de la tige, on
obtient par exemple :

1 écrou 2 écrous
20 cm 10 cm
15 cm 7.5 cm

1 écrou 3 écrous
15 cm 5 cm
18 cm 6 cm

2 écrous 3 écrous
15 cm 10 cm
18 cm 12 cm

Trouver une formule générale reliant les distances d1 et d2 entre le point
où la tige est suspendue et les poids constitués respectivement de p1 et
p2 écrous.

Il s’agit ici d’inférer la formule

d1

d2
=

p2

p1
,

ou encore

p1d1 = p2d2.

1.2 Le cas de trois objets

Comment s’y
prendre ?

Soient trois poids constitués respectivement de 1, 2 et 3 écrous que
l’on souhaite suspendre à la règle. Il s’agit de prévoir les endroits où les
placer pour réaliser l’équilibre, et de vérifier ensuite expérimentalement.
Y a-t-il plusieurs endroits possibles ?

L’idée est de regrouper deux poids afin de se ramener au cas précédent.
On réalise l’expérience suivante en pensée. On regroupe deux poids, par
exemple ceux de 1 et de 3 écrous. Il faut donc placer d’une part 4 écrous et
d’autre part 2 écrous. Si on place les 2 écrous à 20 cm à droite du milieu de
la tige, le poids de 4 écrous doit être placé à 10 cm à gauche de ce milieu.
On sépare maintenant le poids de 4 écrous en deux poids de 1 écrou et 3
écrous. Si on déplace le poids de 3 écrous de 3 cm vers la droite, il faut,
pour conserver l’équilibre, déplacer celui de 1 écrou de 9 cm vers la gauche.

On aurait pu déplacer le poids de 3 écrous de 4 cm vers la droite. Il aurait
alors fallu déplacer celui de 1 écrou de 12 cm vers la gauche.

On aurait encore pu déplacer le poids de 3 écrous de 12 cm vers la droite.
Il aurait alors fallu déplacer celui de 1 écrou de 36 cm vers la gauche. Dans



1. Le levier 383

ce cas, le poids de 3 écrous se trouverait à droite du point de suspension
de la tige.

On aurait aussi pu placer le poids de 2 écrous à 24 cm à droite du milieu
de la tige. Dans ce cas, le poids groupé aurait été placé à 12 cm à gauche.

On aurait encore pu. . . Il y a énormément de solutions. Voici les quelques
solutions obtenues ci-dessus que l’on peut vérifier expérimentalement :

1 écrou 3 écrous 2 écrous
19 cm à gauche 7 cm à gauche 20 cm à droite
22 cm à gauche 6 cm à gauche 20 cm à droite
46 cm à gauche 2 cm à droite 20 cm à droite
21 cm à gauche 9 cm à gauche 24 cm à droite
24 cm à gauche 8 cm à gauche 24 cm à droite

On voit qu’il y a beaucoup de solutions. Peut-on exprimer toutes ces
solutions en une seule formule ?

Soit p1, p2 et p3 les nombres d’écrous des trois poids suspendus à des
distances d1, d2 et d3 du point d’attache G de la tige (figure 1).

p1 p2 p3

d1

d2 d3

G

Fig. 1

Regardons d’abord le cas où p1, p2 et p3 valent respectivement 1, 3 et 2.

Si la tige est en équilibre, on a

4, = 2d3, (12.1)

où , est la distance à laquelle il faut placer les deux premiers poids re-
groupés pour équilibrer les 2 écrous situés à une distance d3 du point G
(figure 2).

4 écrous 2 écrous

& d3

G

Fig. 2
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Si on déplace le poids de 3 écrous à une distance e2 vers la droite, il faut
déplacer le poids de 1 écrou à une distance e1 vers la gauche de telle manière
que

e1 = 3e2.

Comme e1 = d1 − , et e2 = ,− d2 (figure 3), on a

d1 − , = 3(,− d2),

et donc

4, = d1 + 3d2.

En replaçant ce résultat dans l’expression (12.1), on obtient

d1 + 3d2 = 2d3.

1 écrou 3 écrous 2 écrous

e1 e2

&

d3

G

Fig. 3

Si on décidait de mettre le deuxième poids à droite de G, on trouverait
comme expression :

d1 = 3d2 + 2d3.

On peut vérifier que toutes les solutions trouvées plus haut vérifient une
des deux expressions, qui indiquent également comment trouver toutes le
solutions possibles : si on choisit par exemple d1 et d2, elles permettent de
calculer d3.

Pour généraliser à tous les poids possibles, il suffit de remarquer que les
nombres 1, 3 et 2 sont bien les mesures des poids (en écrous !). On a donc

p1d1 + p2d2 = p3d3 ou p1d1 = p2d2 + p3d3.

1.3 Le cas de n objets

Comment s’y
prendre ?

Trouver une relation générale entre les positions de n poids suspendus
à une tige en équilibre elle-même suspendue en son milieu.



1. Le levier 385

Prenons le cas de quatre poids p1, p2, p3 et p4. Supposons qu’on les a
numérotés selon leur position (de gauche à droite). En reproduisant ce que
l’on a fait avec trois poids, on arrive aux différentes expressions

p1d1 + p2d2 + p3d3 = p4d4,

ou
p1d1 + p2d2 = p3d3 + p4d4,

ou
p1d1 = p2d2 + p3d3 + p4d4.

Le choix de l’expression adéquate dépend de la position des poids p2 et p3

relativement au point de suspension G.

Il est difficile de généraliser ces formules lorsqu’on les laisse ainsi. En effet, il
faudrait écrire un nombre d’expressions qui serait variable selon le nombre
de poids. On peut déjà se faciliter le travail en les écrivant toutes avec le
deuxième membre nul :

p1d1 + p2d2 + p3d3 − p4d4 = 0

ou
p1d1 + p2d2 − p3d3 − p4d4 = 0

ou
p1d1 − p2d2 − p3d3 − p4d4 = 0.

On peut alors écrire ces trois expressions sous la forme

p1d1 ± p2d2 ± p3d3 − p4d4 = 0.

Les signes attachés à p2d2 et à p3d3 dépendent des positions de p2 et de p3

à gauche ou à droite de G.

Pour n poids, on pourra écrire

p1d1 ± p2d2 . . . ± pn−1dn−1 − pndn = 0. (12.2)

Il y a donc ✭✭ beaucoup ✮✮ de formules possibles qui diffèrent selon les signes.
Ceux-ci dépendent des positions relatives des poids par rapport à G. S’ils
sont à droite de G, le signe est négatif. S’ils sont à gauche, le signe est
positif. Si on décide de remplacer les distances di par les abscisses xi des
points de suspension des poids et que l’on fixe l’origine en G, on obtient
alors une expression qui est la même dans tous les cas. En effet, si pi est à
gauche de G, xi = −di, sinon xi = di. L’équation (12.2) devient alors

−p1x1 − p2x2 . . . − pn−1xn−1 − pnxn = 0,

ou, ce qui revient au même,

p1x1 + p2x2 . . . + pn−1xn−1 + pnxn = 0. (12.3)
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1.4 Recherche du point d’équilibre

Comment s’y
prendre ?

On attache plusieurs objets à une règle. Trouver le point où il faut
suspendre la règle pour qu’elle soit en équilibre.

À la section précédente, la position de G était fixée au préalable. C’est
le contraire de ce que l’on fait en général : la position des points étant
fixée, on cherche la position du point G. Expérimentalement, cela pose des
difficultés pratiques puisque la règle sur laquelle les poids sont attachés a
elle-même un poids qui modifie le point d’équilibre. Par contre, par une
expérience de pensée, on peut imaginer que la règle a un poids nul.

Il n’est toutefois pas possible d’utiliser la formule (12.3), puisque celle-ci
suppose que les abscisses des points de suspension des poids sont données
relativement au point G de suspension de la règle. Or, c’est précisément
ce dernier point que l’on cherche. Une question intermédiaire va permettre
de trouver une solution.

Comment se transforme la formule (12.3) si on place l’origine des abs-
cisses n’importe où ?

Soient donc une autre origine pour les abscisses, g l’abscisse du point G et
xi les abscisses des points pi. Il faut se ramener au cas précédent, c’est-à-
dire amener l’origine des abscisses en G. Cela se fait simplement en retirant
g à chaque abscisse. L’expression (12.3) devient alors

p1(x1 − g) + p2(x2 − g) . . . + pn−1(xn−1 − g) + pn(xn − g) = 0,

où g est l’abscisse du point d’équilibre. Cette expression peut s’écrire∑
pixi = (

∑
pi)g. (12.4)

Elle permet de trouver l’abscisse du point d’équilibre à partir des différents
poids et de leurs abscisses, ce qui donne

g =
∑

pixi∑
pi

. (12.5)

Il est également possible de résoudre cette question sans imaginer une règle
de poids nul. Le poids de la tige a une influence sur la position du point
d’équilibre. On fait l’hypothèse que cette influence est la même que celle
d’un objet qui serait suspendu au milieu de la tige et qui aurait le même
poids que celle-ci. On remplace donc la tige et son poids par un poids
ponctuel (pn+1) situé en son milieu (d’abscisse xn+1). Notons que cette
supposition pourrait être justifiée dans une théorie plus complète.

Une fois réalisé le calcul du point d’équilibre de la tige, la position trouvée
peut également faire l’objet d’une vérification expérimentale.
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2 Barycentres dans un plan

De quoi s’agit-il ? Déterminer le barycentre de points affectés d’un poids lorsque tous les
points sont dans un même plan.

Enjeux Établir une formule générale donnant le point d’équilibre d’une plaque à
laquelle plusieurs objets sont suspendus.

De quoi a-t-on
besoin ?

Prérequis. – Premiers éléments de calcul vectoriel (cf. le chapitre 8 à la
page 218).

2.1 Le cas de trois poids égaux

Comment s’y
prendre ?

Soit une plaque circulaire suspendue à un fil en son centre. On souhaite
lui accrocher trois objets de poids égaux. Caractériser les manières de
placer ces objets pour que la plaque reste parfaitement horizontale.

On reprend la méthode de regroupement utilisée précédemment. La plaque
est suspendue au centre G. On place un des poids en un point de la plaque
A. On regroupe les deux autres poids. Pour que la plaque reste en équilibre,
il faut que le point P où on les place se trouve sur la droite AG (figure 4).
Comme le poids en P est double de celui en A, la distance de P à G doit
valoir la moitié de celle de A à G.

Lorsque l’on sépare les deux poids, il faut, pour garder l’équilibre, les placer
sur une ligne passant par P en veillant à ce qu’ils se trouvent à même
distance de P . On en déduit que les trois poids doivent être placés en des
points formant un triangle dont G est l’intersection des médianes.

p

p

p A

P

2p

G

Fig. 4

2.2 Le cas de trois poids quelconques

Comment s’y
prendre ?

Soit une plaque circulaire suspendue à un fil en son centre. On souhaite
lui accrocher trois objets de poids quelconques. Caractériser les manières
de placer ces objets pour que la plaque reste parfaitement horizontale.
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Soit à placer, par exemple, des poids formés respectivement de 3 écrous, 2
écrous et 4 écrous (figure 5).

A

3 écrous

B

2 écrous

4 écrous
C

e1

e2

d1

d2

G

P

Fig. 5

Plaçons le poids de 4 écrous en C et imaginons dans un premier temps
que les poids de 3 et 2 écrous sont regroupés au point P se trouvant sur
la droite CP . Pour que la plaque reste en équilibre, la condition suivante
doit être vérifiée :

5d1 = 4d2. (12.6)

Si les deux poids de 3 et 2 écrous sont placés en deux endroits distincts, A
et B, il faut alors respecter en plus la condition

3e1 = 2e2. (12.7)

Ceci permet de déterminer concrètement des manières de disposer les trois
poids pour garder l’équilibre. Il y a moyen toutefois de caractériser de
manière plus générale les positions des poids, comme cela a été fait pour
le levier.

Comme les distances sur la droite AB, où se trouvent les poids de 3 et
2 écrous, ne peuvent se comparer à celles sur la droite PC, l’idée est de
s’occuper des positions des poids les uns relativement aux autres en termes
de vecteurs (changements de position) et non plus de distances. Supposons
connâıtre les coordonnées des points A, B et C où sont placés les poids de
3, 2 et 4 écrous. Les expressions (12.6) et (12.7) se traduisent par (figure
6)

5−→PG = 4−→GC et 3−→AP = 2−→PB.
A

B

C

G

P

Fig. 6
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Ces deux relations entre des vecteurs peuvent se réécrire comme relations
entre des coordonnées (indiquées ci-après simplement par les lettres dési-
gnant les points) :

5(G− P ) = 4(C −G) ou encore (5 + 4)G = 5P + 4C ;
3(P −A) = 2(B − P ) ou encore (3 + 2)P = 3A + 2B.

En les combinant, on trouve alors une relation entre les coordonnées de G
et celles des trois points où sont suspendus les poids :

9G = 3A + 2B + 4C.

Le coefficient de G provient de la somme 3 + 2 + 4 qui sont les nombres
d’écrous, c’est-à-dire les mesures des poids (dans l’unité ✭✭ écrou ✮✮). On
peut donc écrire immédiatement l’expression correspondante dans le cas
général :

(p1 + p2 + p3)G = p1A + p2B + p3C, (12.8)

où p1, p2 et p3 sont les mesures des poids suspendus en A, B et C. C’est
une relation entre quatre positions. Dès que trois d’entre elles sont fixées,
elle permet de calculer la quatrième.

2.3 Recherche du point d’équilibre

Comment s’y
prendre ?

De la manière dont le problème a été posé, la position de G est fixe. C’est
le contraire de ce que l’on fait en général : la position des trois points étant
fixée, on cherche la position du point G. Expérimentalement, cela pose
des difficultés pratiques, puisque le dispositif sur lequel les objets seraient
attachés a lui-même un poids qui modifie le point d’équilibre. Comme
dans le cas du levier, par une expérience de pensée, on peut imaginer les
trois objets reliés par une structure ne pesant rien et trouver leur point
d’équilibre au moyen de l’expression (12.8).

Prolongement
possible

Le résultat obtenu se généralise au cas de n objets. On peut le faire par
récurrence en reproduisant la démarche utilisée pour trois poids : on re-
groupe deux poids et on se base sur le résultat obtenu pour n−1 poids. On
trouve ainsi le résultat pour n objets dont les coordonnées sont données
par Ai et les poids par pi, à savoir

(
∑

pi)G =
∑

piAi.
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3 Équilibre d’un point

De quoi s’agit-il ? Établir expérimentalement les conditions d’équilibre d’un point soumis à
des forces.

Enjeux La loi de composition des forces, c’est-à-dire la somme de deux forces par
la règle du parallélogramme ; les premières propriétés de cette somme.

Il s’agit de la modélisation d’une situation physique. Cette modélisation
montre la parenté des forces avec d’autres entités mathématiques ou phy-
siques représentées par des vecteurs. Voir aussi à cet égard la section 8.4
du chapitre 16.

De quoi a-t-on
besoin ?

Matériel

Une corde de traction, comme par exemple celles qu’on utilise au cours de
gymnastique. Un assemblage de trois cordes de ce type nouées en un point.

Un seau d’eau.

Un dispositif de composition de forces d’un type déjà décrit par E. Mach
[1903] dans un célèbre ouvrage sur l’histoire de la mécanique. La figure 7,
extraite de cet ouvrage, en donne une idée. La figure 8 montre un dispositif
analogue disponible dans le commerce. Mais on peut sans trop de peine
construire cela soi-même, de la manière suivante.

Fig. 7 Fig. 8

On noue trois ficelles en un point et on fait passer chacune d’elles sur
une poulie fixée en périphérie de la table. Au bout de chaque ficelle on
attache un objet pesant, par exemple un godet contenant de la grenaille
de plomb. Il faut aussi disposer d’une balance pour peser ces godets. Nous
conseillons de choisir une table ronde, pour que le dispositif ne suggère
aucune direction privilégiée dans le plan horizontal. Toutefois, une table
carrée ou rectangulaire ne présenterait pas d’inconvénient majeur.
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3.1 Équilibrer deux forces d’égale intensité

Comment s’y
prendre ?

Lorsque deux personnes tirent à chaque bout d’une corde avec des forces
égales dans des sens opposés, la situation est équilibrée, et donc la corde
ne bouge pas. Considérons maintenant un système de trois cordes nouées
en un point. Une personne A tire sur une des cordes. On demande
à deux autres personnes B et C de tirer sur les deux autres cordes,
symétriquement par rapport à la première corde, comme le montre la
figure 9, qui est une vue du dessus. La personne A s’efforce de maintenir
son effort constant. Les personnes B et C ajustent leur force pour que le
nœud ne bouge pas. Comment varie la force qu’elles doivent développer
lorsqu’elles augmentent l’angle entre leurs deux cordes ?

Fig. 9 Fig. 10

Cette expérience, purement qualitative, fait voir qu’au fur et à mesure que
l’angle en question grandit, la force que doivent développer B et C devient
de plus en plus grande. Et lorsque l’angle s’approche de 180◦, la force qu’il
faudrait développer devient tellement grande que B et C ne peuvent plus
résister.

Une corde est nouée sur l’anse d’un seau rempli d’eau. Que se passe-t-il
lorsque deux personnes tirent symétriquement sur la corde, comme le
montre la figure 10 ?

Plus les forces exercées symétriquement sur la corde sont grandes, plus
grand est l’angle entre les deux moitiés de la corde. Il s’avère impossible
de tirer assez fort pour que cet angle devienne un angle plat.

Une fois réalisées ces deux expériences assez grossières, on va s’efforcer de
comprendre mieux ce qui se passe en mesurant les angles et les forces1.
Pour cela, on se sert de l’appareil représenté à la figure 8.

1 Ci-après, nous donnons les mesures des forces en grammes-forces. Nous pensons
que mesurer ici les forces en Newton ne pourrait qu’embrouiller les élèves.
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Disposons deux poulies aux deux extrémités d’un diamètre de la table,
faisons passer une ficelle sur ces deux poulies et suspendons des deux
côtés des poids égaux, par exemple 50 g de chaque côté (voir figure 11).
Le point central ne bouge pas. Remplaçons une des deux forces de 50 g
par deux forces de même intensité disposées symétriquement comme le
montre la figure 12. Quelle intensité x (commune) devrons-nous donner
à ces deux forces pour que le point central ne bouge pas ? Et comment
varie cette intensité lorsque nous faisons varier l’angle α ?

Fig. 11

α

Fig. 12

Faisons l’expérience pour quelques valeurs de l’angle α. Nos résultats sont
consignés dans le tableau suivant.

angle α 30◦ 60◦ 90◦ 120◦ 150◦ 160◦ 180◦

force x 24 g 29,5 g 35g 51 g 97,5 g 144 g ?

La figure 13 reprend graphiquement ces résultats. Elle montre que la force
varie avec l’angle, mais selon une loi que l’on ne perçoit pas immédiatement.
Essayons donc de préciser cette loi.
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Les points que nous venons de déterminer sont-ils – fut-ce à peu près –
sur le graphe d’une fonction familière ? Difficile à dire. Tentons d’y voir
plus clair.
En fait, la situation que nous examinons a un premier aspect géomé-
trique, puisqu’on y discerne d’abord trois directions issues d’un point.
Ne serait-il pas éclairant de dessiner les forces à une certaine échelle
sur cette figure géométrique ? En ce faisant, nous garderions sous les
yeux un maximum d’informations. D’où la proposition suivante : choisir
une échelle pour représenter les forces, par exemple 5 cm pour 100 g, et
représenter chacune des forces à l’échelle, en respectant sa direction.

À la figure 14, nous avons représenté toutes les forces mesurées ci-dessus.
Chacune d’elles correspond à une flèche issue du point fixe et dont la
longueur a été calculée à l’échelle choisie.

Fig. 14

Il n’est pas étonnant que la figure obtenue soit symétrique, ou plus préci-
sément qu’elle possède un axe de symétrie, déterminé par la force donnée.
Mais – chose curieuse –, les extrémités de toutes les flèches ont l’air d’être
alignées sur une droite perpendiculaire à cet axe. Ainsi, toutes ces forces
auraient sur cet axe la même projection orthogonale.

Qui plus est, le point commun de projection coupe sans doute cette force
F en deux : en effet, si on envisage le cas limite d’un angle nul entre les
deux forces symétriques, on voit bien que chacune de ces deux forces doit
avoir une intensité moitié de celle de la force F .

F

f(α) α
2

Fig. 15

Si on accepte cette analyse, on trouve la relation cherchée entre l’angle et
la force. En effet, comme on le voit sur la figure 15, on a

f(α) cos
α

2
=

F

2
,
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et par conséquent

f(α) =
F

2 cos α
2

.
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Fig. 16

La figure 16 superpose notre courbe expérimentale de tout-à-l’heure et le
graphe de la fonction que nous venons de découvrir. La correspondance est
assez bonne pour que nous puissions accepter notre modèle théorique de
la situation.

Renversons maintenant la situation en nous donnant deux forces symé-
triques par rapport à une droite d, comme sur la figure 17. Trouver une
troisième force qui les équilibre.

O

d

Fig. 17

O

A B

C

Fig. 18

O

D

A B

C

Fig. 19

Une solution – trouvée en s’inspirant de la figure 15 – consiste à projeter
les deux forces sur la droite d, ce qui peut se faire en dessinant le segment
AB. On obtient ainsi le point C (figure 18). L’intensité de la force cherchée
correspond au double de OC, ce qui nous amène au point D (figure 19).
La force cherchée est donnée par le segment OE opposé à OD (figure 20).
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Fig. 20
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Fig. 21

On peut alors observer qu’il y a aussi moyen de trouver le point E, celui
qui détermine la force cherchée, en se servant d’une diagonale du losange
OADB : c’est ce que montre la figure 21.

3.2 Équilibrer deux forces d’intensités inégales

Comment s’y
prendre ?

On donne maintenant deux forces de directions et de grandeurs quel-
conques (par exemple deux forces tirant sur des ficelles écartées de 83◦,
l’une de 54 g et l’autre de 87 g) (voir figure 22), et on demande de les
équilibrer par une troisième force.

L’argumentation suivante est plausible, quoique nullement évidente. On
a vu qu’on peut remplacer deux forces symétriques ✭✭ par une diagonale
du losange qu’elles définissent ✮✮. On peut alors supposer qu’on pourrait
remplacer deux forces non symétriques par ✭✭ une diagonale appropriée du
parrallélogramme qu’elle définissent ✮✮ (voir figure 23). Il suffirait ensuite
d’équilibrer cette force par son opposée. On détermine l’intensité et l’orien-
tation de cette force en mesurant à l’échelle sur la figure 24. Nous avons
réalisé l’expérience sur l’appareil de la figure 8 à la page 390. Il s’avère que
cette conjecture est bonne, aux erreurs de mesure près.

54g

87g

83◦

Fig. 22 Fig. 23 Fig. 24

Si les élèves ne font pas cette conjecture, ils peuvent déterminer la force
cherchée en tâtonnant expérimentalement, puis la représenter à l’échelle.
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C’est le moment pour le professeur de donner le coup de pouce qui s’im-
pose : il expliquera la loi du parallélogramme des forces.

On peut remplacer cette dernière question par ✭✭ l’expérience de
pensée ✮✮ suivante, que nous présentons sous forme de dialogue.
L’un. – Considérons un fil dont une extrémité est attachée à une glis-
sière dans laquelle elle se meut sans frottement. On pourra imaginer
par exemple une tringle à rideau munie d’une attache à roulettes à
laquelle on a fixé une ficelle. La figure 25 schématise cette situation.
On sait que lorsqu’on tire sur la ficelle dans une direction perpen-
diculaire à la glissière, on n’observe aucun mouvement. Pour que
l’attache mobile se déplace, il faut et il suffit d’incliner la direction
de la traction (voir figure 26). En disant qu’il suffit de faire cela, on
suppose implicitement que la glissière ne comporte aucun frottement.
Jusqu’ici, ce que nous avons affirmé relève de l’expérience commune.
Et si maintenant on tire sur deux ficelles nouées à l’attache (voir 27),
comment pensez-vous qu’il faudra tirer pour que l’attache ne bouge
pas ?

Fig. 25 Fig. 26 Fig. 27

L’autre. – Regardons d’abord une seule force. Pour qu’il n’y ait pas
mouvement, on s’arrange pour que la situation soit équilibrée, autre-
ment dit pour que la projection orthogonale de la force sur la glissière
soit nulle. Si on tire avec deux forces, il semble raisonnable de sup-
poser qu’il n’y aura pas de mouvement si les deux forces ont le long
de la glissière des projections orthogonales qui se compensent, par
exemple comme sur la figure 28.

Fig. 28

F1

F2

F

Fig. 29
F1

F2

F

G1

G2
G

Fig. 30

L’un. – On ne voit en effet guère d’autre réponse plausible. Considé-
rons maintenant la chose sous l’angle suivant. La figure 29 représente
à nouveau un force inclinée par rapport à la glissière. Appelons cette
force F , et désignons respectivement par F1 et F2 ses projections
dans la direction de la glissière et dans la direction orthogonale. On
peut dire que F1 est ce qui tend à mouvoir l’attache, tandis que F2
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est ce qui tire sur la glissière. Convenons de munir F1 du signe + si
la traction s’exerce vers la droite, et du signe − si elle s’exerce vers
la gauche. Revenons maintenant au cas où deux forces F et G sont
appliquées à l’attache, et décomposons chacune d’elles de la manière
indiquée (voir figure 30). Est-ce qu’il n’est pas raisonnable de penser
que ce qui tend à mouvoir l’attache, c’est F1 +G1, et que ce qui tire
sur la glissière, c’est F2 + G2 ?

K D

E L

I O

d

Fig. 31

K D

E L

I O

C

Fig. 32

L’autre. – Mais oui, c’est une conjecture plausible. Et alors, comme
nous l’avons vu avant, la condition pour que l’attache demeure im-
mobile s’écrirait F1 + G1 = 0. L’effet conjoint des deux forces serait
alors le même que celui d’une seule force H perpendiculaire à la glis-
sière et dont les projections seraient 0 et F2+G2. C’est ce que montre
la figure 30.
L’un. – Alors je peux montrer une façon simple de trouver géométri-
quement le point qui détermine la force H. Je reproduis la figure 30
en donnant des noms à ses points principaux : voir figure 31. Ensuite,
je mène par D une parallèle à EO qui coupe la droite d en un point
C (figure 32). Le triangle DKC est isométrique au triangle OIE. En
effet, les côtés KD et IO sont isométriques. Les angles en I et en K
sont tous deux droits, et enfin les angles en O et en D sont de même
amplitude par construction (leurs côtés sont deux à deux parallèles).
Donc KC est isométrique à OL. Par conséquent OC a pour longueur
F2 + G2. Ainsi C détermine bien la force H. On peut exprimer ce
résultat autrement : la force H est donnée par la diagonale appropriée
du parallélogramme ODCE.

On donne deux forces égales et opposées, par exemple de 100 g chacune.
On voudrait, sans menacer l’équilibre, remplacer une de ces deux forces
par deux autres, mais dont l’une est donnée à l’avance. Est-ce possible ?

−→
f

Fig. 33

−→
f

−→g

Fig. 34
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La figure 33 représente la situation pour un certain choix de la force −→f
donnée à l’avance2. La réponse est que l’on peut trouver la force demandée :
on construit le parallélogramme dont une diagonale est la force à remplacer
et dont un des côtés est la force donnée à l’avance. La force −→g cherchée
est donnée par l’autre côté du parallélogramme (voir figure 34).

3.3 D’autres questions d’équilibre

Prolongements
possibles

Le dispositif expérimental proposé permet de poser quelques autres ques-
tions conduisant à approfondir d’une part le problème physique de l’équi-
libre d’un point soumis à des forces, mais aussi d’autre part la règle du
parallélogramme. Voici quelques-unes de ces questions.

Trois points fixes (trois poulies) sont donnés sur le bord de la table. On
choisit un quatrième point quelque part sur la table et on y amène le
point de jonction des trois ficelles. Est-il toujours possible, en faisant
passer les ficelles par les trois points donnés, d’y suspendre trois poids –
à déterminer – tels que le point de jonction des ficelles soit en équilibre ?

Supposons d’abord que le quatrième point choisi soit à l’intérieur du tri-
angle déterminé par les trois points fixes. Les directions des forces à appli-
quer pour obtenir l’équilibre nous sont imposées (figure 35). Construisons
alors un parallélogramme ayant deux de ses côtés dans deux des directions
données, et sa diagonale dans la troisième direction. Une telle construc-
tion est toujours possible (figure 36). Il nous suffira ensuite de choisir nos
poids proportionnels aux côtés et à la diagonale du parallélogramme ainsi
construit.

Fig. 35 Fig. 36 Fig. 37

D’autre part, si le quatrième point choisi est à l’extérieur du triangle déter-
miné par les trois points fixes, on ne peut plus contruire le parallélogramme
requis : la figure 37 montre une situation de ce genre. Pour réaliser l’équi-
libre dans un tel cas, il faudrait une ficelle qui pousse au lieu de tirer, ce
qui n’est pas possible.

La conclusion est que l’intérieur du triangle déterminé par les trois points
fixes est l’ensemble des points que l’on peut amener à l’équilibre par un
choix approprié des trois forces. Remarquons au passage que si un point
est en équilibre sous l’action de trois forces, il demeure en équilibre si on
multiplie la grandeur de chacune de ces forces par un même nombre.

2 Nous représentons maintenant les forces par des lettres surmontées d’une flèche.
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L’appareil présenté à la figure 8 à la page 390 permet de vérifier
notre conclusion expérimentalement avec une bonne précision. Les
trois points fixes sont les sommets des poulies. La figure 38 illustre
une réponse particulière.

Fig. 38

Une remarque pratique s’impose à propos de cette expérience. Le
point dont on étudie l’équilibre (c’est-à-dire l’endroit où se rejoignent
les trois ficelles) n’est plus maintenant le centre du cercle. Or chaque
poulie se trouve dans un plan vertical passant par ce centre. Il s’ensuit
que la ficelle qui passe sur une poulie n’est plus dans le plan de celle-
ci, et qu’elle risque donc de quitter la poulie. L’expérience montre
qu’avec l’appareil de la figure 8 on peut quand même tolérer un angle
assez important (de l’ordre d’une trentaine de degrés) entre chaque
ficelle et le plan de la poulie correspondante sans que cet accident se
produise.

On accroche des poids aux trois ficelles. Y a-t-il toujours moyen de
déterminer où il faut placer les trois points fixes au bord de la table
pour que le point de jonction des ficelles demeure en place ?

Fig. 39 Fig. 40
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Fig. 41

Pour obtenir un équilibre, il faut que l’on puisse, avec les trois forces,
✭✭ faire un parallélogramme et sa diagonale ✮✮. C’est possible, en vertu de
l’inégalité triangulaire, si le plus grand poids est plus petit que la somme
des deux autres. Si tel est le cas en effet, on peut ✭✭ disposer les trois forces
en triangle ✮✮ (figure 39), et donc aussi les disposer comme sur la figure
40 en configuration d’équilibre. Il suffit alors de déposer cette figure sur la
table en plaçant l’origine des trois forces au centre : celles-ci pointent vers
trois points du bord de la table où on peut placer les poulies (figure 41).
Il y a bien entendu une infinité de solutions, correspondant à une rotation
d’ensemble d’un angle quelconque du système des trois ficelles autour du
centre de la table.

Nous savons qu’un point est en équilibre sous l’action de trois forces si
la somme de deux d’entre elles est opposée à la troisième et de même
intensité que celle-ci. Mais pour vérifier cela, peut-on commencer par
sommer deux quelconques des forces ?

−→
f

−→g

−→
h

Fig. 42

−→
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−→g

−→
hA

F H
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Fig. 43

Fig. 44

La figure 42 montre deux forces −→f et −→g en équilibre avec une force −→h .
Montrons tout d’abord que les forces −→g et −→h sont en équilibre avec la force−→
f . Pour cela, construisons la somme −→k de −→g et −→h comme le montre la
figure 43. Il faut montrer que −→k est égal et opposé à −→f . Or,
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AC est égal et parallèle à DA par construction ;

FH est égal et parallèle à AC par construction ;

donc DA est égal et parallèle à FH ;

donc DF est égal et parallèle à AH puisque DFHA est un parallélo-
gramme ;

mais DF est égal parallèle à EA par construction ;

donc AH est égal et parallèle à EA ;

et par conséquent −→k = −−→f .

On tire aussi de cet exercice un nouvel énoncé de la condition d’équilibre
d’un point soumis à trois forces : le point est en équilibre si la somme des
trois forces qui lui sont appliquées est nulle. Cet énoncé a ceci d’agréable
qu’il fait jouer le même rôle à chacune des trois forces.

Si, arrivés à cette question, les élèves manient déjà les vecteurs et s’ils ont
reconnu la nature vectorielle des forces, alors la démonstration que nous
venons d’achever se résume à remarquer que

si −→
f +−→g = −−→h ,

alors −→g +−→h = −−→f .

Il est assez agréable de constater, comme le montre la figure 44 , que trois
forces en équilibre et leurs sommes deux à deux déterminent les sommets
d’un hexagone dont les côtés opposés sont deux à deux parallèles.

On se donne trois poids et trois points fixes au bord de la table. Existe-
t-il un point sur la table qui soit en équilibre sous l’action de ces trois
poids ? Si oui, où est ce point ?

Traitons d’abord un cas particulier. Soient les trois forces dont les intensités
sont spécifiées par les segments de la figure 45 et les trois points de la figure
46.

Fig. 45 Fig. 46

Pour pouvoir trouver un point en équilibre, il faut d’abord bien entendu
que les trois forces puissent être disposées en un système de somme nulle.
Nous savons pour cela que le plus grand des trois poids doit être plus
petit que la somme des deux autres (voir ci-dessus). Tel est le cas pour les
forces que nous nous sommes données. Disposons-les donc en un système
de somme nulle (figure 47).
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Fig. 47
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Fig. 48

Ces trois forces déterminent trois angles α, β et γ. Traçons sur AB un arc
de cercle tel que tout angle ÂXB ayant son sommet X sur cet arc soit égal
à α. Traçons de même sur BC un arc de cercle correspondant à l’angle β
(voir figure 48). L’intersection de ces deux arcs de cercle nous donne une
position possible pour l’équilibre. Nous avons donc une solution à notre
problème : le point cherché existe et nous l’avons situé.

Par ailleurs, si les angles α et β avaient été tous deux suffisamment proches
de π, les deux cercles ne se seraient pas coupés. Nous pourrions alors essayer
de travailler au départ d’un autre couple de côtés du triangle ABC. Mais
on voit bien que, quels que soient les angles de ce triangle, il existera
des cas, si α et β sont trop grands, où nous ne trouverons pas de point
d’intersection aux deux cercles.

On tire sur un point avec des forces de même grandeur réparties de telle
sorte que deux forces successives fassent entre elles un angle de 72◦.
L’anneau est-il en équilibre ?

Fig. 49 Fig. 50

La figure 49 montre les forces en jeu. On peut en faire la somme par la règle
du parallélogramme, et on trouve une force nulle, aux erreurs de tracé près.
La figure à construire est quelque peu confuse (figure 50). Mais on peut
aussi s’aviser que pour trouver la somme de deux forces, au lieu de passer
par la diagonale du parallélogramme (figure 51), il suffit d’enchâıner les
deux flèches (voir figure 52). Si on procède de la sorte pour les cinq forces
en jeu dans notre problème, les flèches dessinent évidemment un pentagone
régulier (figure 53), et il va alors de soi que leur somme est nulle.
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Fig. 51 Fig. 52 Fig. 53

Vers où cela va-t-il ? Ce chapitre prépare évidemment l’enseignement de la mécanique. Plus pré-
cisément, nous avons examiné ici l’équilibre d’un point. La matière qui
vient naturellement ensuite est l’étude de l’équilibre d’un solide indéfor-
mable, avec pour cas particulier l’équilibre dans un champ de pesanteur
uniforme et la théorie des centres de gravité. Le parallélogramme des forces
est aussi l’un des éléments clés de la dynamique, qui est l’étude des mou-
vements des corps sous l’action des forces.
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Les mouvements et les vitesses

Avant-propos

La notion de vitesse est essentielle en mécanique. Elle se précise à travers
deux étapes importantes de sa construction : son évaluation numérique et
sa caractérisation géométrique. Or, dès qu’un mouvement se révèle être un
peu complexe, ces deux aspects se retrouvent presque inextricablement liés,
et là où en mathématiques on étudie au départ deux notions distinctes : la
dérivée et le vecteur, en physique on ne considère plus qu’un seul objet :
la vitesse.

À la croisée des deux disciplines, une image mentale commune peut se
dégager de l’étude de photographies stroboscopiques du mouvement de
projectiles. Elle est subordonnée à un principe général de discrétisation :
les éclairs successifs d’un stroboscope figent des positions très rapprochées
du projectile, et invitent à décomposer son mouvement en une succession
très dense de mouvements simples, quasi rectilignes et uniformes, mais
dont la direction et l’intensité de la vitesse changent tout le temps.

C’est à partir de cette image discrète que nous proposons ici de construire
progressivement la notion de vitesse.

En bref, ce chapitre vise à

• détailler pourquoi et comment la vitesse d’un mouvement rectiligne
uniforme peut être considérée comme un prototype de grandeur vec-
torielle en physique,

• définir la vitesse instantanée d’un mobile comme vitesse d’un mou-
vement rectiligne uniforme ✭✭ idéal ✮✮,

• mettre en évidence l’efficacité de ce double point de vue :

grandeur vectorielle/mouvement rectiligne idéal

à travers l’étude du mouvement circulaire uniforme.

En plus des photographies stroboscopiques – et des expériences de pen-
sée, chères aux physiciens – le recours aux fonctions d’un tableur permet
de proposer des modèles et de simuler des situations. En outre, dans le
cas du mouvement circulaire uniforme, la définition même de ce genre de
mouvement permet d’en construire a priori des stroboscopies à l’aide d’un
tableur !

404
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1 Marcher ou nager, c’est la même chose ?

De quoi s’agit-il ? Décrire un mouvement rectiligne uniforme (inaccessible à des mesures di-
rectes) à partir des caractéristiques d’autres mouvements rectilignes uni-
formes (accessibles à de telles mesures).

Enjeux La caractérisation vectorielle de la vitesse d’un mouvement rectiligne uni-
forme. Une interprétation cinématique des équations paramétriques d’une
droite.

Sur les vitesses situées dans le cadre général du calcul vectoriel, voir la
section 8.3 du chapitre 16.

De quoi a-t-on
besoin ?

Un tableur (EXCEL, par exemple).

Prérequis

Les éléments du calcul vectoriel dans le plan, par exemple en termes de
changements de position (voir le chapitre 8). La notion de mouvement
rectiligne uniforme, en particulier de vitesse d’un tel mouvement, conçue
dans un premier temps comme vitesse moyenne.

1.1 La décomposition d’un mouvement rectiligne

Comment s’y
prendre ?

La situation suivante est simple, et très classique1.

Question 1.
Lors d’un entrâınement de triathlon, un athlète doit traverser à la nage
une rivière large de 200 m et animée d’un fort courant. Il part du pied A
d’un pont qui traverse cette rivière (cf. la figure 1 ci-dessous) et s’efforce
de toujours nager droit devant lui, perpendiculairement à la berge, mais
– bien sûr ! – le courant le déporte. Yves et Xavier sont eux aussi au pied
A du pont, et observent le nageur prêt à s’élancer. Comment devraient-
ils s’organiser (aussi simplement que possible) pour estimer la vitesse
du nageur pendant sa traversée ?

Une manière simple de s’organiser

Voici une méthode qui suppose qu’Yves et Xavier disposent tout au plus
d’une montre ou d’un chronomètre, et savent marcher. . . intelligemment.

Xavier emprunte le sentier le long de la berge et marche en restant toujours
à hauteur du nageur ; en allongeant le pas, il fait des enjambées d’un mètre
(en moyenne) et note la distance parcourue pour chaque minute écoulée.
Yves fait de même sur le pont, et en s’efforçant lui aussi de rester toujours
à hauteur du nageur. Tout cela revient donc à situer la position du nageur
de minute en minute, dans un repère orthonormé ✭✭ naturel ✮✮.

1 Pour des variantes et des prolongements, on se reportera par exemple à E. Hecht
[1999] : p. 51-59, A. Meessen [1984] : problème 5 à la p. 122, Physical Science Study
Committee [1970] : p. 86-87 ou FESeC [1997] : p. V9 à V11, . . . sans oublier Formes et
mouvements, CREM [2001a] : p. 274-275.
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A

pont
sens du courant

sentier

sentier

Fig. 1 : Le décor.

Il est relativement raisonnable de faire ici une hypothèse d’uniformité concer-
nant les déplacements de Xavier et d’Yves. Pour fixer les idées, supposons
donc que Xavier parcourt ainsi d’une démarche régulière 40 mètres par
minute, tandis qu’Yves traverse pareillement le pont d’un pas égal en 10
minutes, c’est-à-dire à raison de 20 mètres par minute.

Les élèves peuvent facilement simuler cette situation à l’aide d’un tableur,
et représenter ainsi les positions respectives de Xavier, d’Yves et du nageur
toutes les minutes.

Fig. 2 : Les positions de Xavier, Yves et du nageur, toutes les minutes.
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Par subdivisions successives, ils peuvent ensuite faire apparâıtre les posi-
tions des trois protagonistes de la question de manière presque continue.

Fig. 3 : Les positions de Xavier, Yves et du nageur, toutes les 0,01 s.

Yves atteint ainsi l’autre rive en même temps que le nageur ; celui-ci a
donc, lui aussi, mis 10 minutes pour traverser la rivière. Quelles sont les
autres caractéristiques de son mouvement ?

Le déplacement du nageur est rectiligne

Décrire le déplacement du nageur revient à exprimer sa position en fonction
de celles d’Yves et de Xavier. Or, nous avons supposé que le déplacement
de chacun des deux observateurs est rectiligne et uniforme. La position
de Xavier – comptée en mètres à partir du point A – s’exprime donc par
l’équation

x = 40t,

où t est la durée de marche, comptée en minutes ; et pareillement pour
Yves

y = 20t.

La position du nageur est ainsi déterminée à tout instant grâce aux deux
équations {

x = 40t,
y = 20t,
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qui méritent dès lors d’être appelées les équations du mouvement.

Occupons-nous de la trajectoire du nageur, c’est-à-dire de l’ensemble de
toutes ses positions. C’est une figure géométrique indépendante du temps.
Elle s’obtient donc en ✭✭ chassant ✮✮ le temps t hors des deux équations du
mouvement. La première équation donne t = x

40 , ce qui permet d’écrire la
deuxième, à savoir

y = 20 · x

40
=

1
2
x.

C’est l’équation d’une droite2. Le nageur suit donc une trajectoire recti-
ligne dont le point de départ est l’origine A du repère ✭✭ naturel ✮✮.

Le mouvement du nageur est uniforme

Rappelons qu’un mouvement est qualifié d’uniforme si une même durée
d’observation correspond toujours à un même espace parcouru, indépen-
damment de l’instant où débute l’observation.

Le mouvement du nageur détermine celui de Xavier et d’Yves, et chacun
de ces mouvements est rectiligne. Montrons alors que le déplacement du
nageur est uniforme si et seulement si celui de Xavier et d’Yves le sont
aussi.

Supposons d’abord que les mouvements de Xavier et d’Yves sont uni-
formes. Situons leurs positions à deux instants d’observation (différents) :
soient X1, X2 et Y1, Y2. Les mouvements étant uniformes, si la durée d’ob-
servation est la même, les distances parcourues par chacun doivent donc
être identiques (cf. figure 4). On a∣∣X1X

′
1

∣∣ =
∣∣X2X

′
2

∣∣ ,∣∣Y1Y
′
1

∣∣ =
∣∣Y2Y

′
2

∣∣ ,
où X ′

1, X
′
2 et Y ′

1 , Y
′
2 désignent les positions atteintes à la fin de l’observa-

tion.

A

x

y

X X' X X'

Y

Y'

Y

Y'

T S

T'

T S

T'

1 1 2 2

1

1

2

2

1 1

1

2 2

2

200

400

Fig. 4 : L’uniformité en termes de triangles isométriques.

2 Le contexte est différent, mais les idées mises en œuvre ici sont exactement celles
des chapitres 5 et 6.
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Mais alors les triangles (rectangles) T1S1T
′
1 et T2S2T

′
2 sont isométriques :

pendant cette durée d’observation, les distances |T1T
′
1| et |T2T

′
2| parcourues

par le nageur sont donc bien identiques.

La réciproque s’établit d’une manière analogue, c’est-à-dire à l’aide d’une
isométrie de triangles rectangles. Supposons que le mouvement du nageur
est rectiligne uniforme. La trajectoire du nageur étant rectiligne, les angles
T̂1 et T̂2 des triangles rectangles T1S1T

′
1 et T2S2T

′
2 sont égaux, et le mouve-

ment du nageur étant uniforme, les distances |T1T
′
1| et |T2T

′
2| sont égales.

Les triangles rectangles T1S1T
′
1 et T2S2T

′
2 sont donc isométriques, d’où

on déduit immédiatement que les distances parcourues par Xavier (resp.
Yves) pendant les durées d’observation sont identiques.

Une estimation de la vitesse du nageur

Le déplacement du nageur étant rectiligne et uniforme, sa vitesse est
constante, et peut se calculer dès qu’on connâıt la distance parcourue pen-
dant un intervalle de temps. Or, la distance parcourue pendant les 10
minutes que dure la traversée s’obtient grâce au théorème de Pythagore
(cf. figure 5) :

A
x

y

X

Y B
200

400

Fig. 5 : L’espace parcouru par le nageur.

|AB| =
√
|AX|2 + |AY |2 =

√
4002 + 2002 = 200

√
5 = 447, 21 . . . (m)

La vitesse du nageur est donc approximativement de 45 mètres par minute
(c’est-à-dire 0, 75 m/s ou 2, 7 km/h).

1.2 La vitesse d’un mouvement rectiligne uniforme

Comment s’y
prendre ?

Aussi satisfaisantes qu’elles soient, les réponses apportées à la question 1
méritent d’être approfondies. C’est ce que la question suivante se propose
de faire. Son caractère plus théorique explique que sa résolution n’est pas
nécessairement laissée à la seule initiative des élèves. L’enseignant veillera
néanmoins à ce que les caractéristiques essentielles de la vitesse en tant
que grandeur vectorielle – puisque c’est de cela qu’il s’agit ici – soient
clairement mises en évidence pour tous les élèves.
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Question 2.
Quelles sont les relations qui lient les trois vitesses, celle de Xavier, celle
d’Yves et celle du nageur, et plus précisément, comment exprimer ces
relations en termes mathématiques (direction, sens des mouvements) et
en termes physiques (mobiles concernés, grandeurs associées aux mou-
vements) ?

Un bilan des observations

On vient de montrer que le mouvement du nageur est rectiligne et uniforme
si et seulement si celui d’Yves et Xavier le sont et que la vitesse du nageur
peut être évaluée en conséquence, à partir des vitesses respectives d’Yves
et de Xavier.

Ceci remis en mémoire, les déplacements et donc les vitesses d’Yves, de
Xavier et du nageur ont néanmoins des caractéristiques physiques assez
différentes. Précisons ces différences.

• Chacun des déplacements considérés concerne des personnes diffé-
rentes, et dans notre représentation, ce sont bien des points différents
qui bougent.

• D’autre part, les droites suivant lesquelles les mouvements rectilignes
uniformes se manifestent sont complètement distinctes pour chacun
des trois protagonistes.

• Enfin, ni Yves ni Xavier n’exercent d’effet physique contraignant sur
le nageur, ils ne lui communiquent pas l’énergie nécessaire à son effort
et ils ne sont donc en rien la cause de son mouvement.

Et néanmoins, comme on l’a vu par exemple en écrivant l’équation de
la trajectoire du nageur, les trois mouvements ne sont pas indépendants.
Les déplacements de Xavier et d’Yves permettent même de reconstituer
complètement le mouvement du nageur.

Comment relier le mouvement de Xavier ou d’Yves, avec ce que
le nageur ressent ?

On peut introduire dans le raisonnement des mouvements et donc des vi-
tesses dont les effets physiques sont directement perceptibles par le nageur.

• Si le nageur est en eau calme (un étang ou un lac par exemple),
l’absence de courant lui permet de nager effectivement droit devant
lui sans être déporté. Cette vitesse existe aussi pour notre triathlète
pris dans le courant d’eau : c’est celle qu’il acquiert par l’exercice de
sa (seule) force musculaire. C’est aussi celle qu’il s’efforce de diriger
toujours perpendiculairement à la rive. Comme il essaie de se diriger
ainsi indépendamment du courant, on appelle cette vitesse : la vitesse
du nageur par rapport au courant, ou par rapport à l’eau.

• Si le nageur se laisse dériver sous l’effet du courant sans nager3, son
déplacement, comme sa vitesse, est parallèle à la rive. La vitesse

3 . . . Mais sans oublier de rester à la surface de l’eau. . .
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correspondante n’est alors en fait que la vitesse du courant, ou si on
veut être précis : la vitesse du courant par rapport à la rive.

Résumons-nous : nous disposons maintenant de cinq vitesses au lieu de
trois pour analyser le mouvement du nageur ! Mais comme trois d’entre
elles possèdent des effets physiques ressentis directement par le nageur, il
y a peut-être du sens à décrire la manière dont ces effets sont reliés les uns
aux autres.

Comment combiner des grandeurs caractérisées aussi bien par
leur direction que par leur intensité ?

Chacune des vitesses rencontrées jusqu’à maintenant est associée à un
mouvement rectiligne uniforme et est entièrement déterminée par quatre
caractéristiques :

• le point en mouvement, ou point d’application de la vitesse,

• la direction de la vitesse, c’est-à-dire la droite suivant laquelle le
mouvement rectiligne se produit,

• le sens de la vitesse, qui est un des deux sens4 de parcours sur la
droite en question,

• l’intensité de la vitesse, c’est-à-dire la mesure de l’espace parcouru
par unité de temps.

Les résultats obtenus dans la question 1 suggèrent alors une manière de
combiner des grandeurs physiques ayant autant de caractéristiques géomé-
triques diverses. La vitesse du nageur par rapport au courant et la vitesse
du courant par rapport à la rive sont en effet deux grandeurs physiques du
type que l’on vient de définir. Elles concernent directement notre nageur.
Il y a donc du sens à envisager leur effet simultané, qui se manifeste dans
le mouvement résultant du nageur. De plus, les caractéristiques de ce mou-
vement résultant sont déterminées à partir d’un rectangle naturellement
associé à la situation :

• ce mouvement résultant est lui aussi rectiligne, et on sait déterminer
sa direction, c’est celle de la diagonale d’un rectangle dont les côtés
sont proportionnels à chacune des vitesses primitives ;

• il est de plus lui aussi uniforme, de telle sorte qu’on sait aussi mesurer
l’intensité de la vitesse correspondante : elle est équivalente à la lon-
gueur de la diagonale d’un rectangle dont les côtés sont équivalents
à chacune des mesures des vitesses primitives.

Pour faire bref, une grandeur physique possédant les quatre caractéris-
tiques géométriques décrites plus haut, et obéissant à cette règle de combi-
naison ✭✭ en rectangle ✮✮ sera appelée une grandeur vectorielle, afin de mettre
en évidence les traits communs de ce type de grandeur avec la notion de
vecteur.

On représente alors par −→v nageur/rive la vitesse du nageur par rapport
à la rive, considérée comme grandeur vectorielle ; on note pareillement

4 Le sens du courant est distinct de sa direction, du moins dans le langage mathéma-
tique. . .
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−→v courant/rive la vitesse du courant par rapport à la rive, et −→v nageur/courant

la vitesse du nageur par rapport au courant. La résultante5 des deux vi-
tesses −→v nageur/courant et −→v courant/rive donne donc naissance à la vitesse
−→v nageur/rive du nageur :

−→v nageur/rive = −→v nageur/courant +−→v courant/rive.

v

vv

→

→→

courant / rive

nageur / rivenageur / courant

Fig. 6 : La combinaison des vitesses se visualise ici à l’aide d’un rectangle.

L’opération de combinaison ou d’addition vectorielle met ainsi bien en jeu
les quatre caractéristiques des grandeurs concernées : le point d’application
(commun), la direction, le sens et la mesure ou intensité.

. . . Mais on n’a pas encore répondu à la question !

Au travers de la notion de grandeur vectorielle, la relation

−→v nageur/rive = −→v nageur/courant +−→v courant/rive

est maintenant revêtue d’une signification tant mathématique que phy-
sique. Mais cette relation n’est pas celle qui a été mise en scène dans la
question 1, et qui serait plutôt du type

−→v nageur/rive = −→v Y ves +−→v Xavier,

où −→v Xavier et −→v Y ves désignent les vitesses de Xavier et d’Yves. Comme il
est important ici de préciser les points d’application des vitesses en ques-
tion, il vaudrait même mieux écrire :

−→v nageur/rive(T1) = −→v Y ves(Y1) +−→v Xavier(X1),

où Y1 et X1 sont les positions respectives de Yves et de Xavier lorsque le
nageur est observé en T1 dans la rivière (cf. figure 7). Mais que signifie une
telle écriture, mathématiquement correcte, au point de vue physique ?

5 Ou combinaison, ou encore somme vectorielle. . .
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courant / rive

nageur / courant nageur

Xavier

Yves

Yves

Xavier

nageur / courant

courant / rive

nageur

1

1

1

Fig. 7 : Des grandeurs a priori différentes traduisent des effets équivalents.

La réponse vient en deux étapes. Au moment initial, c’est-à-dire lorsque
Xavier, Yves et le nageur entament leurs mouvements respectifs au pied A
du pont, on a

−→v nageur/rive(A) = −→v nageur/courant(A) +−→v courant/rive(A),

et donc aussi

−→v nageur/rive(A) = −→v Y ves(A) +−→v Xavier(A), (1)

puisqu’au point A, on a des égalités de vitesses

−→v nageur/courant(A) = −→v Y ves(A) et −→v courant/rive(A) = −→v Xavier(A).

D’autre part, le mouvement d’Yves est rectiligne et uniforme, de telle sorte
qu’il y a un sens physique à écrire

−→v Y ves(A) = −→v Y ves(Y1), (2)

puisque cela signifie que, lors d’un déplacement le long de sa propre tra-
jectoire rectiligne, Yves ne voit pas changer sa vitesse. On donne ainsi
une signification physique à ce que cette vitesse-là ne soit pas liée à son
point d’application : c’est une caractéristique fondamentale du mouvement
sous-jacent ! Pour la même raison, on a aussi

−→v Xavier(A) = −→v Xavier(X1), (3)
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et
−→v nageur/rive(A) = −→v nageur/rive(T1). (4)

La relation (1) devient ainsi, suite à (2), (3) et (4),

−→v nageur/rive(T1) = −→v Y ves(Y1) +−→v Xavier(X1),

qui est bien la relation en jeu dans la question 1. En termes de grandeur
vectorielle, cette relation s’interprète donc maintenant comme une manière
d’exprimer globalement — c’est-à-dire indépendamment du point d’appli-
cation — la composition de mouvements rectilignes uniformes.

Et si on veut vraiment aller au fond des choses. . .

Une question en appelle une autre. Quelles sont en général les conditions
physiques qui autorisent certaines vitesses à se libérer de leur point d’ap-
plication ? Par exemple, quelle est la signification physique des égalités
mathématiques

−→v Y ves(Y1) = −→v nageur/courant(T1) et −→v Xavier(X1) = −→v courant/rive(T1) ?

À nouveau, il vaut mieux décomposer le raisonnement en deux étapes.
D’abord, une égalité telle que

−→v Y ves(Y1) = −→v nageur/courant(Y1)

exprime que deux grandeurs vectorielles ont la même manifestation phy-
sique au même point. Mais l’égalité qui vient ensuite à l’esprit, à savoir

−→v nageur/courant(Y1) = −→v nageur/courant(T1),

se révèle avoir un statut assez nouveau ! En effet, le point d’application de
cette vitesse se déplace le long d’une trajectoire rectiligne qui n’est pas du
tout celle du mouvement sous-jacent, c’est-à-dire du nageur (cf. la figure
7), et ce n’est donc pas le caractère uniforme du mouvement du nageur qui
peut rendre compte à lui seul de l’égalité en question. Comment interpréter
néanmoins cette égalité en termes de mouvements rectilignes uniformes ?

Cette interprétation prend en compte l’hypothèse suivante : quel que soit
l’endroit de la rivière où il se trouve, le nageur déploie pour se déplacer
(en restant perpendiculaire au courant) une énergie qui est toujours la
même6. De manière presque équivalente, s’il n’y a pas de courant, et si
plusieurs nageurs de même force que notre triathlète partent en même
temps de la rive en nageant droit devant eux, ils progresseront en restant
toujours à même hauteur ; une telle circonstance s’observe d’ailleurs assez
souvent dans les premiers instants d’une course de vitesse en natation. Et
la conclusion est analogue si on imagine que ces nageurs partent de la ligne
Y1T1.

6 Cela sous-entend, par exemple, qu’il n’y a pas un endroit dans la rivière où la
température de l’eau est anormalement froide, et où un engourdissement ou des crampes
peuvent ralentir le nageur ; ce genre d’effet est évoqué dans la question 4 plus loin.
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rive

v

A X

Y T

→
nageur / courant

1

1 1

Fig. 8 : Le transport parallèle de la vitesse du nageur par rapport au courant.

C’est au sens de telles expériences de pensée que l’égalité

−→v nageur/courant(Y1) = −→v nageur/courant(T1)

prend alors une double signification physique, à savoir :

• il existe un mouvement rectiligne uniforme qui part du point Y1 pour
arriver en T1,

• et le long de la trajectoire de ce mouvement, une famille continue de
mouvements rectilignes uniformes permet de relier−→v nageur/courant(Y1)
à −→v nageur/courant(T1).

En bref, deux mouvements rectilignes uniformes peuvent être considérés
comme équivalents dès qu’il y a moyen de les ✭✭ transporter par parallélisme ✮✮

l’un sur l’autre de manière continue.

Une description analogue s’applique aux deux égalités

−→v Xavier(X1) = −→v courant/rive(X1) = −→v courant/rive(T1),

et correspond d’ailleurs à l’idée d’un courant constant en tout point de
la rivière, c’est-à-dire un courant dont la mesure de l’effet donne toujours
le même résultat, quel que soit l’endroit de la rivière où cette mesure est
réalisée.

1.3 Du rectangle au parallélogramme

Comment s’y
prendre ?

Revenons-en à notre triathlète, et remarquons d’abord qu’il y a un moyen
bien simple pour aider le nageur à se déplacer perpendiculairement à la
direction du courant. Il suffit qu’il nage en restant face à un troisième
larron – appelons-le Jacques – qui se déplace sur l’autre rive, en restant
toujours à la même hauteur que Xavier (cf. la figure 9).
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A
x

y

positions de Xavier

positions de Jacques

Fig. 9 : Le nageur se dirige en restant en face de Jacques.

Question 3.
Que se passe-t-il alors si Jacques, au lieu de partir du point Y , à l’ex-
trémité du pont sur l’autre rive, entame son mouvement par exemple
120 mètres avant ce point ? Que faut-il changer dans la résolution de la
question 1 ?
Pour que cette nouvelle situation reste comparable à celle qui précède,
on suppose encore que la vitesse de Jacques reste la même que celle de
Xavier, que le nageur s’efforce de garder toujours Jacques en point de
mire et qu’il essaie de maintenir sa vitesse (dans la direction qu’il vise)
à 20 mètres par minute.

Il n’y a pas grand-chose à changer !

En fait, on peut reproduire textuellement tout le raisonnement développé
dans la réponse à la question 1 ainsi que la formulation vectorielle qui en
a été présentée dans la réponse à la question 2. Car ce qui importe, c’est
qu’on combine encore deux mouvements rectilignes uniformes : le fait que
leurs directions ne soient plus orthogonales ne change rien à l’affaire. Le
mouvement résultant du nageur est donc encore rectiligne et uniforme : le
parallélogramme remplace le rectangle (cf. la figure 10).

A
x

y

CY
z

J
200

40 80 120 160 200 240 280 320 360 400 440 480

Fig. 10 : La trajectoire du nageur est déterminée par des parallélogrammes.
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L’écriture vectorielle permet de manifester cette permanence du raisonne-
ment. En effet,

−→v nageur/rive = −→v nageur/courant +−→v courant/rive,

pourvu qu’on identifie correctement la direction des différents vecteurs
−→v nageur/rive, −→v nageur/courant et −→v courant/rive, puisque c’est uniquement
en terme de directions que les changements par rapport à la question 1 se
produisent.

Le calcul de la vitesse du nageur

Le calcul de la vitesse réelle du nageur dans la nouvelle situation peut
encore s’obtenir par analogie avec le cas ✭✭ rectangulaire ✮✮. D’abord, dans un
repère adapté (cf. la figure 10), les deux équations du mouvement s’écrivent{

x = 40t,
z = 20t,

où t est toujours la durée du déplacement compté en minutes. Ensuite, le
calcul du temps nécessaire à la traversée résulte de l’utilisation du théorème
de Pythagore dans le triangle rectangle AJY (cf. la figure 11) : la relation

2002 + 1202 = (20t)2

implique en effet : t =
√

136 = 11, 66 . . . (en minutes).

A

x

y

YJ C

Fig. 11 : Le théorème de Pythagore permet d’évaluer la vitesse.

On en déduit |Y C| = 40 · (11, 66 . . .− 3) = 346, 47 . . . (m). Le théorème
de Pythagore, employé cette fois-ci dans le triangle AY C permet alors
d’évaluer

|AC| = 400, 05 . . . (m).

Et finalement, la vitesse du nageur vaut

mesure de −→v nageur/rive =
400, 05 . . .

11, 66 . . .
= 34, 30 . . . (m/min).

Ce résultat n’a rien de bien étonnant : le nageur a mis plus de temps
qu’auparavant pour parcourir une plus petite distance !
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1.4 Synthèse : la notion de grandeur vectorielle

Beaucoup de grandeurs utilisées en physique proviennent d’une description
géométrique des phénomènes qu’on souhaite étudier, cette description in-
cluant presque toujours le mode de calcul de ces grandeurs. Les vitesses
des mouvements rectilignes uniformes fournissent peut-être l’exemple le
plus simple de grandeurs susceptibles d’une telle description géométrique.
A ce titre, elles servent de modèles à ce qu’on appelle ici une grandeur vec-
torielle. On se limite dans la suite aux premières considérations relevant
de la mécanique du point matériel.

La définition de grandeur vectorielle

Lorsqu’on étudie le mouvement d’un point matériel dans le plan ou dans
l’espace, la première chose à délimiter est l’ensemble des positions que ce
point peut occuper durant son mouvement. Il s’agit souvent d’une région
plus ou moins bien définie du plan ou de l’espace, sans qu’on exige a priori
de se restreindre ainsi à la seule trajectoire. De plus, la partie en question
n’est pas nécessairement rectiligne ou plane : le mouvement pendulaire ou
le mouvement à la surface de la terre en sont deux illustrations. Cette
partie de l’espace dans laquelle se déroule le mouvement du point matériel
s’appelle l’espace de configuration de ce point ; on est supposé assez natu-
rellement y disposer d’un procédé de calcul de la distance séparant deux
points quelconques.

Une grandeur physique d’une espèce donnée est qualifiée de grandeur vec-
torielle si elle possède les trois séries de propriétés suivantes.

• D’abord, des propriétés de représentation géométrique : au sens où il
existe une représentation géométrique de cette grandeur qui possède

– une origine ou point d’application, pris dans l’espace de confi-
guration,

– une direction,

– un sens,

– une intensité évaluée par rapport à une unité de mesure associée
à l’espèce de grandeur en question (par exemple le mètre par
seconde, s’il s’agit d’une vitesse).

Une telle représentation géométrique est souvent figurée par un seg-
ment orienté dans un plan ou un espace, qui est de par sa nature
même, distinct de l’espace de configuration. Ce segment est atta-
ché à son point d’application, qui est le seul point commun à ces
deux mondes différents : l’espace de configuration et l’espace de re-
présentation de la grandeur en question. Des échelles appropriées
(par exemple une échelle pour les longueurs et une échelle pour les
vitesses) permettent de faire coexister dans un même dessin des gran-
deurs vectorielles de nature différente.

• Ensuite, des propriétés de composition : l’ensemble de ces représen-
tations géométriques attachées à un même point obéit aux règles
du calcul des vecteurs liés à ce point. Plus précisément, l’ensemble
de toutes les grandeurs de cette espèce attachées à un même point
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est muni d’une structure d’espace vectoriel euclidien, la structure
euclidienne reflétant le choix de l’unité de mesure de la grandeur en
question.

• Enfin, des propriétés de comparaison : l’ensemble de toutes les gran-
deurs de cette espèce attachées à un même point peut être transporté
par parallélisme en un autre point de l’espace de configuration, et être
ainsi comparé à l’ensemble des grandeurs de même espèce attachées
à ce dernier point.
De manière un peu plus concrète, les propriétés de composition at-
tribuées à ces grandeurs signifient que

– lorsqu’une telle grandeur est multipliée par n’importe quel nom-
bre (réel, et différent de 0), il en résulte une grandeur de même
espèce, dont la représentation géométrique garde le même point
d’application, conserve sa direction, ne modifie son sens que si
le signe du nombre est négatif, et voit son intensité multipliée
par la valeur absolue du nombre considéré (cf. la figure 12) ;

T

A

V

S

AT

AS

AV

AV

= ± 0,5 .

= 2 .

→

→

→

→

Fig. 12 : La représentation géométrique de multiples d’une grandeur vectorielle.

– dès que deux d’entre elles ont leurs représentations géométriques
qui possèdent le même point d’application, ces grandeurs peu-
vent être composées ou combinées pour redonner une grandeur
de même espèce, et la représentation géométrique du résultat
se réalise suivant la ✭✭ règle du parallélogramme ✮✮ (cf. la figure
13).

A

V

W

U

AW AU AV= +→ → →

Fig. 13 : La composition de grandeurs vectorielles se repré-
sente grâce à la règle du parallélogramme.
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Ces deux définitions suffisent pour établir que les représentations géométri-
ques des grandeurs en question obéissent aux règles usuelles (associativité,
commutativité, distributivités, . . .) du calcul des vecteurs attachés, ou liés,
à un point donné de l’espace de configuration.

La raison d’être des propriétés de comparaison peut parâıtre anodine ou
détournée, mais elle est pourtant fondamentale ! Ces propriétés décrivent
en termes géométriques un protocole de comparaison des grandeurs atta-
chées à des points différents de l’espace de configuration, et qui n’est pas
limité à la seule intensité de ces grandeurs. C’est en particulier ce pro-
tocole qui permet de définir l’égalité de grandeurs vectorielles de même
espèce attachées à des points distincts.

Un exemple fondamental de grandeur vectorielle

Les questions 2 et 3 ont montré en effet que la vitesse d’un point animé d’un
mouvement rectiligne uniforme se comporte en chaque point de l’espace
de configuration comme un vecteur attaché à ce point. Lorsqu’on travaille
en des points distincts de l’espace de configuration, ces mêmes questions
ont mis en évidence un critère d’égalité. Pour mémoire, ce critère peut
s’énoncer comme suit :

si−→v (P ) et−→w (Q) sont des vitesses attachées respectivement
aux points P et Q, alors −→v (P ) = −→w (Q) si et seulement si,
en notant P ′ et Q′ les positions respectivement atteintes par
P et Q après les mêmes durées de parcours : le quadrilatère
PP ′Q′Q (situé entièrement dans l’espace de configuration)
est un parallélogramme.

Plus concrètement peut-être, deux telles vitesses sont égales en tant que
grandeurs vectorielles si et seulement si les trajectoires des points mobiles
correspondants sont parallèles et parcourues dans le même sens, et si les
intensités des vitesses correspondantes sont égales. C’est ce qui semble
traduire au mieux l’idée intuitive d’égalité de ces grandeurs lorsque l’espace
de configuration est l’espace usuel7.

D’autres exemples de grandeurs vectorielles

À toute position d’un point (mobile) à un instant donné dans un repère
fixé, on peut associer le vecteur-position de ce point, dont l’origine est
l’origine du repère et l’extrémité la position du point mobile à l’instant
considéré. Ainsi, dans le cas de la situation étudiée dans la question 1, si
on note N(t) la position du nageur à l’instant t, on peut écrire les équations

7 Quand on commence à étudier les premiers rudiments de la mécanique dans l’en-
seignement secondaire, on se place presque toujours dans l’espace de configuration le
plus commode possible, qui est le plan – ou l’espace – affine euclidien. On y dispose
d’un ✭✭ parallélisme absolu ✮✮, qui permet souvent de considérer comme allant de soi les
propriétés de comparaison des grandeurs vectorielles.

Il faut néanmoins essayer de garder présent à l’esprit que la représentation sur une
même figure des positions et des vitesses n’est pas naturelle, au sens où il s’agit en effet
de grandeurs de nature différente. Les sections suivantes permettront de préciser cette
remarque. Par exemple, les propriétés du mouvement circulaire uniforme montrent que,
dans le cas d’un mouvement à la surface de la terre, la vitesse est toujours située dans le
plan tangent à la sphère terrestre, et n’a donc que son origine en commun avec celle-ci !
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du mouvement {
x = 40t,
y = 20t,

comme une égalité entre grandeurs vectorielles
−→
AN(t) = t · −→AN,

où −→AN =
(

40
20

)
est le vecteur-position du nageur après une minute d’ef-

fort. Un déplacement – ou changement de position – est alors une différence
(vectorielle) entre deux vecteurs-position, etc ; on retrouve ainsi, à quelques
nuances de langage près, la géométrie du plan ou de l’espace affine.

Les questions 7 et 15 ci-après construiront la vitesse (instantanée) comme
grandeur vectorielle dans le cas de deux types de mouvement curviligne :
le mouvement du projectile (lancé horizontalement), et le mouvement cir-
culaire uniforme.

Les forces constituent un autre exemple de grandeur vectorielle (voir le
chapitre 12).

La quantité de mouvement, le champ électrique, le champ magnétique, . . .
constituent encore d’autres exemples de grandeurs vectorielles qu’on ren-
contre en physique.

Par contre, la température, la charge électrique, . . . sont des exemples de
grandeurs physiques qui ne sont pas vectorielles, mais scalaires.

2 Comment immobiliser le temps ?

De quoi s’agit-il ? Décrire quantitativement le mouvement d’un projectile à partir des carac-
téristiques de deux mouvements rectilignes bien choisis. Montrer pourquoi
la vitesse instantanée doit être une grandeur vectorielle.

Enjeux La caractérisation vectorielle de la vitesse instantanée.

De quoi a-t-on
besoin ?

Un montage appelé ✭✭ le jet d’eau articulé ✮✮ décrit dans les figures 15 et 16
ci-dessous, ainsi que dans le texte qui accompagne ces figures.

Deux photographies stroboscopiques, ou chronophotographies, (cf. les fi-
gures 19 et 22 dans la suite, en annexe aux pages 496 et 497).

Un tableur (EXCEL, par exemple).

Prérequis

Les notions et lois fondamentales concernant la chute libre8, plus précisé-
ment :
• l’accélération de la pesanteur g est constante et vaut 9, 81 m/s2,
• la vitesse est une fonction linéaire du temps : v = gt,

• et l’espace parcouru est décrit par la formule e = gt2

2 .
8 Il serait possible de ne pas en faire des prérequis, et de les découvrir ici : les pho-

tographies étudiées dans la suite permettant en effet d’établir ces lois. Mais cela nous
éloignerait de notre but. . .
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2.1 Le nageur se fatigue.

Comment s’y
prendre ?

Tout ce qui a précédé supposait que notre triathlète nageait avec une
vigueur anormalement constante.

Question 4.
Comment peut-on se rendre compte que le nageur se fatigue ?

Ce qui ne change pas, et ce qui change

Comme la vitesse du courant est exactement celle de Xavier, celui-ci n’a
aucun moyen de se rendre compte que le nageur est en train de se fatiguer.

Par contre, Yves, qui n’est concerné que par la partie transversale du mou-
vement du nageur, en perçoit toutes les variations. Si le nageur progresse
avec moins de vigueur, Yves avancera moins vite, et s’il doit s’immobili-
ser pour rester à hauteur du nageur, c’est que celui-ci, fatigué, s’est laissé
emporter par le courant.

Une simulation vaut mieux qu’un long discours. . .

En voici une, mais beaucoup d’autres sont envisageables.

t 0 2 4 6 8 10 12 14 16 18 20 (en minutes)

x(t) 0 80 160 240 320 400 480 560 640 720 800 (en mètres)

y(t) 0 38 72 102 128 150 168 182 192 198 200 (en mètres)

A

x

y

200

160 320 480 640 800

Fig. 14 : L’effet de la fatigue.

Au vu de tout ce qui a été mis en évidence précédemment, une question se
pose presque tout de suite : comment parler de la vitesse du nageur dans
une telle situation ? Son déplacement n’est manifestement plus rectiligne,
ni uniforme9 !

2.2 Le jet d’eau articulé

Comment s’y
prendre ?

Lorsqu’on arrose une pelouse avec un tuyau d’arrosage, quelle est la forme
du jet d’eau ?

9 Sauf bien sûr dans le cas où le nageur se laisse emporter par le courant. Mais un
triathlète qui se respecte ne se laisse jamais entrâıner de la sorte. . .
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Si on arrose à la verticale, le jet d’eau fournit une description de l’arro-
seur. . . arrosé. Si on n’arrose pas à la verticale mais, par exemple, suivant
un angle de 30◦ avec l’horizontale, le jet d’eau emprunte une trajectoire
qui n’est pas rectiligne, mais bien incurvée vers le sol.

En effet, aussi puissant que soit le jet d’eau et même si la direction initiale
du jet est bien rectiligne, l’eau retombe de toute façon sur la pelouse : la
trajectoire ne peut donc pas être une droite. Par ailleurs, on observe que
la portée de l’arrosage varie avec l’angle initial du jet, et la pression d’eau
à la sortie.

Voici un procédé expérimental qui permet de mieux observer et de com-
mencer à décrire la forme du jet d’eau. On se procure une longue latte en
bois, bien rigide, d’environ 2 m de long. L’extrémité du tuyau d’arrosage
est fixée sur 50 cm à une des faces de cette latte ; il peut se révéler utile
d’insérer entre la latte et le tuyau une fine tranche d’isomo (ou polystyrène
expansé) afin d’empêcher que le jet d’eau ne mouille trop la latte. À partir
de la sortie du tuyau, on fixe des petits clous dans l’autre face de la latte, à
des intervalles réguliers (de 30 cm par exemple). On y suspend des lattes,
marquées de 10 cm en 10 cm, de telle sorte qu’elles puissent pivoter autour
de leur point d’attache (cf. la figure 15).

Fig. 15 : Le jet d’eau articulé.

On peut ainsi reproduire (à l’échelle) la forme du jet d’eau avec une plus ou
moins bonne précision. On trouve dans certains laboratoires de physique
de l’enseignement secondaire des appareillages de ce type, produits par des
firmes spécialisées (un exemple est visible sur la figure 16 ci-dessous), et
qui permettent de réaliser des mesures de meilleure qualité.
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Fig. 16 : Un jet d’eau mieux articulé

Question 5.
Qu’observe-t-on lorsqu’on redresse cet appareillage (le tuyau et le sys-
tème formé du bâton et des lattes graduées, solidairement), en visant à
30◦ avec l’horizontale par exemple ?
Quelle(s) conclusion(s) peut-on en tirer ?

Une observation étonnante, et ce qui s’en déduit

Dès qu’on redresse le jet d’eau, on observe que les écarts verticaux de la
trajectoire par rapport à la direction initiale du jet ne changent pas ou,
plus simplement, que redresser le jet d’eau n’a aucune influence sur sa
déviation.
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Fig. 17 : La déviation verticale du jet d’eau ne change pas.

En termes plus géométriques, et avec la représentation et les notations de
la figure 18 : tant que |AM | = |AM ′|, on a |MT | = |M ′T ′|.

A M

T

A

M'

T'

Fig. 18 : Les rectangles deviennent des
parallélogrammes.

Il s’ensuit que comprendre la trajectoire du jet d’eau lorsque sa direction
initiale est horizontale permet ensuite de comprendre la trajectoire lorsque
la direction initiale est quelconque.

Par ailleurs, comme la direction initiale du jet d’eau semble n’avoir aucune
influence sur la déviation verticale, on peut suspecter que la cause du
caractère curviligne de la trajectoire est ✭✭ quelque chose ✮✮ dont l’effet est
relativement universel. Malheureusement, si on peut conjecturer que la
pesanteur est ce ✭✭ quelque chose ✮✮, l’expérience du jet d’eau articulé ne
permet pas de s’en convaincre. . .
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2.3 La conjugaison de deux mouvements

Comment s’y
prendre ?

Une manière efficace d’étudier des mouvements (relativement) complexes
consiste – pourvu que le mouvement s’y prête ! – à en tirer une photo-
graphie en pose dans une chambre noire éclairée uniquement par un stro-
boscope. On appelle cela une photographie stroboscopique ou une chro-
nophotographie ; pour disposer d’un peu plus de détails techniques à ce
sujet, on peut se reporter à A. Meessen [1984] : compléments, p. 18 à 22.
Des résultats analogues peuvent aussi s’obtenir à l’aide d’un appareil pho-
tographique numérique (à partir d’une fréquence de prises de vues de 10
images/seconde) ou d’une caméra vidéo, utilisée en plan fixe. Dans ce der-
nier cas, il suffit lors de la reproduction sur magnétoscope, de reporter les
positions successives du mobile sur une feuille transparente.

La figure 19 est une chronophotographie du mouvement de deux balles :
• l’une, commence à tomber au point A (cf. la figure 20), verticalement,

suivant un mouvement de chute libre, exactement à l’instant où
• l’autre, lancée initialement sur un plan horizontal, quitte ce plan à

partir de ce même point A.
Un système de déclenchement simultané (visible dans le coin supérieur
gauche de la figure) permet de synchroniser le départ des deux balles au
point A. La fréquence des éclairs est de 1/30 s, et la distance entre deux
horizontales égale 15,24 cm (extrait de Physical Science Study Committee
[1970]).

Fig. 19 : Une chronophotographie du mouvement de deux balles.
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A

première balle

deuxième balle

Fig. 20 : Le point A et le mouvement des deux balles.

Quelle relation y a-t-il entre le jet d’eau – orienté horizontalement – et une
chronophotographie comme celle ci-dessus ? Le jet d’eau est évidemment
un ensemble de gouttes, et on peut faire l’hypothèse (très raisonnable) que
la forme du jet d’eau est celle de la trajectoire de n’importe laquelle de
ses gouttes. En d’autres termes, le jet d’eau fige l’histoire (physique) du
mouvement de n’importe quelle goutte, il immobilise toute la trajectoire
en continu d’une goutte. On pourrait parler du ✭✭ modèle corpusculaire ✮✮

du jet d’eau. La chronophotographie de la figure 19 est donc un outil idéal
pour étudier la forme du jet d’eau, puisqu’elle fige, elle aussi, l’écoulement
du temps, et nous dévoile ainsi beaucoup de propriétés des mouvements
qui, sans cela, échapperaient à l’œil.

Question 6.
Quelles sont les équations du mouvement de chacune de ces deux balles ?
Quelles sont les équations de leur trajectoire ?

La première balle est animée d’un mouvement de chute libre

La première balle tombe suivant une trajectoire verticale qui ne peut être
qu’un mouvement de chute libre.

Si on veut s’en convaincre, il suffit de comparer les espaces parcourus sur
la photographie avec ceux prédits par la loi de chute libre. Avant cela, il
faut fixer un repère commun10 pour le mouvement des deux balles (il est
tracé sur la figure 21).

10 . . . et observer en fait un léger décalage entre la position initiale de la première
balle et celle de la deuxième balle. Cela ne porte pas à conséquence pour la très grande
majorité des calculs numériques qui suivent.
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La loi de la chute libre s’écrit alors y = −gt2

2
, où g = 9, 81m/s2, y est

mesuré en mètres et le temps t est compté en secondes à partir de l’instant
(initial) où la première balle passe par le point A.

La comparaison s’effectue simplement à partir d’un tableau reprenant les
positions en fonction du temps écoulé.

t (en multiples de 1/30 s) 1 2 3 4 5 6 . . .
−y (observé, en mètres) ? 0,03 0,05 0,09 0,14 0,19 . . .
−y (calculé, en mètres) 0,005 0,02 0,05 0,09 0,14 0,20 . . .

. . . 7 8 9 10 11 12 13 14

. . . 0,27 0,34 0,44 0,54 0,65 0,79 0,92 1,07

. . . 0,27 0,35 0,44 0,56 0,66 0,78 0,92 1,07

Les résultats concernant les positions calculées sont arrondis avec la même
borne d’erreur absolue que celle qu’il semblait raisonnable d’attribuer à la
chronophotographie, c’est-à-dire 1 cm.

La projection verticale du mouvement de la deuxième balle cöın-
cide avec le mouvement de la première balle.

C’est la conclusion la plus manifeste de cette chronophotographie ! Elle
implique immédiatement que la deuxième équation du mouvement de la

deuxième balle s’écrit (aussi) y = −gt2

2
.

La projection horizontale du mouvement de la deuxième balle est
un mouvement (rectiligne) uniforme.

La construction de cette projection n’offre aucune difficulté (cf. la figure
21).

A

y

x

Fig. 21 : Les projections verticales et horizontales des positions de la
deuxième balle.
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Un tableau des positions observées met bien en évidence le caractère uni-
forme du mouvement.

t (en multiples de 1/30 s) 1 2 3 4 5 6 . . .
x (observé, en mètres) ? 0,15 0,22 0,29 0,36 0,43 . . .

. . . 7 8 9 10 11 12 13 14

. . . 0,50 0,56 0,63 0,70 0,77 0,84 0,91 0,97

La vitesse de ce mouvement (rectiligne) uniforme vaut donc (approxima-
tivement11)

0, 07
1
30

= 2, 1(m/s).

Dès lors, la première équation du mouvement s’écrit x = 2, 1t.

La trajectoire de la deuxième balle est parabolique.

On vient d’obtenir les deux équations du mouvement de la deuxième balle :{
x = 2, 1t,
y = −gt2

2 .

En isolant le temps t dans la première équation, on obtient t = x
2,1 , d’où

y = −g

2

(
x

2, 1

)2

= −1, 1122 . . . x2,

puisque g = 9, 81m/s2. C’est l’équation d’une parabole passant par le point
A.

2.4 La vitesse de la deuxième balle

Comment s’y
prendre ?

Ainsi, et comme dans le cas de la trajectoire du nageur, la trajectoire de la
balle n’est pas trop difficile à déterminer. Mais dans le cas du nageur, c’est
surtout la vitesse et ses caractéristiques qui ont été l’objet de la réflexion.

Comme pour la question 2, le caractère plus théorique des deux questions
suivantes explique que leur résolution ne soit pas nécessairement laissée
à la seule initiative des élèves, et l’enseignant veillera encore à ce que les
étapes essentielles des raisonnements soient bien rencontrées par tous les
élèves.

Question 7.
Comment définir la vitesse de la balle qui suit la trajectoire para-
bolique de la figure 19, à chaque instant où l’éclair du stroboscope
✭✭ l’immobilise ✮✮ ?

11 Les erreurs résultent du défaut de synchronisation entre les départs des deux balles,
déjà relevé plus haut.
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Il faut une nouvelle définition de vitesse. . .

Jusqu’ici la notion de vitesse a toujours été associée à un mouvement
rectiligne, même si on a déjà pu relever des différences significatives, suivant
qu’on parlait de la vitesse d’un mouvement rectiligne uniforme, ou des
vitesses moyenne ou instantanée d’un mouvement rectiligne uniformément
accéléré. Or, dans le cas du mouvement parabolique, la trajectoire n’a plus
rien de rectiligne ! Alors, que faire ?

Evidemment, l’intuition nous souffle qu’il y a encore un sens à parler de
vitesse, même pour un mouvement qui n’est pas rectiligne. Il s’agit donc
de passer d’une sensation de vitesse pour un mouvement curviligne à une
définition de vitesse.

Or, dans un mouvement curviligne, l’intuition de vitesse peut assez natu-
rellement être associée à l’idée de direction, sous une forme très visuelle
et intuitive elle aussi. Par exemple, la chronophotographie d’une balle qui
rebondit (cf. la figure 22 ci-après, extraite de Physical Science Study Com-
mittee [1970]) suggère qu’à chaque rebond, la vitesse change de direction.

Fig. 22 : Quelle est la direction de la vitesse au rebond ?

Nous savons que la vitesse d’un mouvement rectiligne uniforme est une
grandeur vectorielle, et que ce statut de grandeur vectorielle est indisso-
ciable12 de l’idée de direction. Une première hypothèse de travail consiste
donc à vouloir définir la vitesse pour un mouvement curviligne comme une
grandeur vectorielle.

Dès lors, on doit commencer par se choisir un point d’application de cette
grandeur à définir. Pour fixer les idées, ce sera le point P correspondant
ici à la position de la balle à l’instant d’observation t = 5

30 s.
12 Il s’agit de grandeurs physiques ! Les vecteurs du mathématicien sont moins contrai-

gnants.
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Il y beaucoup de vitesses possibles pour le point P .

Une chronophotographie ne fige que certaines positions de la balle. Une
première approximation de la réalité consiste alors à ne retenir que ces
positions-là, à réduire donc le mouvement réel à la succession de mou-
vements (aussi simples que possible) qui font passer d’une position à la
suivante. C’est ce qu’on appelle ✭✭ discrétiser le mouvement ✮✮.

Mais le mouvement le plus simple possible qui fait passer du point P au
point suivant P1 est le mouvement rectiligne uniforme correspondant. À
ce mouvement est associé une vitesse qui est une grandeur vectorielle ; on
la note −−→vr.u. (P ) , ou −−→vr.u. si la mention du point P n’est pas essentielle. La
figure 23 représente la direction de cette vitesse.

A

y

x

P
P1

Fig. 23 : La direction de la vitesse du mouvement discrétisé.

Et comme la chronophotographie qui nous occupe a été réalisée avec une
fréquence d’éclair de 1

30 s, on peut aussi calculer la mesure de cette vitesse
(notée alors vr.u., sans la flèche) grâce aux positions déjà relevées,

t (en multiples de 1/30 s) . . . 5 6 . . .
x (observé, en mètres) . . . 0,36 0,43 . . .
−y (calculé, en mètres) . . . 0,14 0,19 . . .

et à l’éternel théorème de Pythagore (cf. la figure 24)

vr.u. =

√
(0, 05)2 + (0, 07)2

1
30

= 2, 58 . . . (m/s).
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A

y

x

P
P1

0,07

0,06

Fig. 24 : La mesure de la vitesse du mouvement discrétisé.

Mais cette vitesse est entièrement tributaire du choix de la fréquence
d’éclairs du stroboscope. Par exemple, si la discrétisation est réalisée à
la fréquence de 1

10 s, la direction de la vitesse au point P est différente,
comme le montre la figure 25.
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x

P
P
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1

1

Fig. 25 : La direction de la vitesse dépend de la discrétisation choisie.

La mesure de cette vitesse est également différente. Les données corres-
pondantes

t (en multiples de 1/30 s) . . . 5 8 . . .
x (observé, en mètres) . . . 0,36 0,56 . . .
−y (calculé, en mètres) . . . 0,14 0,34 . . .
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permettent d’obtenir

vr.u. =

√
(0, 2)2 + (0, 2)2

1
10

= 2, 82 . . . (m/s).

Résumons-nous ! En discrétisant le mouvement, il est possible – au départ
d’un point P fixé – de l’approximer (localement) par un mouvement rec-
tiligne uniforme, et donc d’y associer une vitesse en tant que grandeur
vectorielle. Le problème est qu’il y a beaucoup de discrétisations possibles,
donc beaucoup de mouvements rectilignes uniformes possibles, et donc
beaucoup de vitesses possibles pour le même point P . Et qu’à part ce
point d’application P commun, toutes ces vitesses ont des directions et
des mesures différentes.

Une définition idéale

La fréquence des éclairs du stroboscope ne permet pas d’aller voir le mou-
vement de la balle d’assez près, c’est-à-dire sans discontinuité entre les
positions successives. Mais heureusement, les élèves en savent maintenant
assez pour passer de l’expérimentation à la simulation !

D’abord, ils peuvent facilement reproduire à l’aide du tableur les positions
de la balle au 1

30 s, en accord avec les résultats de la chronophotographie,
et les équations du mouvement qui en ont été déduites.

Fig. 26 : Les positions des deux balles (et de la projection horizontale), au trentième de secondes.

À partir des équations du mouvement, et en travaillant sur des intervalles
de temps suffisamment brefs, ils peuvent ensuite faire apparâıtre la trajec-
toire parabolique de la deuxième balle, apparemment sans discontinuité.
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Fig. 27 : La trajectoire de la deuxième balle, au millième de secondes.

Plus l’intervalle de temps est petit (c’est-à-dire plus la fréquence des éclairs
du stroboscope est grande), et plus la trajectoire discrétisée se révèlera
proche de la trajectoire réelle. Mais cette trajectoire quasi continue n’est
pas pour autant la trajectoire complète. Pour s’en rendre compte, il suffit
de ✭✭ zoomer ✮✮, par exemple autour du point P atteint après 5

30 s ; on
obtient alors la figure suivante.

Fig. 28 : La trajectoire de la balle au voisinage du point P , au millième de secondes.
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Cette image est tout à fait surprenante : la trajectoire de la balle se ré-
vèle extrêmement proche de celle d’un mouvement rectiligne uniforme !
Passé l’effet de surprise, cette image donne lieu à quelques observations et
conséquences importantes.

D’abord, elle confirme encore un peu plus la représentation de la trajec-
toire parabolique comme une succession suffisamment resserrée de trajec-
toires de mouvements rectilignes uniformes. Visuellement, la direction et
la grandeur de la vitesse en des points successifs ne paraissent même pas
être différentes. Mais bien sûr, la trajectoire globale nous rappelle que cette
apparence est trompeuse : il n’y a rien de rectiligne, ni d’uniforme dans ce
mouvement.

D’autre part, deux positions successives sont tellement resserrées qu’il n’y a
rien de bien audacieux à supposer qu’entre ces deux positions le mouvement
est quasiment rectiligne et uniforme. On ne voit d’ailleurs pas très bien ce
qu’on pourrait proposer d’autre : c’est en effet le seul modèle de mouvement
dont on dispose.

De plus, le tableur permet de calculer l’intensité de la vitesse en question,
à des instants successifs, avec une bien meilleure précision qu’auparavant.
Ainsi, au départ de la simulation au millième de secondes, on obtient

t (en s) x = 2, 1t (en m) y = −gt2

2 (en m) vr.u.x(t) (en m/s) vr.u.y(t) (en m/s)
0,165 0,3465 -0,13353863 2,1 -1,623555
0,166 0,3486 -0,13516218 2,1 -1,633365
0,167 0,3507 -0,13679555 2,1 -1,643175
0,168 0,3528 -0,13843872 . . . . . .

où
vr.u.x(t) =

x(t + 0, 001)− x(t)
0, 001

,

et
vr.u.y(t) =

y(t + 0, 001)− y(t)
0, 001

.

On en tire que

vr.u.(0.166) =
√

(2, 1)2 + (−1, 633365)2 = 2, 6604 . . .m/s,

vr.u.(0.167) =
√

(2, 1)2 + (−1, 643175)2 = 2, 6664 . . .m/s.

De manière générale, ce mode d’approche permet donc d’assimiler la tra-
jectoire parabolique à une succession suffisamment resserrée de trajectoires
de mouvements rectilignes uniformes, dont la direction et la grandeur de
la vitesse changent continûment.

Ainsi, on peut proposer de définir la vitesse du point P comme celle de
ce morceau de mouvement rectiligne uniforme (au départ de P ) obtenu à
partir de ✭✭ la meilleure simulation possible ✮✮ ou de ✭✭ la meilleure chro-
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nophotographie possible ✮✮13. L’origine photographique de cette définition
aide peut-être à mettre en évidence pourquoi on parle alors aussi de vitesse
instantanée14 ; on la note −−→vinst. (P ) ou tout simplement −→v (P ).

Mais n’y a-t-il pas moyen d’être un peu plus précis quant aux caractéris-
tiques de direction et de mesure de cette vitesse idéale ?

Le rectangle magique

Puisque la vitesse du point P se définit à partir d’un mouvement rectiligne
idéal, elle peut être décomposée, comme dans le cas du nageur. Si pour
abréger on ne note pas les points d’application, on peut donc écrire

−→v = −→vx +−→vy ,

où −→vx est la vitesse du point Px dans son mouvement rectiligne obtenu par
projection du mouvement du point P sur l’axe des x, et pareillement pour
−→vy , comme les représente la figure 29.
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Fig. 29 : Le rectangle magique.

Or, il s’agit à chaque fois de mouvements idéaux, c’est-à-dire des mouve-
ments observés sur ✭✭ la meilleure chronophotographie – ou simulation –
possible ✮✮, et nous savons que

• le mouvement rectiligne horizontal (c’est-à-dire le long de l’axe des
x) est un mouvement rectiligne uniforme,

• le mouvement rectiligne vertical (c’est-à-dire le long de l’axe des y)
est un mouvement de chute libre.

13 En d’autres termes, la vitesse ainsi définie est une notion ✭✭ idéale ✮✮ que les chro-
nophotographies et les simulations permettent d’approcher. Une telle approximation
peut toujours être améliorée, pourvu que les appareils de mesure (stroboscope, appareils
photographiques) ou les outils de calcul le permettent.

14 Comme on le rappelle plus bas, cette appellation concorde avec celle déjà utilisée
dans l’étude de la chute libre.
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Cela nous permet d’identifier −→vx et −→vy à des grandeurs vectorielles bien
déterminées,

• pour ce qui concerne le point d’application, la direction et le sens,
tout est clair,

• et pour ce qui concerne la mesure de chacune de ces vitesses :

– la valeur vx étant a priori la mesure de la vitesse (instantanée)
du point Px animé d’un mouvement uniforme, elle est identique
à la vitesse ✭✭ ordinaire ✮✮ de ce point et comme cette dernière a
déjà été calculée plus haut, on a : vx = 2, 1 (m/s) ;

– la valeur vy étant a priori la mesure de la vitesse (instantanée)
du point Py animé d’un mouvement de chute libre, on sait qu’il
s’agit d’une fonction linéaire du temps et qu’elle vaut à l’instant
considéré : vy = g · 5

30 = 1, 635 . . . (m/s).

Dès lors, si on note θ l’angle que forme la vitesse −→v avec l’horizontale
passant par le point P (cf. encore la figure 29), on calcule

tg θ =
|UW |
|PU | =

vy
vx

=
g · 5

30

2, 1
= 0, 7785 . . . ,

d’où θ ≈ 38◦, et

v

(
5
30

)
= v(0, 166 . . .) = |PW | =

√
|PU |2 + |UW |2 =

√
v2
x + v2

y

=

√
(2, 1)2 +

(
g · 5

30

)2

= 2, 6614 . . . (m/s).

Pour mémoire, le calcul réalisé plus haut directement sur la chronopho-
tographie avait fourni vr.u. = 2, 58 . . . (m/s) ; par ailleurs, on peut aussi
calculer : v(0, 166) = 2, 6574 . . . (m/s) et v(0, 167) = 2, 6634 . . . (m/s), et
comparer ces résultats avec vr.u.(0.166) = 2, 6604 . . . (m/s) et vr.u.(0.167) =
2, 6664 . . . (m/s).

Ces deux résultats achèvent de déterminer toutes les caractéristiques de la
vitesse au point P , considérée comme grandeur vectorielle idéale ou alors
– plus précisément ? – comme vitesse d’un mouvement rectiligne uniforme
idéal15.

2.5 La formulation vectorielle de l’équation du
mouvement de la deuxième balle

Comment s’y
prendre ?

Arrêtons-nous encore un instant sur les équations du mouvement de la
balle, telles que la question 6 nous les a fait découvrir.

Question 8.
Comment reformuler en termes de grandeurs vectorielles les équations
du mouvement obtenues lors de l’analyse de la chronophotographie ?

15 Ce mouvement rectiligne uniforme idéal est tangent à la trajectoire de la balle au
point P , mais c’est là une autre histoire. . .
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Comme il n’y a plus de raison pour fixer a priori l’instant d’observation,
on va reprendre l’analyse de la chronophotographie (cf. la figure 19) pour
un instant d’observation t quelconque. On note alors P (t) la position de
la balle à un tel instant, et on convient d’abréger P (t) en P lorsqu’il n’en
résulte aucune ambigüıté.

Une décomposition du mouvement héritée du rectangle magique

Puisque la décomposition de la vitesse a déjà permis de résoudre la ques-
tion précédente, on va pareillement décomposer le mouvement du point P
suivant les deux directions associées à ce mouvement,
• l’horizontale, qui est la direction initiale du mouvement,
• et la verticale, qui est la direction d’un mouvement ordinaire16 de

chute libre.
Avec les notations de la figure 30 ci-après, le mouvement horizontal à
considérer est donc celui de la projection Px du point P sur l’axe des x ;
c’est un mouvement (rectiligne) uniforme. Comme on a (déjà) noté vx la
mesure (constante) de la vitesse de ce point, on a

|APx(t)| = vxt.

Le mouvement vertical est celui de la projection Py du point P sur l’axe
des y ; c’est un mouvement (rectiligne) de chute libre. La loi fondamentale
de la chute libre permet d’écrire

|APy(t)| =
gt2

2
.

Considérons alors le changement de position qui amène le point A sur le
point P , et associons-y la grandeur vectorielle définie comme suit,
• son point d’application est le point A,
• sa direction est celle de la droite passant par les deux points A et P ,
• son sens est celui qui mène de A à P sur cette droite,
• sa mesure est celle de la distance, prise en mètres, qui sépare les deux

points en question.
On note −→AP ce changement de position. On peut définir pareillement les
changements de position −−→APx et −−→APy, et on a (cf. la figure 30)

−→
AP (t) = −−→APx (t) +−−→APy (t) .

A

y

x

P

P

P P(t)y

x

ou

Fig. 30 : Le changement de position est une grandeur vecto-
rielle qui se décompose.

16 C’est-à-dire sans autre mouvement qui s’y ajoute.
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Une décomposition qui se décompose encore. . .

On peut mieux exprimer l’information fournie par l’expression précédente
en mettant en valeur les mesures des changements de position calculées
plus haut : |APx(t)| = vxt et |APy(t)| = gt2

2 . Pour cela, on introduit deux
nouvelles grandeurs vectorielles :
• le vecteur −→εtir est un changement de position qui sert de référence

pour tout mouvement suivant la direction initiale du tir de la balle ;
il a comme point d’application le point A, comme direction celle de
l’axe des x, comme sens le sens positif de parcours de cet axe, et
comme mesure l’unité de longueur, c’est-à-dire le mètre,
• le vecteur −−→εvert est un changement de position qui sert de réfé-

rence pour tout mouvement suivant la direction verticale ; il a en-
core comme point d’application le point A, comme direction celle de
l’axe des y, comme sens le sens positif de cet axe, et toujours comme
mesure l’unité de longueur (le mètre).

On fait alors apparâıtre les différentes caractéristiques de la grandeur vec-
torielle −−→APx (t) en l’écrivant sous la forme

−−→
APx (t) = vxt · −→εtir.

Cette écriture concentre en effet toute l’information de mesure dans le fac-
teur vxt et toute l’information de direction dans le terme −→εtir. Pareillement,
l’écriture

−−→
APy (t) =

(
−gt2

2

)
· −−→εvert

distingue l’information de mesure dans le terme gt2

2 , celle de direction dans
le terme −−→εvert et précise avec le signe ✭✭ − ✮✮ que le sens de −−→APy (t) et le sens
de −−→εvert sont opposés.

Lorsqu’on écrit finalement l’équation −→AP (t) = −−→APx (t) +−−→APy (t) en préci-
sant toutes les caractéristiques des grandeurs vectorielles−−→APx (t) et−−→APy (t),
on obtient (cf. la figure 31)

−→
AP (t) = vxt · −→εtir +

(
−gt2

2

)
· −−→εvert.
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Fig. 31 : L’équation vectorielle du mouvement de la balle se visualise à l’aide d’un rectangle.
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La position de la balle est ainsi complètement décrite à n’importe quel
instant en termes de grandeurs vectorielles de référence. L’équation obte-
nue mérite bien d’être appelée l’équation vectorielle du mouvement. Pour
mémoire, on a obtenu comme équations du mouvement dans le problème
du nageur (cf. la question 1 et la synthèse de la section 1)

−→
AN(t) = t · −→AN,

où −→AN =
(

40
20

)
est le vecteur-position du nageur après une minute d’ef-

fort. Ces équations s’écrivent aussi

−→
AN(t) = 40t · −−−−→εXavier + 20t · −−−→εY ves,

où −−−−→εXavier (respectivement −−−→εY ves) est le changement de position qui sert de
référence pour tout mouvement le long de la berge (respectivement le long
du pont), en parfaite analogie avec les équations vectorielles du mouvement
du projectile.

3 Le tir oblique

De quoi s’agit-il ? Décrire de manière quantitative la forme d’un jet d’eau.

Enjeux L’équation vectorielle générale du mouvement d’un projectile.

De quoi a-t-on
besoin ?

Une chronophotographie (cf. la figure 33, en annexe à la page 498).

3.1 Retour au jet d’eau articulé

Comment s’y
prendre ?

Revenons-en à l’étude du jet d’eau.

Nous savons déjà que la forme du jet d’eau est celle de la trajectoire de
n’importe laquelle des gouttes qui le constituent. La question qui nous
intéresse maintenant est de décrire le mouvement d’une goutte d’eau dès
sa sortie du tuyau d’arrosage, suivant les principes qui ont permis de décrire
le mouvement de la balle dans la chronophotographie. Mais cette fois-ci,
il s’agit de prendre en compte le fait que le tuyau est dirigé suivant un
angle avec l’horizontale qui n’est pas nécessairement nul. Or, la description
d’un tir à l’horizontale n’est pas sans rapport avec celle d’un tir dans une
direction quelconque. En effet, l’expérience du jet d’eau articulé (cf. la
question 5) a livré un résultat assez étonnant : peu importe que la direction
de tir soit horizontale ou oblique, lorsque les distances mesurées dans cette
direction sont les mêmes, alors les écarts verticaux correspondants sont eux
aussi identiques. Tout semble donc être indépendant de la direction. . . ?
Comme les grandeurs vectorielles prennent explicitement en compte les
questions de direction, il est assez naturel de se poser la question suivante.
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Question 9.
En termes de grandeurs vectorielles, qu’est-ce qui change – et qu’est-ce
qui ne change pas – dans la description du mouvement d’une balle ou
d’une goutte d’eau, lorsqu’on passe d’une direction de tir horizontale à
une direction de tir oblique ?

Commençons par adapter les notations. Le point A devient le point de
sortie de la goutte d’eau ou, de manière plus explicite, l’orifice du tuyau
d’arrosage. On note G(t) la position de la goutte d’eau à un instant d’ob-
servation t quelconque, et on a donc G(0) = A. On convient toujours
d’abréger G(t) en G lorsqu’il n’en résulte aucune ambigüıté.

Comme précédemment, on décompose le mouvement en deux mouvements
qui intègrent ce que l’expérience du jet d’eau articulé a mis en évidence.
Le mouvement vertical est donc celui de la projection Gy du point G sur
l’axe des y parallèlement à la direction de tir ; et le mouvement dans la
direction de tir – ou mouvement oblique – est alors celui de la projection
Gz du point G sur l’axe des z (c’est-à-dire l’axe de la direction initiale
du mouvement) parallèlement à la verticale (cf. la figure 32). Suivant les
résultats obtenus lors de la résolution de la question 3, on peut dès lors
écrire – en parfaite analogie avec le cas du tir horizontal – le changement de
position −→AG comme combinaison vectorielle des changements de position−−→
AGz et −−→AGy, −→

AG (t) = −−→AGz (t) +−−→AGy (t) .
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Fig. 32 : Le changement de position de la goutte d’eau se
décompose suivant la verticale et la direction de tir.

Une hypothèse qui découle (!) de l’expérience du jet d’eau

On est alors amené assez naturellement à faire une hypothèse de décompo-
sition : chacun de ces deux mouvements a les mêmes caractéristiques que
le mouvement correspondant dans le cas de la direction de tir horizontale.
Plus précisément, on suppose donc que

• le mouvement du point Gz est un mouvement rectiligne uniforme
suivant la direction du tir,

• le mouvement du point Gy est un mouvement de chute libre le long
de la verticale passant par le point A.
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Il y a au moins deux manières de justifier cette hypothèse. La première
consiste à faire une nouvelle expérience de stroboscopie, avec une direction
initiale de tir qui ne soit plus horizontale : cf. la figure 22, ou la figure 33
ci-après (extraite de A. Meessen [1984]).

Fig. 33 : Une nouvelle expérience de stroboscopie.

Un traitement analogue17 à celui de la question 6 permet alors de vérifier
que le mouvement des points Gy et Gz est exactement celui qui est impliqué
par l’hypothèse de décomposition.

Une deuxième méthode consiste à faire appel à la notion de force de pe-
santeur et au principe d’inertie18. Pour mémoire, ce principe affirme que
✭✭ tout corps persévère dans l’état de repos ou de mouvement uniforme en
ligne droite dans lequel il se trouve, à moins que quelque force n’agisse sur
lui et ne le contraigne à changer d’état. ✮✮ Comme la force de pesanteur est
la seule19 force qui s’applique à la goutte d’eau, c’est elle qui se retrouve
responsable de la forme curviligne de la trajectoire. De manière équiva-
lente, si la force de pesanteur n’existait pas, le mouvement de la goutte
d’eau serait rectiligne uniforme, suivant la direction initiale de mouvement,
c’est-à-dire l’axe des z.

17 Sur le cliché, les dimensions sont fournies en cm, et l’intervalle de temps entre deux
éclairs consécutifs est de 0,059 s.

18 Pourvu évidemment que les élèves le connaissent. Les raisonnements en termes de
chronophotographies sont entièrement cinématiques, et donc indépendants du principe
d’inertie !

19 Comme souvent, on néglige la résistance de l’air, et les effets hydrodynamiques
propres au jet d’eau lui-même.



3. Le tir oblique 443

Les conséquences de l’hypothèse de décomposition

Comment caractériser la vitesse du mouvement rectiligne uniforme du
point Gz ?

Cette vitesse étant constante, on peut l’identifier avec celle de la goutte
d’eau au moment exact où elle sort du tuyau d’arrosage au point A. Pour
mettre en évidence cette caractéristique dans les notations, on convient de
noter −−→vinit cette vitesse ✭✭ initiale ✮✮ puisqu’il s’agit de la vitesse de la goutte
d’eau à l’instant initial d’observation.

Précisons ensuite que la caractérisation de la grandeur vectorielle −→εtir doit
être modifiée : elle a toujours comme point d’application le point A, mais
sa direction a changé – c’est maintenant celle de l’axe des z dans la figure
34, c’est-à-dire celle suivant laquelle le tuyau d’arrosage projette toutes les
gouttes d’eau – le sens quant à lui reste le sens ✭✭ positif ✮✮ de parcours de
cet axe, et la mesure reste l’unité de longueur, c’est-à-dire le mètre.

Avec ces modifications, on montre comme précédemment que le mouve-
ment d’une goutte d’eau est décrit par l’équation vectorielle

−→
AG (t) = vinitt · −→εtir +

(
−gt2

2

)
· −−→εvert.

D’une certaine manière, cette équation décrit les variations avec le temps
d’un parallélogramme ✭✭ magique ✮✮ (cf. la figure 34 ci-dessous). Comme
dans la question 7, on pourrait en déduire la vitesse du point G(t) à n’im-
porte quel instant de son mouvement, etc.
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Fig. 34 : Un parallélogramme magique décrit le mouvement.

Il est encore intéressant d’observer que l’équation vectorielle que l’on vient
d’obtenir a la même forme que celle issue de l’étude de la chronophotogra-
phie, alors que la situation physique est a priori différente.

En réalité, tout a été fait pour obtenir cette identité de forme troublante :
l’hypothèse de décomposition, et surtout la manière dont le calcul des
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grandeurs vectorielles règle les questions de directions ont été des deus
ex machina. Et cette identité de forme redevient très naturelle dès qu’on
s’aperçoit que toute la différence entre les deux situations physiques est
prise en compte par l’interprétation géométrique différente qu’on réserve
à la grandeur vectorielle de référence −→εtir .

3.2 La forme du jet d’eau

Comment s’y
prendre ?

La question suivante n’a rien pour surprendre !

Question 10.
Quelle est finalement la trajectoire d’une goutte d’eau – ou la forme du
jet d’eau – si le tuyau d’arrosage est dirigé suivant un angle de 45◦ avec
l’horizontale ?
Et s’il s’agit d’un angle θ quelconque ?

. . . Et tout le travail est quasiment fait, il ne s’agit plus que de mise en
forme !

Un changement de références

Si on veut travailler avec les coordonnées ordinaires du point G(t), c’est-à-
dire celles prises suivant les axes des x et des y de la figure 32 ou 34, il est
intéressant d’introduire deux nouvelles grandeurs vectorielles de références
qui soient appropriées à ce (nouveau) choix d’axes. On définit donc

−→εx : c’est le changement de position qui sert de référence pour tout
mouvement suivant la direction horizontale ; il a comme point d’ap-
plication le point A, comme direction celle de l’axe des x, comme
sens le sens positif de parcours de cet axe, et comme mesure l’unité
de longueur, c’est-à-dire le mètre,
−→εy : c’est le changement de position qui sert de référence pour tout
mouvement suivant la direction verticale ; il a encore comme point
d’application le point A, comme direction celle de l’axe des y, comme
sens le sens positif de cet axe, et toujours comme mesure l’unité de
longueur (le mètre) ; évidemment −−→εvert = −→εy .

D’autre part, un peu de trigonométrie (en s’aidant de la figure 35) permet
de relier entre elles les grandeurs vectorielles −→εtir, −→εx et −→εy .

A

y

x
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tir

vert

y

x

x

y

¥

¥

=

sin

cos

ε

ε

ε

ε

ε

θ

θ

θ

ε

Fig. 35 : De nouvelles grandeurs vectorielles de référence.
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−→εtir = cos θ · −→εx + sin θ · −→εy .

L’équation vectorielle −→AG (t) = vinitt ·−→εtir +
(
−gt2

2

)
·−−→εvert obtenue à la fin

de la question précédente devient alors

−−−→
AG(t) = vinitt (cos θ · −→εx + sin θ · −→εy ) +

(
−gt2

2

)
· −→εy ,

c’est-à-dire, en regroupant les termes suivant les deux grandeurs vectorielles
de référence qui ont été associées aux coordonnées, il vient

−−−→
AG(t) = vinitt cos θ · −→εx +

(
vinitt sin θ − gt2

2

)
· −→εy .

La trajectoire, enfin. . .

Bien sûr, on peut aussi écrire le résultat précédent directement en termes
de coordonnées {

x = vinitt cos θ,
y = vinitt sin θ − gt2

2 .

Pour tirer alors de ces deux équations la trajectoire du mouvement, il
suffit de tout immobiliser, c’est-à-dire de ✭✭ chasser le temps ✮✮, cela donne
l’équation de la trajectoire

y = − g

2v2
init cos2 θ

· x2 + tg θ · x.

Comme dans le cas du tir horizontal, c’est l’équation d’une parabole. Elle
passe par le point A de coordonnées (0; 0), ce qui n’a évidemment rien
d’étonnant !

A

y

x

G(t)

B

direction
de tir

Fig. 36 : La forme du jet d’eau.

Le matériel utilisé dans l’expérience du jet d’eau articulé permet de relever
très facilement les coordonnées de plusieurs points de la courbe formée par
le jet d’eau, et de confirmer20, si on le souhaite, son caractère parabolique21.

20 Dans les limites de précision que l’expérience permet d’atteindre. . .
21 Ce genre de mesure peut fournir aussi une estimation – indirecte, mais relativement

précise – de la vitesse vinit du jet d’eau à la sortie du tuyau. Si, avec les notations de la
figure 36, p = |AB| est la ✭✭ portée ✮✮ du jet d’eau, exprimée en m, on obtient après un
petit calcul

vinit =

√
gp

sin 2θ
.

En particulier, si θ = π
4
, on trouve vinit ≈ 3

√
p.
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Pour θ = 0, on retrouve la parabole de sommet A déjà étudiée précédem-
ment22. Pour θ = π

4 , l’équation de la trajectoire se simplifie sensiblement
de cette manière,

y = − g

v2
init

· x2 + x.

Si θ = π
2 , on retrouve la situation de l’arroseur arrosé. L’équation de la tra-

jectoire n’est alors plus d’aucun secours (sic !), mais l’équation vectorielle
est quant à elle tout à fait parlante (resic !)

−−−→
AG(t) =

(
vinitt−

gt2

2

)
· −→εy ,

ou, si l’on préfère {
x = 0,
y = vinitt− gt2

2 .

3.3 Le problème du poisson-archer

De quoi s’agit-il ? Déterminer les caractéristiques de rencontre (position, instant. . .) de deux
projectiles partant en même temps d’endroits différents.

Enjeux Une illustration des propriétés communes de deux mouvements de projec-
tiles.

Une interprétation cinématique des points d’intersection d’une droite et
d’une parabole.

Comment s’y
prendre ?

La question suivante est l’occasion de rassembler et de prolonger les résul-
tats obtenus lors de l’étude du jet d’eau et de la chronophotographie, et
d’y ajouter une pincée de biologie (cruelle !) Elle est inspirée de H. Benson
[1993], exemple 4.4, p. 61-62.

Fig. 37
22 Dans le cas particulier où de plus vinit = 0, il n’est évidemment plus possible de

chasser le temps de l’équation vectorielle du mouvement.
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Question 11.
Dans la figure 37, un insecte est posé sur une brindille à une certaine
hauteur au-dessus de la surface de l’eau. Un poisson-archer projette
une goutte d’eau directement sur l’insecte, afin de l’étourdir et d’arriver
ainsi à le gober. Au moment exact où la goutte est projetée, l’insecte
voit venir le danger et se laisse tomber pour y échapper.

La goutte d’eau peut-elle atteindre l’insecte ? Si oui, à quelle(s) condi-
tion(s) ? Si non, pourquoi ?

Le problème revient à décrire le mouvement d’une goutte d’eau projetée
par le poisson-archer, et à mettre ce mouvement en correspondance avec le
mouvement vertical de chute libre de l’insecte. Le poisson-archer projette
la goutte d’eau dans une direction qui n’est manifestement pas horizontale.

On peut reprendre mutatis mutandis les notations déjà utilisées dans les
questions précédentes. Le point A est le point de sortie de la goutte d’eau
ou, de manière plus explicite, le bord de la gueule23 de notre prédateur
aquatique. On note

• G(t) la position de la goutte d’eau,

• I(t) la position de l’insecte

à un instant d’observation t quelconque, en convenant encore d’abréger
G(t) en G et I(t) en I lorsqu’il n’en résulte aucune ambigüıté. On a en
particulier G(0) = A, tandis que I(0) désigne la position de l’insecte au
tout début du drame, là-haut sur sa brindille. Et nous savons déjà tout ce
qu’il faut savoir du mouvement de la goutte d’eau meurtrière.

A

y

x

G(t)

I(0)

I(t)

direction
de tir

Fig. 38 : Le cadre du drame.

Le mouvement de l’insecte

L’insecte se laisse donc tomber suivant un mouvement rectiligne de chute
libre à partir du point I(0). Quel que soit l’instant d’observation t, le chan-

23 Au moment du tir, on suppose que le bord de la gueule du poisson-archer affleure
la surface de l’eau.
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gement de position se décompose sous la forme
−→
AI (t) = −→AI (0) +−→AIy (t) ,

avec les notations de la figure 39. Comme ce mouvement reste parallèle à
l’axe des y, une de ces composantes – celle suivant la direction de tir – est
donc constante, c’est-à-dire indépendante du temps.

A

y

x

z

I(0)

I(t)

I y

Fig. 39 : Le changement de position pour le mouvement de chute libre
de l’insecte.

Notons, suivant la figure 40
• d, la distance horizontale (mesurée en mètres, comme il se doit) qui

sépare l’insecte du poisson-archer,
• θ, l’angle de tir mesuré par rapport à l’horizontale, qui est aussi

l’angle sous lequel l’insecte est vu par le poisson-archer.

A

y

x

z
I(0)

E

d

θ

Fig. 40 : Deux paramètres permettent de déterminer
la position de l’insecte.

Le triangle rectangle AEI(0) livre immédiatement la relation

|AI(0)| = d

cos θ
.

On en déduit – comme précédemment – l’équation vectorielle du mouve-
ment de l’insecte

−→
AI (t) =

d

cos θ
· −→εtir +

(
−gt2

2

)
· −−→εvert.
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L’issue du drame

Est-il possible que la goutte d’eau frappe l’insecte ? En d’autres mots,
existe-t-il un instant t pour lequel la goutte d’eau et l’insecte se trouvent
exactement au même endroit, c’est-à-dire pour lequel −→AI (t) = −→AG (t) ?

Pour bien voir ce qui se passe, il est intéressant d’introduire – après le
rectangle magique – le ✭✭ parallélogramme de la mort ✮✮ : il est défini (cf.
la figure 41) à partir du segment |G(t)I(t)|, qui décrit toute l’évolution du
drame, puisqu’il est de longueur nulle lorsque la goutte d’eau frappe sa
cible.

A

y

x

G(t)

I(0)

I(t)

z

Fig. 41 : Le parallélogramme de la mort !

Or, le parallélogramme AC(t)J(t)I(t) montre que
−−−−−→
G(t)I(t) =

−−−→
AI(t) +(

−−−−→AG(t)
)

(cf. la figure 42).

A

y

x

G(t)

I(t)

J(t)

C(t) ± AG(t)

Fig. 42 : Deux grandeurs vectorielles équivalentes.

À partir de l’équation vectorielle du mouvement de la goutte d’eau,

−→
AG (t) = vinitt · −→εtir +

(
−gt2

2

)
· −−→εvert,
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et de celle de l’insecte,

−→
AI (t) =

d

cos θ
· −→εtir +

(
−gt2

2

)
· −−→εvert,

on peut alors calculer vectoriellement la caractéristique fatale du ✭✭ paral-
lélogramme de la mort ✮✮, à savoir

−−−−−→
G(t)I(t) =

−−−→
AJ(t) =

−−−→
AI(t) +

(
−−−−→AG(t)

)
=

(
d

cos θ
− vinitt

)
· −→εtir.

Si la rencontre meurtrière de la goutte d’eau et de l’insecte a bien lieu, cet
instant fatal est donc déterminé par la condition

−−−−−→
G(t)I(t) = −→0 ,

et vaut
tmort =

d

vinit cos θ
.

Et donc, ça ne rate jamais ? Quels que soient l’angle de tir24, la vitesse d’ex-
pulsion de la goutte d’eau et la distance horizontale qui sépare le poisson-
archer de sa cible, l’issue est inéluctable : le poisson-archer fait mouche ?
Voire. . . Rien dans ce qui précède n’a pris en compte que le mouvement de
chute libre de l’insecte s’arrête dès que celui-ci touche la surface de l’eau
au point E (cf. la figure 40). La goutte d’eau n’atteint donc l’insecte avant
que celui-ci ne touche l’eau que si

|I(0)E| > gt2mort

2
.

Comme on sait que tmort = d
vinit cos θ et que |I(0)E| = d tg θ, un peu de

calcul livre alors la ✭✭ condition d’impact ✮✮

v2
init >

gd

sin 2θ
.

A

y

x

G(t)

I(0)

I(t)

z

?

Fig. 43 : L’évolution inéluctable du parallélogramme de la mort.

24 Pourvu qu’il reste (strictement) compris entre 0◦ et 90◦, mais le poisson-archer n’est
pas bigleux au point de l’ignorer !
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On peut mener un raisonnement analogue, et plus géométrique, à l’aide
du ✭✭ parallélogramme de la mort ✮✮. En effet,en se limitant aux compo-
santes verticales de leurs mouvements, l’insecte et la goutte d’eau doivent
se rencontrer s’ils ✭✭ partent ✮✮ en même temps. La forme dégénérée du pa-
rallélogramme de la mort – c’est-à-dire celle pour laquelle la longueur du
segment |G(t)I(t)| est nulle – correspond à la condition d’impact, pourvu
que cette forme dégénérée se réalise au-dessus de l’eau, etc.

Malheureusement, la nature est impitoyable ! Même si l’insecte arrive à
toucher l’eau, son compte est bon : le poisson-archer est alors dans son
élément et, après deux petits coups de nageoire, plus rien ne l’empêche de
happer l’innocente victime. Versons une larme. . .

Regardons enfin sur quelques exemples numériques, comment le destin
frappe. Supposons pour fixer les idées que θ = 45◦ et d = 5 · 10−2 m ou 5
cm, ce qui correspond approximativement à ce qu’illustre la figure 37.

• Si, par exemple, vinit = 1 m/s,

– alors on obtient tmort = 7, 07 . . . 10−2 s, c’est-à-dire un peu
moins d’un dixième de seconde,

– et |I(0)I (tmort)| = 2, 45 . . . 10−2 m, c’est-à-dire environ la moi-
tié de la distance qui sépare initialement l’insecte de la surface
de l’eau.

• Autre exemple, si vinit = 2 m/s,

– alors tmort = 3, 53 . . . 10−2 s, c’est-à-dire un peu moins d’un
trentième de seconde,

– et |I(0)I (tmort)| = 0, 6125 . . . 10−2 m, c’est-à-dire un peu plus
d’un dixième de la distance qui sépare initialement l’insecte de
la surface de l’eau.

De manière générale (mais toujours en supposant que θ = 45◦), on peut
établir la formule

|I(0)I (tmort)| =
gd2

v2
init

,

qui précise comment le peu d’espace qu’arrive encore à parcourir l’insecte
avant le choc fatal dépend de la vitesse initiale de la goutte d’eau.

4 Lent ou rapide ?

Cette section illustre la portée du point de vue vectoriel sur la vitesse, en
montrant comment une astuce (toute vectorielle) permet de définir et de
déterminer immédiatement l’accélération d’un mobile animé d’un mouve-
ment circulaire uniforme.

De quoi s’agit-il ? Comparer les vitesses de différents mobiles animés d’un mouvement circu-
laire uniforme, au départ de simulations de ce type de mouvement.
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Enjeux La caractérisation vectorielle de la vitesse (linéaire) d’un point animé d’un
mouvement circulaire uniforme. La notion d’hodographe du mouvement
de ce point. La définition et la caractérisation vectorielle de l’accélération
(linéaire) d’un point animé d’un mouvement circulaire uniforme

De quoi a-t-on
besoin ?

Quelques données astronomiques (reprises plus bas) concernant le mouve-
ment de rotation de la terre autour du soleil.

Un tableur (EXCEL, par exemple).

Prérequis

Les résultats élémentaires concernant

• la longueur de la circonférence : dépendance du rayon, approximation
par des polygones réguliers inscrits ;

• la mesure des angles en radians ;

• l’aire d’un disque, d’un secteur circulaire.

Le cercle trigonométrique, la trigonométrie des angles orientés, les équa-
tions paramétriques d’un cercle (sous forme trigonométrique).

4.1 Vitesse angulaire et vitesse linéaire

Comment s’y
prendre ?

En général, on dit qu’un mobile ponctuel est animé d’un mouvement cir-
culaire lorsque sa trajectoire est un cercle.

Ceci dit, il faut certainement commencer par demander aux élèves de faire
une liste d’exemples de mouvements circulaires. Les objets tournants sont
tellement fréquents que ces exemples ne manquent pas, pourvu bien sûr
qu’on se concentre sur un point bien défini de l’objet en mouvement : une
essoreuse à salade, beaucoup d’objets électro-ménagers (centrifugeuse, . . .)
ou de bricolage (foreuse, scie circulaire, . . .), une platine de tourne-disque25,
le virage d’une voiture dans un rond-point, certaines figures en skate-board,
un looping sur une montagne russe, le lancer du marteau, etc.

Question 12.
Parmi tous ces mouvements circulaires, lesquels mériteraient-ils d’être
qualifiés d’uniformes ?

Une définition. . .

Les exemples ci-dessus et le modèle de la définition du mouvement recti-
ligne uniforme permettent assez vite de dégager une définition en termes
d’angles ou d’arcs parcourus, telle que : un mouvement circulaire est uni-
forme lorsque les angles – ou les arcs – décrits par le point mobile sont
entre eux comme les intervalles de temps nécessaires à les parcourir ; ou
encore : lorsque des arcs égaux sont parcourus en des temps égaux.

25 Si, si ! Cet objet antédiluvien est encore très utilisé : par les disc-jockeys dans les
dancings par exemple.
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Le retour sur les exemples précédents permet alors de nuancer la définition
proposée au début : en fait, un mobile est animé d’un mouvement circulaire
lorsque sa trajectoire est un cercle ou un arc de cercle, comme dans le cas
du virage en voiture. Dans le cas d’une trajectoire qui n’est pas un cercle
complet, le mouvement est souvent non uniforme : certaines figures de
skate-board et plus généralement les mouvements de type pendulaire sont
de ce type.

Fig. 44 : Le mouvement pendulaire est circulaire et non uniforme.

. . . et quelques caractéristiques

Ces observations élémentaires permettent de caractériser un mouvement
circulaire uniforme à partir de deux grandeurs, toutes deux scalaires : le
rayon R de la trajectoire, et l’angle w parcouru par unité de temps26 (et
mesuré en radians par seconde).

Question 13.
Des deux mouvements de rotation suivants, lequel est le plus lent et
lequel est le plus rapide : le mouvement de la terre autour du soleil ou
le mouvement d’une dent de scie circulaire (électrique) ?

Assez souvent, le mouvement d’une dent de scie circulaire est ressenti par
les élèves comme le plus rapide. Et c’est. . . vrai, mais d’une manière qui
mérite d’être découverte progressivement.

26 Au lieu de cet angle, on considère souvent la fréquence ν du mouvement, c’est-à-
dire le nombre de tours parcourus par unité de temps ; lorsque le temps est mesuré en
secondes, la fréquence est mesurée en Hertz (1 Hz = 1 s−1). Si on note T la période
du mouvement, c’est-à-dire le temps nécessaire à parcourir un tour complet, les diverses
relations : w · T = 2π, ν = 1

T
et 2π · ν = w sont parfois utiles.
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La vitesse angulaire

Dans un mouvement circulaire uniforme, l’angle w parcouru par unité de
temps est appelé la vitesse angulaire. Si on considère, de manière assez na-
turelle, que le mouvement d’une dent d’une scie circulaire est effectivement
un mouvement circulaire uniforme, et si pour fixer les idées, on suppose
que la scie tourne à 1500 tours/minute, on obtient

wscie =
1500× 2π

60
= 157, 079 . . . (rad/s).

On peut légitimement considérer que c’est un mouvement circulaire (très)
rapide.

Le mouvement de la terre autour du soleil

Le mouvement de la terre autour du soleil est-il un mouvement circulaire,
et si oui, est-il uniforme ?

Cela demande d’abord une petite recherche de la part des élèves quant
aux propriétés du mouvement des planètes. Il n’est pas bien difficile d’ob-
tenir dans des encyclopédies, ou sur Internet, les informations suivantes
qui suivent.

• Chaque planète se meut sur une orbite elliptique27 dont le soleil est
un des foyers (première loi de Kepler).

• Le rayon reliant le soleil à la planète balaye des aires égales en des
temps égaux (deuxième loi de Kepler).

• L’excentricité28 de l’orbite de la terre autour du soleil est égale à
0, 017.

La très faible excentricité de l’orbite de la terre autour du soleil signifie
que les deux foyers sont quasiment confondus, et qu’il est donc tout à
fait raisonnable de supposer que l’orbite en question est circulaire, avec
le soleil au centre. Dès que cette hypothèse est faite, la deuxième loi de
Kepler implique alors que le mouvement est uniforme, puisque l’aire d’un
secteur circulaire est proportionnelle à l’angle au centre qui le définit. On
calcule alors sans difficulté la vitesse angulaire du mouvement de la terre
autour du soleil

wterre/soleil =
2π

365× 24× 3600
= 1, 9923 . . . 10−7 (rad/s).

Par comparaison avec le cas de la scie, il s’agit ici d’un mouvement circu-
laire uniforme dont la vitesse angulaire est dérisoire.

Ainsi, pour les deux mouvements circulaires uniformes considérés dans la
question, la vitesse angulaire de l’un est très importante, alors que celle

27 Une ellipse peut être définie comme une courbe allongée, apparentée au cercle, qui
s’obtient en coupant un cône circulaire droit par un plan sécant à toutes ses génératrices.
On peut établir que la somme des distances d’un point quelconque d’une ellipse à deux
points fixes – appelés foyers – est constante, et égale à la plus grande corde, ou grand axe,
de l’ellipse. Cette propriété permet de tracer facilement des ellipses suivant le procédé
dit ✭✭ du jardinier ✮✮.

28 L’excentricité d’une ellipse est, par définition, le rapport entre la distance des foyers
et la longueur du grand axe.
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de l’autre semble dérisoire. Mais la vitesse angulaire mise ainsi en scène
ne semble pas être de la même nature que la vitesse du nageur ou de la
balle dans les situations précédentes : elle ne semble pas attachée matériel-
lement au point mobile et ne possède pas les particularités d’une grandeur
vectorielle. . .

Question 14.

À quelle vitesse (instantanée) la terre se déplace-t-elle autour du soleil ?

Quelques stroboscopies. . . virtuelles

La définition même de mouvement circulaire uniforme permet immédiate-
ment de simuler le résultat d’une expérience de stroboscopie pour ce genre
de mouvement, au départ de la description trigonométrique du cercle. Si
le mouvement considéré est de rayon R et de vitesse angulaire w, alors
l’angle parcouru après t unités de temps égale wt, et la position29 du point
mobile à l’instant t est donc décrite par ses équations paramétriques, ou
équations du mouvement :{

x = x(t) = R coswt,
y = y(t) = R sinwt.

Suivant les dimensions en jeu dans le problème, la simulation mène à bien
choisir les unités à utiliser. Par exemple, dans le mouvement de la terre
autour du soleil, la distance moyenne terre/soleil étant de l’ordre de 149·106

km, il sera préférable de prendre comme unité de longueur le million de
kilomètres. Dans ce cas, si une première simulation est réalisée mois par
mois, on posera

wmois =
2π
12

=
π

6
= 0, 5235 . . . (rad/mois)

et les positions de la terre seront les 12 sommets d’un dodécagone régulier.
Chaque nouvelle simulation peut alors amener les élèves à devoir adapter
leurs unités ; par exemple, pour une simulation au jour près,

wjour =
2π
365

= 0, 01721 . . . (rad/jours)

ou à l’heure près,

wheure =
2π

365× 24
= 0, 0007172 . . . (rad/heures).

Pour une simulation au jour près, les positions correspondantes de la terre
dessinent un cercle presque continu (le point représenté en gras dans la
figure ci-dessous est la position de la terre au 46ème jour de l’année).

29 Le repère dans lequel le mouvement est étudié est conforme à la représentation
trigonométrique ou cartésienne usuelle ; dans le cas particulier du mouvement de la
terre autour du soleil, on ne tient donc pas compte ici d’éventuelles conventions utilisées
en astronomie.
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Fig. 45 : La trajectoire de la terre autour du soleil, sur 365 jours.

Cette continuité n’est qu’apparente, comme le montre un agrandissement
de la figure, centré sur ce 46ème jour (cf. la partie gauche de la figure 46).
Le caractère curviligne de la trajectoire reste encore assez bien marqué.
Mais si on réalise une simulation à l’heure près, toujours centrée au même
point, ce caractère curviligne n’est plus perceptible (cf. la partie droite de
la figure 46) : c’est bien un mouvement rectiligne et uniforme qui commence
à apparâıtre !

Fig. 46 : La trajectoire de la terre autour du soleil, sur 20 jours, et sur 20 heures.
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Comme on l’a mis en évidence dans la section précédente, la vitesse du
mouvement rectiligne idéal sous-jacent à une telle simulation est une gran-
deur vectorielle de même nature que la vitesse du nageur, ou de la balle
lancée horizontalement, et associée au déplacement réellement effectué par
le mobile.

Une approximation de la vitesse (instantanée)

Le tableau de valeurs qui a servi à représenter la trajectoire de la terre
autour du soleil à l’heure près, contient tout ce qu’il faut pour calculer
la mesure ou l’intensité de la vitesse de ce mouvement rectiligne presque
uniforme. Par exemple, puisque le 46ème jour correspond à la 46 × 24 =
1 104ème heure d’observation, le tableau

t (en h) x(t) (en 106 km) y(t) (en 106 km)
1 104 104,676594 106,036837
1 105 104,600511 106,11189

permet de calculer l’intensité de la vitesse du mouvement rectiligne cor-
respondant. On a

vr.u.(1 104) =
√

(−0, 076083)2 + (0, 075053)2

= 0, 10687153 . . . (106 km/h) = 106 871, 53 . . . (km/h).

C’est une vitesse extraordinaire ! Y a-t-il (néanmoins) moyen d’être encore
plus précis ?

Question 15.
Quelles sont les caractéristiques géométriques, ou vectorielles, de la vi-
tesse (instantanée) d’un point animé d’un mouvement circulaire uni-
forme ?

La symétrie du cercle à l’œuvre

On devine assez vite que, si un point mobile est animé d’un mouvement cir-
culaire uniforme, alors sa vitesse en n’importe quel point de la trajectoire
doit toujours d’une certaine manière ✭✭ être la même ✮✮. Plus précisément,
cela signifie que si le sens, la direction et l’intensité du vecteur vitesse
sont déterminés en un (seul) point de la trajectoire, ils sont alors déter-
minés en n’importe quel autre point de celle-ci : une rotation appropriée
fait l’affaire. En effet, n’importe quelle chronophotographie d’un point est
toujours équivalente à une chronophotographie d’un autre point (réalisée
à la même fréquence d’éclairs) par une rotation qui amène l’un sur l’autre.

Pour déterminer les caractéristiques géométriques, ou vectorielles, de la vi-
tesse (instantanée) d’un point animé d’un mouvement circulaire uniforme,
il suffit donc de le faire en un seul point de sa trajectoire !

De plus, le calcul de la fin de la question précédente a montré qu’une vitesse
très importante n’est pas pour autant très facile à visualiser. Comme de
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plus tous les cercles sont homothétiques, revenons-en un moment au bon
vieux cercle trigonométrique.

Une limite visuelle

On peut encore faire découvrir la plupart des caractéristiques géométriques
de la vitesse en tant que grandeur vectorielle, à l’aide d’une simulation.

Pour fixer les idées, on considère un mouvement circulaire uniforme de
rayon R = 1 et de vitesse angulaire w = π (rad/s). La position à un
instant t est donc décrite par les équations du mouvement{

x(t) = cosπt,
y(t) = sinπt.

Un tableur tel que EXCEL permet de faire varier très simplement un para-
mètre à l’aide d’une ✭✭ barre de défilement ✮✮, et de visualiser directement le
résultat sur une figure associée à l’ensemble des données. Dans les figures
ci-dessous, on a fait varier le temps t, en l’écrivant sous la forme t = 1

n , où
n est une valeur entière attachée à la barre de défilement, et variant de 1 à
1000. L’extrémité du vecteur décrivant la vitesse du mouvement rectiligne
uniforme correspondant est donné par{

vr.u.x(0) = x(0) + x(t)−x(0)
t = x(0) +

(
x( 1

n)− x(0)
)
· n,

vr.u.y(0) = y(0) + y(t)−y(0)
t = y(0) +

(
y( 1

n)− y(0)
)
· n.

Dans la figure ci-dessous, n = 3 dans la cellule C20.

Fig. 47 : Le début du calcul de la vitesse comme grandeur vectorielle.
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Et dans la suivante, n = 1000 dans la cellule C20.

Fig. 48 : La vitesse, à moins d’un millième de seconde.

On observe déjà que la vitesse est quasiment perpendiculaire à l’horizon-
tale, et que son intensité est très proche de π = 3, 141592654 . . . On peut
reprendre ce genre de simulation en faisant varier les paramètres R, w et t.
À chaque fois, les résultats sont analogues : plus la discrétisation est fine,
et plus le vecteur vitesse se redresse. Et il finit par devenir perpendiculaire
au rayon horizontal, tandis que son intensité tend à se rapprocher de Rw.

La vitesse d’un mouvement circulaire uniforme

En fait, toutes ces observations fournissent aussi les idées principales des
démonstrations qui restent à faire.

Considérons un mouvement circulaire uniforme de rayon R et de vitesse
angulaire w. Représentons

• par M(t) ou M , la position du point mobile à l’instant t ;

• par M(t+ ∆t) ou M ′, la position du point mobile à l’instant t+ ∆t,
∆t est donc l’intervalle de temps nécessaire à parcourir l’arc de cercle
MM ′ ;

• et par −→v (t), la vitesse instantanée du point mobile M(t), considérée
comme grandeur vectorielle.
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O

M(t)
w t

M'

∆

Fig. 49 : Une approximation de la direction de la vitesse
instantanée.

L’examen du triangle isocèle OMM ′ livre la relation

M̂ =
π − w ·∆t

2
=

π

2
− w ·∆t

2
,

qui montre que l’angle M̂ se rapproche de π
2 lorsque l’intervalle de temps

∆t se rapproche de 0. Cela signifie qu’en termes de leurs représentants
géométriques, les vecteurs −→v (t) et −−→OM(t) sont perpendiculaires.

Ainsi, la vitesse d’un mouvement circulaire uniforme est tangente à la
trajectoire de ce mouvement. C’est une propriété facile à observer : par
exemple, lorsqu’on lance une bille le long du bord d’un cerceau et qu’on
relève ce dernier d’un coup, la bille ✭✭ prend la tangente ✮✮, de même lors-
qu’on présente une lame d’outil à une meule, les étincelles s’échappent
tangentiellement, etc.

O

v(t)

M(t)

→

Fig. 50 : La direction de la vitesse instantanée.

Mais il ne faut pas perdre de vue que la justification physique de ce type
de comportement fait appel au principe d’inertie, qui est un principe dy-
namique et qu’on abandonne alors le contexte de la seule cinématique. Par
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ailleurs, même lorsque le mouvement circulaire n’est pas uniforme, sa vi-
tesse est encore tangente à la trajectoire du mouvement. Cela résulte d’un
raisonnement analogue à celui décrit ci-dessus, pourvu que l’angle par-
couru w(t), considéré comme fonction du temps t nécessaire à le parcourir,
devienne proche de 0 lorsque ce temps lui-même est proche de 0, ou plus
précisément, pourvu que cette angle soit une fonction continue du temps t
au voisinage de 0 ; c’est là une hypothèse physiquement très raisonnable !

Un changement de point de vue

Fixons maintenant un repère au centre de la trajectoire circulaire. Nous
pouvons alors écrire

−−→
OM(t) = R (coswt · −→e1 + sinwt · −→e2 ) ,

Effectuons une translation du vecteur −→v (t) au centre de la trajectoire du
mouvement circulaire. Cela revient à changer (littéralement) de point de
vue sur la vitesse, et mérite donc qu’on l’interprète physiquement, ce qui
sera l’objet de la question 16 ci-après. Mais comme cette translation n’a
rien d’étonnant en mathématiques, et qu’elle a déjà été utilisée et justifiée
physiquement dans l’étude des mouvements du nageur et de la goutte
d’eau, elle ne doit pas trop nous inquiéter pour le moment. Ceci dit, le
fait que la vitesse soit perpendiculaire au rayon d’extrémité M(t) implique
qu’il existe une constante k telle que

−→v (t) = k
(
cos

(
wt +

π

2

)
· −→e1 + sin

(
wt +

π

2

)
· −→e2

)
= k (− sinwt · −→e1 + coswt · −→e2 ) .

O

v(t)

M(t)

e

e

wt

wt

1

2

→

→

→

Fig. 51 : La vitesse instantanée, ramenée au centre de la
trajectoire.
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Par identification des modules dans les deux membres de la dernière égalité,
cette constante k ne peut être que l’intensité v(t) de la vitesse instantanée.
Mais l’expérience gagnée lors des simulations, ou – plus mathématique-
ment – la méthode classique de calcul de la longueur de la circonférence
(par polygones inscrits) entrâıne alors

v(t) =
2πR
T

,

où T est le temps nécessaire à parcourir un tour complet.

Une justification un peu plus détaillée peut être présentée de la manière
suivante. Il s’agit de calculer

v(t) ou v = lim
∆t→0

|MM ′|
∆t

.

Or, la méthode de calcul de la longueur de la circonférence par
✭✭ bissection ✮✮ de polygones inscrits établit que, si MM ′ est la corde
qui sous-tend un angle au centre de 360◦

2n

lim
n→∞

2n · |MM ′| = 2πR.

En posant alors ∆t = T
2n , on calcule

v = lim
n→∞

|MM ′|
T
2n

=
1
T
· lim
n→∞

2n |MM ′| = 1
T
· 2πR.

Comme 2π = wT , on peut aussi écrire

v(t) = Rw,

ce qui confirme les résultats des simulations. La vitesse instantanée d’un
mouvement circulaire uniforme, considérée comme grandeur vectorielle,
s’écrit donc finalement

−→v (t) = Rw (− sinwt · −→e1 + coswt · −→e2 ) .

On la qualifie souvent de vitesse linéaire, afin de la distinguer de la vitesse
angulaire.

À un niveau plus avancé, on remarquera que le calcul précédent a établi
de manière géométrico-physique deux formules de dérivation,

(sinwt)′ = w coswt,

et
(coswt)′ = −w sinwt.

Quelques valeurs numériques à comparer

Revenons-en enfin aux exemples de la question 13, pour achever de quan-
tifier les deux notions de vitesse sous-jacentes. Dans le cas du mouvement
de la terre autour du soleil, on a déjà calculé

wterre/soleil =
2π

365× 24× 3600
= 1, 9923 . . . 10−7 (rad/s),
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et comme on sait que R = 149× 109 (m), on obtient pour l’intensité de la
vitesse linéaire

v = Rw = 29686, 53 . . . (m/s) = 106871, 53 . . . (km/h).

C’est presque exactement la valeur calculée lors de la simulation à l’heure
près ! Pour ce qui concerne le mouvement d’une dent de scie circulaire
tournant à 1500 tours/minute, on a obtenu

wscie =
1500× 2π

60
= 157, 079 . . . (rad/s) ;

si on suppose que le rayon de cette scie égale 20 cm, on trouve pour l’in-
tensité de la vitesse linéaire :

v = Rw = 31, 415 . . . (m/s) = 113, 097 . . . (km/h).

Lequel de ces deux mobiles est le plus rapide ? Cela dépend de la notion
de vitesse que l’on sous-entend, mais en termes de déplacement, il n’y a
pas de doute : la terre l’emporte, haut la main !

4.2 Le mouvement de la vitesse

Comment s’y
prendre ?

Les propriétés géométriques de la vitesse linéaire d’un mouvement circu-
laire uniforme sont d’une richesse quasiment inépuisable. On va s’en rendre
compte en revenant à un point qui restait à éclaircir dans le déroulement
de la question précédente.

Question 16.
Lorsqu’on observe du centre de sa trajectoire un point animé d’un mou-
vement circulaire uniforme, comment voit-on sa vitesse varier ?

Quel est le mouvement de la vitesse ?

Effectuer une translation de la vitesse au centre de la trajectoire d’un
mouvement circulaire uniforme a-t-il un sens physique ? En fait, oui : cela
revient à reconstituer le mouvement là où on l’observe. C’est par exemple
ce que réalise (partiellement) un dresseur de chevaux lorqu’il fait travailler
un cheval à la longe autour de lui. Et il est relativement fréquent en astro-
nomie, d’observer du centre de la trajectoire un point animé d’un mouve-
ment assimilé à un mouvement circulaire uniforme, certaines planètes ou
une étoile proche par exemple. En fait, on reconstitue ainsi à l’endroit où
on réalise les observations, une portion du mouvement rectiligne uniforme
idéal de l’objet observé, en effectuant une translation vers le centre de la
trajectoire de cette portion de mouvement rectiligne. Dans le cas du dres-
seur de chevaux, la longe figure bien le rayon (mobile) le long duquel la
translation peut s’imaginer.

On obtient ainsi une grandeur vectorielle −→OV (t) physiquement équivalente
à la vitesse du point mobile M(t),

−→v (t) = −→OV (t).
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Or, – et c’est là une observation majeure ! – comme le point mobile tourne,
le vecteur −→OV (t) tourne donc lui aussi ! On appelle hodographe30 l’ensemble
des extrémités V (t) des vitesses, après translation au centre de la trajec-
toire.

La caractérisation géométrique du vecteur vitesse implique immédiatement
que l’hodographe d’un mouvement circulaire uniforme est un cercle.

O

V(t)

M(t)

Fig. 52 : Le mouvement de la vitesse, rapporté au centre de la trajectoire.

Plus précisément, si le point mobile M(t) est animé d’un mouvement cir-
culaire uniforme de rayon R et de vitesse angulaire w, le point (imaginaire,
et néanmoins) mobile V (t) sera lui aussi animé d’un mouvement circulaire
uniforme
• de rayon Rw,
• de la même vitesse angulaire w,
• mais en avance (ou déphasé, comme disent les physiciens) de π

2 ra-
dians sur le mouvement du point M(t),

puisqu’on sait que le vecteur vitesse −→v (t) est perpendiculaire au vecteur−−→
OM(t), et d’intensité égale à Rw.

L’accélération d’un mouvement circulaire uniforme

Ce qui a si parfaitement fonctionné une première fois suggère bien vite
qu’on le répète, même si l’idée peut parâıtre bizarre : puisque la vitesse
d’un mouvement circulaire uniforme peut être considérée comme étant
elle-même soumise à un mouvement circulaire uniforme, quelle en est. . . la
vitesse ?

Bien sûr, il n’est pas très facile d’imaginer ce que représente physique-
ment cette vitesse-là, surtout lorsqu’on se situe au centre de la trajectoire

30 Sous cette forme, la notion semble due à W. R. Hamilton (1805-1865). L’hodographe
correspond, en géométrie, à ce qu’on appelle parfois l’application de Gauss.
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du mouvement circulaire. . . Par contre, son interprétation dynamique (à
un facteur près, en terme de force centripète) est assez immédiate mais
échappe encore une fois au contexte cinématique privilégié ici.

En tout cas, si cette ✭✭ vitesse de la vitesse ✮✮ semble à première vue in-
congrue, c’est qu’il faut peut-être d’abord revenir un peu sur la notion
d’accélération moyenne, comme mesure de la variation de la vitesse par
unité de temps ou mieux encore, sur la notion d’accélération instantanée,
qu’on peut effectivement définir comme la vitesse instantanée de la vitesse
instantanée. Un retour sur la signification de la constante g dans le mou-
vement de la goutte d’eau étudié plus haut, peut aussi illustrer ce point de
vue.

Ceci rappelé, l’accélération d’un mouvement circulaire uniforme peut donc
bien se définir comme la vitesse (appliquée au point mobile) de la vitesse du
mouvement. En vertu de tout ce qui précède, c’est une (nouvelle) grandeur
vectorielle, caractérisée par :

• son point d’application, c’est-à-dire le point mobile M(t) ;

• sa direction, qui est celle du rayon OM(t), puisqu’elle doit être per-
pendiculaire à la direction de la vitesse −→v (t), qui est elle-même per-
pendiculaire à ce rayon ;

• son sens, opposé à celui de −−→OM(t), puisque l’angle correspondant est
déphasé deux fois de π

2 ;

• son intensité, encore obtenue comme produit du rayon de la trajec-
toire, ici égal à Rw par la vitesse angulaire w, et qui vaut donc Rw2.

Un exemple rassurant

Pour ne donner qu’un exemple de calcul de cette accélération, considérons
le mouvement de la terre autour de son axe de rotation (pôle nord — pôle
sud), pour une ville située à 50◦ de latitude nord, le centre de la terre étant
supposé fixe. La vitesse angulaire de rotation vaut

w =
2π

24× 3600
= 7, 2722 . . . 10−5 (rad/s).

Comme le rayon moyen de la terre égale R = 6378 (km), le rayon de l’orbite
circulaire de la ville en question s’obtient par : r = R sin 50◦ = 4885, 83 . . .
(km). On calcule ensuite

v = rw = 355, 307 . . . (m/s) = 1279, 1 . . . (km/h),

a = rw2 = 0, 0258 . . . (m/s2).

À titre de comparaison, on vérifie facilement que cette accélération, due à
la rotation de la terre sur elle-même, est négligeable par rapport à l’accé-
lération de la pesanteur

a

g
≈ 1

380
.
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Vers une autre histoire. . . ?

Ce dernier résultat permet de donner une explication géométrique – termes
d’une généralisation de ce transport parallèle mis en évidence dans le pro-
blème du nageur – du résultat de la célèbre expérience de L. Foucault sous
le dôme du Panthéon en 1851. Ce n’est pas l’endroit ici de détailler cette
explication, aussi belle soit-elle, mais on peut savoir qu’elle est due au ma-
thématicien autrichien J. Radon, dont l’article original est reproduit dans
F. Klein, Vorlesungen über Höhere Geometrie, J. Springer Verlag, Berlin,
1926.

Mais tout cela, c’est déjà une autre histoire. . .
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Fiche 48 : Les problèmes 25 et 27 du papyrus Rhind 471

Problème 25

Problème 27



472 Fiche 49 : Extrait du texte attribué à Abraham ibn Ezra (en latin)

Liber augmenti et diminutionis vocatus numeratio divinationis, ex eo quod sapientes
Indi posuerunt, quem Abraham compilavit et secundum librum qui Indorum dictus

est composuit.

Hic post laudem Dei inquit. Compilavi hunc librum secundum quod sapientes Indorum adinve-
nerunt de numeratione divinationis, utilem in ipso consideranti et studenti, et perseveranti in
eo, et intelligenti ejus intentionem. Ex eo igitur est : est census de quo ejus tertia dempta, et
quarta, fuit octo quod remansit. Quantus est census ? Capitulum numerationis ejus est ut ex
duodecim assumas lancem ; et tertia et quarta ex eo consurgunt, et demas ejus tertia et quarta,
que sunt septem, et remanebit quinque. Per ipsum igitur oppone octo, residuum scilicet census et
apparebit te jam errasse per tria diminuta : serva ea, deinde assume lancem secundam a prima
divisam, que sit ex viginti quattuor, et deme ejus tertiam et quartam que sunt quattuordecim,
et remanebit decem. Oppone ergo per eum octo residuum scilicet census. Apparet itaque te jam
errasse per duo addita. Multiplica igitur errorem lancis postreme qui est duo in lancem primam,
que est duodecim, et perveniet 24. Et multiplica errorem lancis prime, qui est tria, in lancem
postremam, que est 24, et erit 72. Aggrega ergo 24 et 72, eo quod unus error est diminutus et
alter additus. Si enim utrique essent diminuti aut additi demeres minus ex majore. Postquam
ergo aggregasti viginti quattuor et septuaginta duo, fuerit quod aggregatum est nonaginta sex,
deinde aggrega duos errores qui sunt tria et duo, et perveniet quinque ; deinde igitur nonaginta
sex per quinque qui est ille ex quo pervenit, et perveniet tibi decem et novem dragme et quinta
dragme.

Hec propterea regula est ut ponas duodecim rem ignotam et demas ejus tertiam et quartam, et
remanebit quinque donec redeat duodecim ? Ipse enim est res ignota. Illud autem est duo et due
quinte : multiplica igitur duo et duas quintas in octo et erit decem et novem et quinta.
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Livre sur l’agrandissement et la diminution nommé le calcul de la conjecture d’après
ce que les sages de l’Inde ont établi et qu’Abraham a rassemblé et composé selon le

livre appelé indien.

Après la louange à Dieu, voici ce qu’il est dit. J’ai écrit ce livre selon ce que les sages de l’Inde
ont découvert à propos du calcul de la conjecture, en examinant attentivement et en étudiant ce
qui est utile en soi, en persévérant dans cette direction et en en saisissant l’application pratique.
De cela donc, voici ce qu’il vient : soit un census31 duquel on ôte un tiers et un quart et il reste
huit. Que vaut le census ? Pour aborder son calcul, suppose un plateau de balance de douze
dont on considère un tiers et un quart ; tu ôtes ce tiers et ce quart qui font sept, il restera cinq.
Compare alors à huit, à savoir le reste du census et il t’apparâıtra clairement que tu as fait une
erreur de trois en déficit : mets cela de côté et suppose ensuite que tu places sur le plateau de
la balance une seconde quantité, qui est divisée parremière, que ce soit vingt-quatre, et ôte le
tiers et le quart qui font quatorze, il restera dix. Compare alors cela à huit, à savoir le reste du
census. Et c’est ainsi qu’il t’apparâıtra clairement que tu as commis une erreur de deux en plus.
Multiplie donc l’erreur du dernier plateau de la balance qui vaut deux par le premier plateau
qui vaut douze et il viendra 24. Et multiplie l’erreur du premier plateau, erreur qui vaut trois,
par le dernier plateau, qui vaut 24, et on obtiendra 72. Additionne donc 24 et 72, et cela car
l’une des erreurs est par défaut et l’autre par excès. Mais si les deux étaient par défaut ou par
excès, tu soustrairais la plus petite de la plus grande. Donc après avoir ajouté vingt-quatre et
septante-deux, le résultat sera nonante-six ; ensuite ajoute les deux erreurs qui valent trois et
deux, il viendra cinq ; ensuite donc nonante-six par cinq qui est ce à quoi on est arrivé, il te
viendra dix-neuf drachmes et un cinquième de drachme.

Par cette règle, il s’ensuit que tu poses douze pour la chose inconnue et tu ôtes son tiers et son
quart et il restera cinq ; comment récupérer douze ? La chose effectivement inconnue. Il faut en
fait deux et deux cinquièmes : multiplie donc deux et deux cinquièmes par huit et il viendra
dix-neuf et un cinquième.

31 Terme désignant le carré de l’inconnue recherchée.
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De homine qui emit aves triginta trium generum pro denariis 30

Quidam emit aves 30 pro denariis 30. In quibus fuerunt perdices, columbe et passeres. Perdices
vero emit denariis 3 ; columba denariis 2 et passeres 2 pro denario 1, scilicet passer 1 pro denariis
1
2 . Queritur quot aves emit de unoquoque genere. Divide denarios 30 per aves 30 exibit denarius
1. Dic ergo habeo monetam ad 1

2 , et ad 2, et ad 3 ; et volo facere monetam ad 1. In similibus
enim questionibus procedendum est per modum consolationum, ut habeamus integros numeros
avium. Quare ut species viliorum avium equetur spetiebus cariorum multitudinem dicas : habeo
monetam ad 1

2 , et ad 2 et ad 3 et volo facere monetam ad 1, hoc est. Habeo monetam ad 1 et ad
4 et ad 6 et volo facere monetam ad 2. Fac ex passeribus et perdicibus primam consolationem ;
et erunt aves 5 pro denariis 5 scilicet passeres 4 et perdix 1 ; et de passeribus cum columbis fac
secundam ; et habebis 3 aves pro denariis 3, scilicet passeres 2 et columbam 1. Deinde ut habeas
aves 30 consolatas mittes primam consolationem ter in quibus erunt passeres 12 et perdices 3. Et
remanebunt aves 15 consolate. Pro quibus mittes secundam consolationem quinquies et habebis
passeres 10 et columbas 5. Et sic in predictis avibus 30 erunt passeres 22 et columbe 5 et perdices
3 ut in questione ostenditur. Et scias quia de suprascriptis potes habere aves sanas quantas
voluerit pro totidem denariis ultra 15 sed infra 15 non possunt haberi aves nisi 13 et 11 et 8.
Nam in avibus 13 cadit prima consolatio bis et secunda semel. Et in avibus 11 cadit secunda
consolatio bis et prima semel. Et in avibus 8 cadit unaqueque consolatio semel.
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De l’homme qui a acheté trente oiseaux de trois espèces pour 30 deniers.

Quelqu’un a acheté 30 oiseaux pour 30 deniers, parmi lesquels il y a des perdrix, des colombes et
des moineaux. En fait, il a acheté les perdrix pour 3 deniers, les colombes pour 2 et 2 moineaux
pour 1 denier, à savoir 1 moineau pour 1

2 denier. On demande combien d’oiseaux de chaque
espèce il a achetés. Divise 30 deniers par 30 oiseaux, il viendra 1 denier. Je dis donc que j’ai
de l’argent-monnaie à 1

2 et à 2 et à 3 ; et je veux faire de l’argent-monnaie à 1. En effet, dans
de semblables questions, nous devons procéder par la méthode des compensations, puisque nous
avons un nombre entier d’oiseaux. C’est pourquoi, pour que l’espèce des oiseaux les moins chers
soit compensée en nombre par les espèces plus chères, tu dois dire : j’ai de l’argent-monnaie à 1

2
et à 2 et à 3 et je veux faire de l’argent-monnaie à 1, c’est-à-dire j’ai de l’argent-monnaie à 1 et
à 4 et à 6 et je veux faire de l’argent-monnaie à 2. Fais des moineaux et perdrix une première
compensation et il y aura 5 oiseaux pour 5 deniers, à savoir 4 moineaux et 1 perdrix ; et, des
moineaux avec les colombes, fais-en une seconde ; et tu auras 3 oiseaux pour 3 deniers, à savoir
2 moineaux et 1 colombe. Ensuite, pour avoir 30 oiseaux compensés, tu prendras trois fois la
première compensation dans laquelle il y aura 12 moineaux et 3 perdrix. Et il restera 15 oiseaux
compensés, pour lesquels tu prendras cinq fois la seconde compensation et tu auras 10 moineaux
et 5 colombes. Et ainsi, en ce qui concerne les 30 oiseaux dont il a été question auparavant, il y
aura 22 moineaux et 5 colombes et 3 perdrix, comme il est montré en marge. Et tu dois savoir
que, de ce qui est suscrit, tu peux avoir autant d’oiseaux qu’on voudra pour la même quantité
de deniers au-delà de 15, mais en deçà, ce n’est pas possible, si ce n’est pour 13 et 11 et 8. En
vérité, dans le cas des 13 oiseaux, la première compensation apprâıtra deux fois et la seconde,
une fois. Et pour 11 oiseaux, la seconde compensation apparâıtra deux fois et la première, une
fois. Et pour 8 oiseaux, chacune des compensations apparâıtra une fois.
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478 Fiche 55 : Réseau de parallélogrammes
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480 Fiche 57 : Quatre points sur un quadrillage
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482 Fiche 59 : Trois points sur un réseau triangulaire
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484 Fiche 61 : Multiplication d’un déplacement par un scalaire
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488 Fiche 65 : Coordonnées et composantes
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Construire la section du cube de la figure ci-dessous par le plan PQR, où P est situé sur l’arête
[AB] au tiers à partir de A, Q est situé au milieu de l’arête [BC], et R est situé au milieu
de l’arête [CC ′]. On demande ensuite de déterminer les coordonnées de tous les sommets de
cette section, après avoir choisi un repère approprié.

P

Q

R

A B

D C

A© B©

D© C©



490 Fiche 67 : Point de percée d’une droite dans une face d’un tétraèdre

On considère le tétraèdre ABCD, R le point situé sur l’arête [AD] au tiers à partir de D et E
le point du plan ABC tel que BACE forme un parallélogramme. On demande de déterminer
le point de percée P de la droite RE dans la face BCD, de situer ce point avec précision sur
la droite RE et dans la face BCD en utilisant un repère approprié.
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Fiche 68 : Proposition 12 et 13 des Éléments d’Euclide 491

<II.12> In his triangulis qui obtusum habent angulum tanto ea que obtusum subtendit angulum
ambobus lateribus amplius potest que obtusum continent angulum, quantum est quod tenetur
bis sub uno eorum atque ea que sibi directe iuncta ad obtusum angulum a perpendiculari extra
deprehenditur.

AD C

B

Ex IIIIa secundi atque penultima Ii huius argumentum elicies.

<II.13> Omnis oxigonii tanto ea que acutum respicit angulum ambobus lateribus angulum
acutum continentibus minus potest, quantum est quod bis continetur sub uno eorum cui per-
pendicularis intra superstat eaque sui parte que perpendiculari anguloque acuto interiacet.

DB C

A

Ex VIIa secundi atque penultima Ii argumentare ducta perpendiculari ab angulo supremo ad
basim.



492 Fiche 69 : Proposition 12 des Éléments d’Euclide, traduction de Vitrac

Euclide - Les Éléments - Livre II, proposition 12.

12

Dans les triangles obtusangles, le carré sur le côté sous-tendant l’angle obtus est plus grand que
les carrés sur les côtés contenant l’angle obtus de deux fois le rectangle contenu par celui des
côtés de l’angle obtus sur lequel tombe la perpendiculaire et par la droite découpée à l’extérieur
par la perpendiculaire au-delà de l’angle obtus.

AD C

B

Soit le triangle obtusangle ABC ayant l’angle sous BAC obtus, et, qu’à partir du point B soit
menée BD, perpendiculaire sur CA, prolongée. Je dis que le carré sur BC est plus grand que
les carrés sur BA, AC de deux fois le rectangle contenu par CA, AD.

En effet, puisque la droite CD a été coupée au hasard au point A, le carré sur DC est donc
égal aux carrés sur CA, AD et deux fois le rectangle contenu par CA, AD (II. 4). Que celui sur
DB soit ajouté de part et d’autre. Les carrés sur CD, DB sont donc égaux aux carrés sur CA,
AD, DB, et à deux fois le rectangle contenu par CA, AD. Mais d’une part ceui sur CB est égal
à ceux sur CD, DB ; en effet l’angle en D est droit (I. 47). Et d’autre part celui sur AB est
égal à ceux sur AD, DB. Donc le carré sur CB est égal aux carrés sur CA, AB et deux fois le
rectangle contenu par CA, AD. De sorte que le carré sur CB est plus grand que les carrés sur
CA, AB de deux fois le rectangle contenu par CA, AD.

Donc dans les triangles obtusangles, le carré sur le côté sous-tendant l’angle obtus est plus grand
que les carrés sur les côtés contenant l’angle obtus de deux fois le rectangle contenu par celui des
côtés de l’angle obtus sur lequel tombe la perpendiculaire et par la droite découpée à l’extérieur
par la perpendiculaire au-delà de l’angle obtus. Ce qu’il fallait démontrer.
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Euclide - Les Éléments - Livre II, proposition 13.

13

Dans les triangles acutangles, le carré sur le côté sous-tendant l’angle aigu est plus petit que les
carrés sur les côtés contenant l’angle aigu de deux fois le rectangle contenu par celui des côtés
de l’angle aigu sur lequel tombe la perpendiculaire et par la droite découpée à l’intérieur par la
perpendiculaire en-deçà de l’angle aigu.

DA C

B
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Annexe IV

Ce qu’il faut savoir du PostScript

1 Calculer

1.1 L’ordre des opérations

L’ordre dans lequel on écrit les opérations n’est pas le même en PostScript
que dans l’écriture mathématique courante. Ceci peut parâıtre un inconvé-
nient dans la mesure où il est nécessaire de modifier des habitudes ancrées
depuis l’école primaire. Mais cet inconvénient peut, en fait, être vu comme
un avantage. De la même manière que pratiquer une langue étrangère aide
à relativiser sa propre culture, pratiquer une autre formalisation du lan-
gage mathématique de base permet de relativiser la formalisation usuelle
et de faire l’expérience de l’aspect purement conventionnel de ce type de
notation.

Le PostScript, de même que d’autres langages informatiques, travaille avec
ce qu’on appelle une pile. Il s’agit par exemple d’une pile de papiers (et
non d’une pile électrique). On ne dépose des papiers qu’au-dessus de la
pile. On ne prend en général – il y a des exceptions dans la réalité et aussi
dans le PostScript – que ce qui est au-dessus. Lorsque l’on veut faire le
calcul

3 + 4

en PostScript, on place 3 dans la pile, on place 4 et on additionne les deux
derniers éléments de la pile

3 4 add

Lors de cette opération, le 3 et le 4 sont supprimés de la pile, et le résultat
du calcul est placé dans la pile. Ce principe reste le même pour toutes les
opérations. On place le nombre d’arguments nécessaires dans la pile. On
écrit l’opération à faire. Les arguments sont effacés et le résultat est placé
dans la pile.

Voici quelques exemples de calcul

(a) 3 + 4 + 5 : 3 4 add 5 add ou 3 4 5 add add

La première manière correspond à (3+4)+5, la deuxième à 3+(4+5).

(b) 6(5− 9) : 6 5 9 sub mul

(c) −5+6
8 : 5 6 add 8 div neg

(d) 9−8
5−3 : 9 8 sub 5 3 sub div
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Chaque opérateur PostScript possède un nombre fixe d’arguments. L’opé-
rateur en avale autant qu’il en a besoin. Ces arguments sont donc retirés
de la pile l’un après l’autre, toujours en commençant par le dernier.

1.2 Les opérateurs arithmétiques

Voici les principaux opérateurs arithmétiques32.

add Additionne les deux éléments supérieurs de la pile en les avalant et place
le résultat au sommet de la pile.

État de la pile avant État de la pile après

1 2 3 1 5

sub Effectue la soustraction des deux éléments supérieurs de la pile en les
avalant et place le résultat au sommet de la pile.

État de la pile avant État de la pile après

1 2 3 1 -1

neg Change le signe de l’élément supérieur de la pile.

État de la pile avant État de la pile après

1 2 3 1 2 -3

mul Multiplie les deux éléments supérieurs de la pile en les avalant et place le
résultat au sommet de la pile.

État de la pile avant État de la pile après

1 2 3 1 6

div Effectue la division des deux éléments supérieurs de la pile en les avalant
et place le résultat au sommet de la pile.

État de la pile avant État de la pile après

1 2 3 1 0.66...

1.3 Gestion de la pile

Certains opérateurs sont destinés à la gestion de la pile. Il y a, par exemple,
l’opérateur exch qui échange les deux derniers éléments de la pile et l’opé-
rateur dup qui duplique le dernier élément de la pile.

32 Concernant la représentation des piles, voir la note 4 à la page 358.
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exch Échange les deux derniers éléments de la pile.

État de la pile avant État de la pile après

1 2 3 1 3 2

dup Duplique le dernier élément de la pile.

État de la pile avant État de la pile après

1 2 3 1 2 3 3

2 Opérateurs pour le dessin

2.1 Définir des chemins

Un dessin est délimité par un chemin, en anglais path. Un chemin est
constitué d’un point de départ et d’une suite de lignes, droites ou courbes.
Une fois le chemin décrit, on peut le tracer (stroke) ou le remplir (fill).
L’endroit du chemin où l’on est arrivé est appelé point courant.

newpath Définit un nouveau chemin. Après cet opérateur, le point courant n’est
plus défini.

moveto Détermine le point de départ d’un chemin. Il prend deux arguments dans
la pile : ce sont les coordonnées du point où commence le chemin.

lineto Ajoute un segment de droite au chemin. Le point de départ est le point
courant. Il prend deux arguments dans la pile : ce sont les coordonnées de
l’extrémité de ce segment.

closepath Termine le chemin en ajoutant un segment entre le point courant et le
point de départ du chemin. Il ne prend pas d’arguments dans la pile.

arc Ajoute au chemin courant un arc de cercle. Il prend cinq arguments dans
la pile : les deux coordonnées du centre, le rayon, l’angle de départ (par
rapport à l’horizontale) et l’angle de fin.

2.2 Dessiner

stroke Trace un chemin dans la couleur courante. Il ne prend pas d’arguments
dans la pile. Par défaut, la couleur est noire.

fill Remplit un chemin avec la couleur courante. Il ne prend pas d’arguments
dans la pile. Par défaut, la couleur est noire.
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setgray Définit un niveau de gris comme couleur courante à utiliser pour le tracé
des chemins ou leur remplissage. Il prend un argument numérique dans la
pile. Le noir est donné par le niveau 0, le blanc par 1, et les niveaux de gris
intermédiaires par une valeur entre 0 et 1. On peut considérer le niveau de
gris comme le rapport entre le nombre de pixels blancs et le nombre total
de pixels d’une surface. Par défaut, le niveau de gris est mis à 0.

2.3 Modifier le système d’axes

Au départ, l’origine du système de coordonnées est toujours le coin inférieur
gauche de la feuille et les deux axes sont les bords de la feuille. L’unité sur
les deux axes vaut 1

72 pouce. Tout cela peut être modifié. Les modifications
successives s’enchâınent les unes aux autres.

translate Déplace l’origine du système de coordonnées. Il prend deux arguments dans
la pile : le déplacement horizontal et le déplacement vertical.

rotate Fait tourner les axes. Il prend un argument dans la pile : l’angle de rota-
tion en degrés. Lorsque l’angle est positif, le sens de rotation est le sens
trigonométrique.

scale Met à l’échelle les unités sur chacun des axes du système de coordonnées.
Il prend deux arguments dans la pile : les facteurs d’échelle sur chacun des
deux axes (ces facteurs peuvent être différents).

3 Définir des variables et de nouveaux opérateurs

3.1 Définir des variables

Le contenu de chaque niveau de la pile peut non seulement être une valeur
numérique mais aussi un nom, ce qui permet de définir des variables.

Pour mettre un nom dans la pile il faut écrire le nom précédé de /. Par
exemple, /Nom met Nom au dessus de la pile. Par contre, lorsque l’on écrit
simplement Nom, c’est exactement la même chose que d’écrire le contenu
de Nom.

Si l’on souhaite attribuer la valeur 3 à la variable a, il faut introduire :

/a 3 def.

Regardons les différentes étapes :

États successifs de la pile

/a a

3 a 3

def
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Après cela, c’est la variable a qui contient la valeur 3, et écrire a, c’est
écrire 3, c’est-à-dire mettre 3 dans la pile :

État de la pile avant État de la pile après

3

On peut bien sûr définir une variable comme résultat d’un calcul :

/b a dup mul def

met le carré de a dans b. Regardons cela en détail :

États successifs de la pile

/b b

a b 3

dup b 3 3

mul b 9

def

Il est très utile de pouvoir mettre dans une variable une valeur qui est déjà
dans la pile. On peut le faire en utilisant l’opérateur exch qui permet de
mettre les arguments dans le bon ordre pour l’utilisation de l’opérateur
def. Par exemple :

a dup mul /b exch def :

États successifs de la pile

a 3

dup 3 3

mul 9

/b 9 b

exch b 9

def

3.2 Définir de nouveaux opérateurs

Lorsque l’on écrit une suite d’instructions (nombres, opérateurs ou noms
de variables) entre des accolades, ce n’est pas le résultat de cette suite
d’instructions qui est placé dans la pile, mais bien la suite d’instructions
elle-même. De cette manière il est possible de définir de nouveaux opéra-
teurs. Il suffit de mémoriser une telle suite d’opérations dans un nom de
variable. Lorsque l’on introduira par la suite le nom de cette variable, ce
sera exactement comme si l’on écrivait cette suite d’instructions, qui sera
donc exécutée à ce moment.

Voici par exemple une fonction permettant de définir le carré d’un nombre :
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/carre {dup mul} def.

Le détail donne :
États successifs de la pile

/carre carre

{dup mul} carre {dup mul}

def

Lorsque par la suite on introduit par exemple

5 carre,

cela revient à introduire

5 dup mul.

4 Les listes

Voici quelques opérateurs qui sont utilisés soit directement, soit dans les
macros permettant de travailler avec des vecteurs.

length Donne le nombre d’éléments d’une liste.

État de la pile avant État de la pile après

[1 2 3 4] 4

get Met dans la pile un élément d’une liste (array). Il prend deux arguments
dans la pile : une liste et un indice. Le premier indice est donné par 0.

État de la pile avant État de la pile après

[1 2 3 4] 2 3

array Crée une liste vide. Cet opérateur prend un argument : la longueur de la
liste à créer.

État de la pile avant État de la pile après

2 [· ·]

astore Place des éléments de la pile dans une liste.

Par exemple,

4 3 2 1 4 array astore :
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États successifs de la pile

-6 8

4 3 2 1 4 -6 8 4 3 2 1 4

array -6 8 4 3 2 1 [· · · ·]
astore -6 8 [4 3 2 1]

aload Place les éléments d’une liste dans la pile et recopie la liste dans la pile.
Par exemple,

[1 2 3] aload :

États successifs de la pile

-5

[1 2 3] -5 [1 2 3]

aload -5 1 2 3 [1 2 3]

5 Opérateurs de contrôle

repeat Permet de répéter un certain nombre de fois des instructions. Elle demande
deux arguments. Le premier est un nombre entier ; c’est le nombre de fois
qu’il faut exécuter les instructions. Le deuxième est la suite des instructions
à répéter. Ils doivent être mis entre accolades :

n { ... } repeat

forall Permet d’appliquer une suite d’instructions à tous les éléments d’une liste.

[. . . .] { ... } forall





Annexe V

Macros PostScript pour les vecteurs

/Add {/@a2 exch def dup /@a1 exch def
length /@l exch def /@i 0 def
@l {@a1 @i get @a2 @i get add /@i @i 1 add def} repeat
@l array astore} def

/Sub {/@a2 exch def dup /@a1 exch def
length /@l exch def /@i 0 def
@l {@a1 @i get @a2 @i get sub /@i @i 1 add def} repeat
@l array astore} def

/Mul {/@a exch def
dup length /@l exch def
{@a mul} forall
@l array astore} def

/Div {/@a exch def
dup length /@l exch def
{@a div} forall
@l array astore} def

/Neg {-1 exch Mul} def

/e1 [1 0] def
/e2 [30 cos 30 sin] 0.5 Mul def
/e3 [0 1] def

/Perspective {/@v exch def
e1 @v 0 get Mul
e2 @v 1 get Mul Add
e3 @v 2 get Mul Add} def

/Coordonnees {dup length 3 eq {Perspective} if aload pop} def

/Moveto {Coordonnees moveto} def
/RMoveto {Coordonnees rmoveto} def
/Lineto {Coordonnees lineto} def
/RLineto {Coordonnees rlineto} def
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/RayonPoint 5 def
/Point {gsave

newpath
Coordonnees RayonPoint 0 360 arc fill
grestore} def



Annexe VI

Point de percée d’une droite dans un plan

La macro PPDP (Point de Percée d’une Droite dans un Plan) est donnée ici
sans commentaires. Ceux-ci seront ajoutés dans une version ultérieure.

/PPDP {/E@ppdp exch def /D@ppdp exch def /C@ppdp exch def
/B@ppdp exch def /A@ppdp exch def
/AB@ppdp B@ppdp A@ppdp Sub def
/AC@ppdp C@ppdp A@ppdp Sub def
/fX {A@ppdp Sub /AX@ppdp exch def

AX@ppdp 0 get AB@ppdp AC@ppdp detyz mul
AX@ppdp 1 get AB@ppdp AC@ppdp detzx mul add
AX@ppdp 2 get AB@ppdp AC@ppdp detxy mul add
} def

/fD@ppdp D@ppdp fX def
/fE@ppdp E@ppdp fX def
D@ppdp fE@ppdp Mul E@ppdp fD@ppdp Mul Sub
fE@ppdp fD@ppdp sub Div
} def
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Aspects historiques et épistémologiques des vecteurs
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La naissance des vecteurs :

un survol historique

Il n’est pas toujours facile d’avoir accès aux textes originaux qui témoignent de l’émergence d’un
concept mathématique. Plutôt que d’écrire une introduction historique, nous avons préféré laisser la
parole à quelques auteurs qui ont collaboré aux débuts du calcul vectoriel : Caspar Wessel, Jean-
Robert Argand, Giusto Bellavitis, Peter-Guthrie Tait et Charles-Ange Laisant. Le lecteur
dispose ainsi d’un début d’anthologie sur le sujet. Le choix des textes met en évidence la préoccu-
pation majeure de chaque auteur à son époque : décrire simplement un déplacement c’est-à-dire
une grandeur d’une autre espèce qu’un nombre réel, en fait quelque chose qui possède à la fois une
direction, un sens et une longueur. Argand les appelle lignes en direction ou lignes dirigées, Tait
les nomme vecteurs et Bellavitis les désigne par le terme droites.

Ce recueil de textes éclaire de manière significative les options qui ont dicté notre démarche dans les
activités de mise en place du calcul vectoriel. La corrélation très étroite qui, dès le départ, allie les
concepts de nombre complexe et de vecteur, nous a incité à montrer, dans l’esprit de Bellavitis,
comment faire facilement et simplement de la géométrie avec les nombres complexes.

En effet, lorsque l’on tente de remonter aux origines des vecteurs, on se heurte inévitablement
au souci qu’avaient les mathématiciens de l’époque de donner un sens aux quantités imaginaires.
Cela débouche sur la représentation géométrique des complexes et sur leur généralisation à quatre
dimensions, les quaternions.

Peter Guthrie Tait (1831-1901) fut, durant quarante ans, professeur de philosophie naturelle à
l’université d’Édimbourg. Il était l’ami de William Thomson (Lord Kelvin) et de William Ha-
milton, inventeur des quaternions. Tait lui-même a écrit un Traité élémentaire des quaternions
qui parut en 1867. Dans sa préface, il témoigne :

Sir W. Hamilton, peu de jours avant sa mort, m’engagea vivement à hâter la rédaction de mon
travail et à le publier dans le plus bref délai.
Le sien était à la veille de parâıtre. . .

L’intérêt de cet ouvrage réside dans le fait qu’en plus de l’exposé de la théorie, il retrace brièvement
l’historique du concept de vecteur.

Ainsi, au chapitre premier – Des vecteurs et de leur composition – nous trouvons :
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1. Durant plus d’un siècle et demi, la représentation géométrique des quantités algébriques, soit
négatives, soit imaginaires, −1 et

√
−1 (ou, selon la manière d’écrire, − et − 1

2 , préférée par
d’autres), a formé un sujet favori de spéculation parmi les mathématiciens. L’essentiel de tous
les procédés proposés consiste dans l’emploi des symboles ci-dessus pour désigner la direction et
non la longueur d’une ligne droite.
2. À ce sujet, on s’est depuis longtemps mis en possession du principe d’après lequel, en mesurant
les quantités positives le long d’une droite fixe dans un certain sens de sa direction, on devra
mesurer les quantités négatives dans le sens de direction opposée de la même droite. Cette
convention, en elle-même légitime et utile, forme la base de la méthode géométrique de Descartes,
et elle est constamment mise en pratique dans les questions de la Géométrie analytique et dans
les Mathématiques appliquées à la Physique.
3. Wallis, vers la fin du XVIIe siècle, proposa de représenter les racines impossibles d’une équation
quadratique en allant au dehors de la droite, sur laquelle on aurait porté les valeurs des racines
si elles avaient été réelles. Sa construction revient à donner au symbole

√
−1 la signification de

l’unité de longueur menée perpendiculairement à la droite sur laquelle sont portées les quantités
réelles.

Nous avons reproduit, en annexe aux pages 555 à 558, un extrait du texte de Wallis [1685] auquel
Tait fait allusion. Tait poursuit alors en ces termes :

4. En faisant usage des notations ordinaires de la Géométrie analytique à deux dimensions et en
employant deux axes rectangulaires, nous pourrons définir le principe en question de la manière
suivante : sur Oy l’unité de longueur sera représentée par

√
−1, sur Oy′ par −

√
−1 ; par contre,

sur Ox elle le sera par +1 et sur Ox′ par −1.
Si nous disposons ces quatre quantités dans un ordre circulaire, savoir dans l’ordre dans lequel
elles se succéderont lorsqu’on les parcourt à l’aide d’une rotation dans le sens positif (et nous
adopterons pour cela le sens opposé à celui du mouvement des aiguilles d’une montre), nous
aurons la série

+1,
√
−1, −1, −

√
−1.

Dans cette série, chacun des termes se déduit du précédent par la multiplication de ce dernier
par le facteur

√
−1. Nous sommes ainsi en droit de conclure que

√
−1 est un opérateur, dont

l’application agit d’une manière analogue à celle d’une manivelle qui ferait tourner d’un angle
de 90◦, et dans le sens positif, toute ligne droite passant par l’origine et assujettie à se mouvoir
dans le plan des xy.
5. D’après cette manière de voir, la position d’un point dans le plan se trouve déterminée par
la donnée d’une seule expression imaginaire. C’est ainsi que a + b

√
−1 pourra être considéré

comme la simple représentation d’un point dont les coordonnées sont a et b. Mais on pourra
tout aussi bien se servir de l’expression en question pour la représentation de la droite menée de
l’origine au point dont il s’agit. Sous ce dernier aspect, l’expression a + b

√
−1 désigne à la fois

et la direction et la longueur de la droite que nous venons de définir ; il est évident, en effet, que
la droite forme avec l’axe des x un angle dont la tangente est b

a et que la longueur de la droite
est
√
a2 + b2.

Cet extrait atteste clairement le lien existant entre les nombres complexes et les vecteurs du plan.
Tait démontre ensuite que la multiplication de a+ b

√
−1 par le facteur

√
−1 produit une rotation

de 90◦ sans changement de longueur. Plus généralement, la multiplication par le facteur cosα +√
−1 sinα aura pour effet une rotation d’angle α dans le sens positif (la multiplication par

√
−1

étant le cas particulier correspondant à α = π
2 ). Cette démonstration est fournie en annexe à la

page 559. L’auteur explique ensuite que ce qui précède donne du sens à la formule de Moivre

(cosα +
√
−1 sinα)m = cosmα +

√
−1 sinmα.

En effet, le premier membre représente un opérateur qui produit m rotations successives d’angle α
chacune et le second membre exprime l’opérateur d’une rotation unique d’un angle mα.
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Il fait remarquer que l’expression qui entre dans la formule de Moivre présente une ressemblance
frappante avec la forme N(cos θ + I sin θ) sous laquelle on peut mettre tout quaternion (voir ci-
dessous), où N est un réel, θ un angle réel et I tel que I2 = −1. ✭✭ La différence essentielle réside
dans le fait que I n’est pas l’équivalent de l’élément algébrique

√
−1, mais qu’il représente l’unité

de longueur dirigée dans une direction donnée quelconque dans l’espace ✮✮. Tait présente alors
diverses tentatives qui ont précédé l’invention des quaternions par Hamilton :

10. Dans le siècle actuel, Argand1, Warren et d’autres ont étendu les résultats auxquels Wallis
et Moivre étaient arrivés. Leurs efforts tendaient vers le but de représenter par une droite le
produit de deux droites dont chacune était donnée par un symbole de la forme a+b

√
−1. Jusqu’à

un certain point ces tentatives ne furent pas vaines, mais le succès en était obtenu aux dépens
de la simplicité ; la formidable rangée de radicaux dans le traité de Warren en fait foi.
11. Une recherche très remarquable a été publiée par Servois dans les Annales de Gergonne pour
l’année 1813, et, autant qu’on a pu s’en assurer, elle est la seule, pour ce genre de recherches,
dans laquelle on puisse découvrir la trace d’une anticipation de l’idée de quaternion. Servois, en
cherchant à étendre à l’espace ce que l’expression a + b

√
−1 représente relativement à un plan,

se trouve conduit par analogie à écrire

p cosα + q cosβ + r cos γ

pour représenter une droite dans l’espace et d’une longueur égale à l’unité, α, β, γ étant les
angles que la droite ferait avec les trois axes. Il s’assure facilement que p, q, r ne peuvent pas
être des quantités réelles, et il se demande : ✭✭ Seraient-elles imaginaires réductibles à la forme
générale A+N

√
−1 ? ✮✮ C’est à cette question qu’il n’a pas de réponse. Nous verrons (au Chapitre

suivant) que ces symboles ne sont autre chose que les i, j, k du Calcul des quaternions.

Tait conclut en signalant que seul le traité de Hamilton conduit à une méthode pratique douée
de simplicité ; toutes les autres méthodes proposées, quelque ingénieuses qu’elles soient, conduisent
constamment à des calculs d’une prolixité rebutante. Il donne alors une idée générale de ce à quoi
Hamilton a abouti.

L’idée de Bellavitis [1854], que l’on retrouve dans Laisant [1887] (voir le texte en annexe à la
page 562) était de définir un produit de vecteurs dont le résultat soit un vecteur. Cette opération
correspondait à ce que nous identifions aujourd’hui comme le produit de deux nombres complexes,
l’un des complexes jouant le rôle d’un opérateur qui agit sur l’autre en faisant subir à son point
représentatif une similitude directe.

Hamilton veut généraliser à l’espace ce produit de vecteurs qui n’est ni un produit scalaire, ni un
produit vectoriel. Il considère deux vecteurs OA et OB et se demande par quel opérateur il faut
multiplier OA pour obtenir OB.

Dans le cas simple où ces deux vecteurs ont même direction, il suffit de multiplier OA par un
✭✭ facteur numérique ✮✮ dont le signe dépend du fait que les vecteurs ont le même sens ou non.

Si les vecteurs ne sont pas parallèles, il essaie d’abord de déterminer ✭✭ le nombre des éléments
numériques dont doit dépendre ✮✮ l’opérateur en question.

Tait poursuit en ces termes :

Nous pouvons concevoir que la transformation de OA en OB s’opère successivement de la
manière suivante :
D’abord on augmente ou l’on diminue la longueur de OA, jusqu’à ce qu’elle devienne égale à celle
de OB. Un seul nombre suffira pour effectuer cette opération : c’est le quotient des longueurs

1 Le lecteur trouvera un extrait du texte de J.-R. Argand à la page 521.
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des deux vecteurs. Ce nombre, comme Hamilton l’a fait remarquer, sera positif, ou, si l’on veut,
privé de signe.
Ensuite on tourne OA autour de O jusqu’à ce que sa direction soit la même que celle de OB, et,
concurremment avec la première opération, les deux vecteurs se trouvent ainsi en cöıncidence
parfaite et sont devenus identiques l’un avec l’autre. Pour exprimer cette seconde opération, il
faudra connâıtre trois éléments numériques, qui sont les deux angles déterminant le plan dans
lequel s’effectue la rotation de OA (dans le cas d’une planète, ce seraient la longitude du nœud
et l’inclinaison), et l’angle déterminant la valeur même de la rotation.
On voit ainsi que le rapport de deux vecteurs, c’est-à-dire le multiplicateur nécessaire pour
opérer le changement de l’un des vecteurs dans l’autre, dépend en général de quatre nombres
distincts : c’est de là que vient le nom de quaternions donné à ce multiplicateur.

Hamilton se heurte ainsi à deux difficultés lors de la généralisation à l’espace.

Dans le plan, à deux dimensions, le multiplicateur était déterminé par deux éléments numériques
(en fait un nombre complexe) ; tandis que dans l’espace, à trois dimensions, il en faut quatre.

L’opérateur est ainsi un quaternion, qu’on représente d’ordinaire au moyen des unités imaginaires
indépendantes i, j, k sous la forme

q = a + bi + cj + dk, a, b, c, d ∈ R

avec i2 = j2 = k2 = ijk = −1.

La deuxième difficulté qu’il devra surmonter est que, si le produit de deux complexes est commutatif,
le produit de deux quaternions ne peut l’être. Ceci n’est guère étonnant si l’on reste bien conscient
que nombres complexes et quaternions sont les opérateurs d’une similitude directe. Or, dans le
plan, la composition de rotations de même centre est commutative ; tandis que dans l’espace, la
composition de rotations d’axes concourants ne l’est pas de manière générale.

Dans l’extrait qui suit, Tait décrit les vecteurs de l’espace et la base de ce que nous appelons
aujourd’hui le calcul vectoriel. Les passages intercalés dans le texte et mis entre accolades sont
ajoutés par le traducteur.

. . .
Entamons donc le sujet en posant quelques notions géométriques très simples.
15. Considérons deux points A et B dans l’espace, et, supposant que A soit donné, demandons-
nous quel est le nombre de données nécessaires pour fixer la position de B relativement à celle
de A. Il faudra donc trois données numériques.
Si nous faisons emploi de coordonnées polaires, et qu’il s’agisse par exemple de définir la position
de la Lune relativement à celle de la Terre, nous devrons connâıtre soit la longitude et la latitude
géocentriques du satellite, soit son ascension droite et sa déclinaison, et, de plus, nous devrons
connâıtre la distance ou rayon vecteur de cet astre. Les données seront donc encore au nombre
de trois.
16. Remarquons de suite qu’aucune mention n’a été faite des coordonnées elles-mêmes soit de
A et B, ni de celles de la Terre et de la Lune ; il ne s’est agi que des coordonnées relatives.
En conséquence, une expression telle que AB, en tant qu’elle représente une droite ayant une
certaine longueur et une certaine direction, est implicitement dépendante de trois nombres ; toute
autre droite parallèle à AB et dirigée dans le même sens, dépendra des mêmes trois nombres en
question.
Nous pouvons donc établir en principe que toutes les droites égales et parallèles {et dirigées dans
le même sens} sont susceptibles d’être représentées par un même symbole, et ce symbole dépendra
de trois éléments numériques. C’est sous ce rapport qu’une droite sera appelée un vecteur :
à l’aide d’un vecteur nous voyageons, pour ainsi dire, à partir de l’origine A du vecteur pour
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arriver à son extrémité B, ou, si l’on veut, ce vecteur sera un véhicule qui transporte un certain
point mobile à partir de A jusqu’en B {mais représentant d’ailleurs la ligne droite qui relie ces
deux points}. On pourra donc se servir d’un vecteur pour représenter un déplacement défini et
dans l’espace.
17. Nous ferons ici, une fois pour toutes, la remarque suivante, qu’en établissant les principes d’un
nouveau Calcul nous sommes parfaitement libres d’introduire telle définition de nos symboles
qu’il nous sera convenable de poser, pourvu que nous évitions les définitions qui seraient en
contradiction les unes avec les autres. L’inventeur des quaternions, en se donnant cette liberté
d’action, n’avait en vue que de donner à sa méthode la plus grande simplicité possible, la plus
grande conformité, si l’on peut s’exprimer ainsi, aux lois naturelles.
18. Représentons AB par α ; d’après ce qui précède, cela nous dira que α dépendra de trois
nombres. Supposons que CD soit égal en longueur à AB, et de plus parallèle à AB et dirigé
dans le même sens ; alors nous pouvons à juste titre poser

CD = AB = α,

en employant le signe d’égalité, =, pour dénoter que les vecteurs reliés entre eux par ce signe
sont à la fois égaux en longueur et parallèles dirigés dans le même sens. Nous avons ainsi donné
une plus grande extension à la signification du symbole algébrique de l’égalité.
De plus, nous observons qu’une égalité telle que

α = β

entre vecteurs contient implicitement trois égalités entre des nombres.
19. Nous arrivons à l’introduction de la définition du signe + dans le nouveau calcul (et à
celle du signe −, qui s’en déduira). Soient A, B, C trois points quelconques, et (en vertu de la
signification que nous venons de donner au signe de l’égalité =) posons

AB = α, BC = β, AC = γ.

En conformité avec ce que nous avons établi au n◦ 16 (relativement à la signification d’un vecteur
comme pouvant dénoter une translation), nous établirons maintenant qu’entre α, β, γ tels que
nous venons de les définir, la relation

α + β = γ

devra avoir lieu ; en un mot, nous posons

AB + BC = AC.

La signification du signe + de l’addition des vecteurs, introduite de cette manière avec un
élargissement de la signification purement algébrique de ce signe n’est en contradiction avec
aucun des principes précédemment introduits. Il y a plus : la nouvelle signification nous met en
possession d’une règle qui régit la composition des vitesses simultanées tant pour la valeur que
pour la direction de la vitesse résultante.
On trouvera cette règle à l’égard des vecteurs justifiée par une autre considération : c’est qu’en
ajoutant ensemble algébriquement des différences de coordonnées rectilignes de même nom de
A et de B à celles de B et de C, on devra obtenir les différences de coordonnées correspondantes
de A et de C. Cela montre en outre que ces coordonnées devront entrer linéairement dans
l’expression d’un vecteur.
20. Dans le cas spécial où le point C (dont la position à l’égard de A est tout à fait arbitraire)
vient à cöıncider avec A il sera évident que nous aurons

AC = 0,

puisqu’il n’y aura pas de chemin, par suite pas de vecteur, à parcourir entre A et C. Dans ce
cas, la relation ci-dessus nous donnera

AB + BA = 0.
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Si donc nous définissons la signification du signe − de la soustraction par la relation suivante,

BA = −AB,

nous verrons que le signe −, appliqué à un vecteur, produit l’effet d’intervertir le sens de direction
du vecteur.
Ce principe s’accorde en tout point avec ceux que nous avons déjà introduits. Par exemple, ayant

AB + BC = AC,

nous en déduisons
AB = AC −BC,

c’est-à-dire
AC + CB = AB,

relation qui ne diffère de celle du point de départ que par la permutation de B avec C, et, par
la suite, elle ne fait que reproduire le principe primitivement introduit.
21. Pour un triangle ABC quelconque nous avons évidemment

AB + BC + CA = 0,

et pour un polygone fermé plan ou gauche, de même,

AB + BC + · · ·+ Y Z + ZA = 0.

Nous aurons aussi
AB + BC + · · ·+ Y Z = AZ.

Ces relations expriment les règles connues de la composition des vitesses et, par la suite, en vertu
de la seconde loi de mouvement {suivant les Principes de Newton}, elles expriment également
les règles de la composition des forces.
L’interprétation de l’expression d’une somme de vecteurs gagnera en clarté, si l’on effectue la
construction de la somme en appliquant la règle pratique suivante : placer l’origine de chacun des
termes au point occupé par l’extrémité du terme immédiatement précédent dans l’expression de
la somme, l’origine du premier terme étant arbitrairement donnée. De cette manière, le vecteur
qui représente la somme aura pour origine celle du premier terme et pour extrémité le point
occupé par l’extrémité du dernier terme en vertu de la construction. Dans cette opération, le
signe + aura reçu la signification de la liaison d’une nature définie qu’il s’agit d’établir entre
deux termes consécutifs.
22. Si nous composons ensemble un nombre quelconque de vecteurs parallèles entre eux, le
résultat sera évidemment un multiple de l’un d’entre eux par un nombre abstrait.
Soient A, B, C des points situés sur une même droite ; nous aurons, par exemple,

BC = xAB,

x étant un nombre positif lorsque B est situé entre A et C ; dans tous les autres cas, x sera
négatif : la valeur absolue de x sera dans tous les cas égale au rapport de longueur entre BC et
AB. Cette proposition est évidente d’elle-même lorsque ce rapport est commensurable, et par
un mode de raisonnement bien connu on l’étendra facilement au cas cas d’un rapport incom-
mensurable.
23. Une proposition importante et presque évidente par elle-même consiste en ce qu’un vecteur
quelconque peut être décomposé en trois composantes parallèles à trois vecteurs donnés, non
parallèles entre eux deux à deux ni parallèles à un même plan, et que, de plus, cette décomposition
ne peut se faire que d’une seule manière.
. . .
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Nous présentons ci-après quelques autres témoignages. D’abord, celui du Norvégien Caspar Wes-
sel. Son étude, qui avait été présentée à l’Académie des Sciences du Danemark en 1797 a été publiée
dans les Mémoires de cette Académie. On trouvera en annexe, à la page 560 une version anglaise
de cet extrait où il définit la manière d’additionner deux ✭✭ droites ✮✮.

On ajoute deux lignes droites en les unissant de telle manière que la seconde ligne commence là
où finit la première, il passe alors une ligne droite du premier au dernier point des lignes jointes.
Cette ligne est la somme des lignes jointes.
Par exemple, si un point avance de trois pieds et recule de deux pieds, la somme de ces deux
chemins n’est pas les premiers trois pieds joints aux derniers deux pieds ; la somme est un pied
en avant. Car ce chemin, parcouru par le même point, produit le même effet que les deux autres
chemins.
. . .

Quelques années plus tard, Argand écrivait son Essai sur une manière de représenter les quantités
imaginaires dans les constructions géométriques [1806]. On y trouve notamment ceci :

. . . 5. Observons maintenant que, pour l’existence des relations qui viennent d’être établies entre
les quantités KA, KB, KC, . . ., il n’est pas nécessaire que le départ de la direction, qui constitue
une partie de l’essence de ces quantités, soit fixé à un point unique K ; mais que ces relations
ont également lieu, si l’on suppose que chaque expression, comme KA, désigne en général une
grandeur égale à KA, et prise dans la même direction, comme K ′A′, K ′′A′′, K ′′′A′′′, BK,
. . .(fig. 3).

Fig. 3.
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En effet, en suivant, à l’égard de cette nouvelle espèce de grandeurs, les raisonnements qui ont
été faits plus haut, on verra que, si KA, K ′A′, K ′′A′′, . . . sont des unités positives, AK, A′K ′,
A′′K ′′, . . . seront des unités négatives ; . . .

. . . 6. En conséquence de ces réflexions, on pourra généraliser le sens des expressions de la forme
AB, CD, KP , . . ., et toute expression pareille désignera, par la suite, une ligne d’une certaine
longueur, parallèle à une certaine direction, prise dans un sens déterminé entre les deux sens
opposés que présente cette direction, et dont l’origine est à un point quelconque, ces lignes
pouvant elles-mêmes être l’expression de grandeurs d’une autre espèce.
Comme elles doivent être le sujet des recherches qui vont suivre, il est à propos de leur appliquer
une dénomination particulière. On les appellera lignes en direction ou, plus simplement, lignes
dirigées. Elles seront ainsi distinguées des lignes absolues, dans lesquelles on ne considère que la
longueur, sans aucun égard à la direction. . .

En 1854, Giusto Bellavitis signait un texte intitulé Sposizione del metodo delle equipollenze dans
le tome XXV, 2e partie des Memorie di matematica e di fisica della società italiana delle scienze
residente in Modena. Nous donnons en annexe (page 561) un extrait du texte original en italien
dont voici la traduction. Nous renvoyons également au texte de Laisant [1887] (page 562).
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Cette méthode satisfait à un désir de Carnot de trouver un algorithme, qui représente en même
temps et la grandeur et la position des différentes parties d’une figure ; il en résulte, par voie
directe, des solutions graphiques simples et élégantes de problèmes géométriques. La méthode
des équipollences comprend comme cas particuliers les méthodes de coordonnées parallèles ou
polaires, le calcul barycentrique, etc. : les problèmes sur les courbes s’y résolvent en général
sans privilégier une manière de représentation plutôt qu’une autre ; le plus souvent les calculs y
sont plus rapides qu’en géométrie analytique et les résultats sont exprimés sous une forme plus
simple.
Une chose essentielle dans la méthode des équipollences est la distinction entre les quantités
positives et négatives, de sorte que la corrélation des figures est une conséquence nécessaire de
l’algorithme sans nul besoin d’aucune attention spéciale, qui ne peut être que source d’erreur.
Celui qui est habitué aux principes de la Géométrie de Position trouvera aisé de me suivre dans
les quelques conventions sur lesquelles s’appuie la méthode ; peut-être pourrait-on être encore
plus proche des usages habituels ; mais je ne trouve pas convenable de donner la préférence à
une facilité poussée à l’extrême plutôt qu’à la concision des formules. Les conventions seront
faciles à retenir par cœur, parce que certaines sont conformes aux règles habituelles relatives
aux quantités positives et négatives, d’autres conformes à la très connue composition des forces.
Les équipollences expriment des relations entre droites considérées non seulement comme ayant
une grandeur, mais également une direction (ou ce qu’on peut exprimer par inclinaison) ; si bien
qu’elles sont essentiellement différentes des équations, qui expriment des relations entre seules
quantités réelles ; néanmoins le calcul des équipollences suit exactement les mêmes règles, qui
sont utilisées dans les équations, ce qui lui confère pas mal d’avantages.
. . .

Bellavitis expose alors sa méthode qui est en fait notre calcul vectoriel et va jusqu’à définir le
produit de deux vecteurs, qui n’est rien d’autre que le produit de deux nombres complexes.
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De la géométrie analytique aux vecteurs :

essai d’analyse épistémologique

Si donc il n’y avait pas de corps solide dans la nature, il n’y aurait pas de géométrie.
H. Poincaré

Faire progresser la pensée ne signifie pas nécessairement refuser le passé : c’est parfois le
revisiter pour comprendre non seulement ce qui a été effectivement dit, mais aussi ce qui
aurait pu être dit, ou du moins ce que l’on peut dire aujourd’hui (et peut-être aujourd’hui
seulement) à partir de ce qui a été dit auparavant.

U. Eco1

1 Pourquoi les vecteurs à la base de la géométrie ?

La géométrie analytique, inventée dans les années 1630 par Descartes et Fermat, a pour objectif
de soumettre les problèmes géométriques au calcul, de les ramener à l’algèbre. Elle y arrrive, mais
avec deux inconvénients. Tout d’abord le repère choisi pour passer d’une figure aux nombres (c.-à-d.
aux coordonnées) est arbitraire. Bien entendu, dans chaque problème, on le situe au mieux pour
simplifier les calculs, ce qui se fait en observant les symétries de la figure. Néanmoins, il est toujours
quelque chose d’extérieur, ajouté à la figure. On exprime aussi cela en disant que le repère est un
élément extrinsèque à la situation géométrique à l’étude.

Le second inconvénient de la géométrie analytique, c’est qu’une fois le problème mis en coordonnées,
on cherche la solution par calcul et que bien souvent, en appliquant les règles de l’algèbre, on oublie
la situation géométrique, on s’en écarte en imagination. Certes on n’applique pas n’importe quelles
règles de calcul dans n’importe quel ordre. On cherche bien à aller vers le but proposé. Mais en
cours de route, il est souvent impossible pratiquement de saisir le sens géométrique des expressions
algébriques par lesquelles on passe. Le retour à la figure, évidemment nécessaire, se fait à la fin.

En 1679 déjà, Leibniz cherchait à établir un calcul opérant directement sur les figures, et qui par
conséquent éviterait les deux inconvénients en question. Mais l’entreprise devait s’avérer longue
et difficile, puisque elle n’a aboutit que vers la fin du XIXe siècle, avec l’apparition des vecteurs
tels que nous les connaissons aujourd’hui en géométrie élémentaire et en physique. Curieusement
d’ailleurs, les vecteurs ne sont pas nés du seul souci de créer un calcul efficace en géométrie. En

1 Cité par J. Bideaud.

523
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effet, leur élaboration historique a été mêlée à des questions de nombres complexes, de rotations
dans l’espace, d’aires et de volumes, de mécanique, d’électromagnétisme, . . . Dans ce chapitre, nous
ne nous occuperons que des vecteurs géométriques.

Les vecteurs constituent, en géométrie, un moyen de calcul différent du calcul en coordonnées. Ils
évitent le plus souvent les deux inconvénients de ce dernier. En effet, pour traiter un problème de
géométrie vectoriellement, on commence par choisir les vecteurs de départ sur la figure à l’étude
(éventuellement en orientant certains segments). En ce sens les vecteurs sont intrinsèques, indépen-
dants de tout cadre arbitraire tel qu’un repère.

Ensuite on calcule, mais comme les symboles que l’on combine ont un sens visible sur la figure et
qu’en outre les formules sont compactes (une équation au lieu de deux ou trois, selon qu’on est
dans le plan ou l’espace), on arrive souvent à reconnâıtre sur la figure les intermédiaires du calcul.

Bien entendu, dès que l’on veut soumettre la situation géométrique en cause au calcul numérique –
ce qui n’est pas toujours nécessaire –, on doit revenir des vecteurs aux coordonnées et donc choisir
un repère. Mais on peut ne le faire que tout à la fin.

Reprenons le fil de l’histoire. Une fois les vecteurs mis au point comme instruments de calcul
commodes, ils ont dépassé ce rôle assez modeste et ont contribué à transformer profondément les
mathématiques. Vers la fin du XIXe siècle et au début du XXe, ils ont engendré les espaces vectoriels
et l’algèbre linéaire. Celle-ci s’est développée surtout pour les besoins des équations différentielles
et de l’analyse fonctionnelle, et non pour ceux de la géométrie élémentaire. Mais par un retour des
choses, les espaces vectoriels ont fini par se retrouver aux fondements de la géométrie élémentaire.
On peut aujourd’hui commencer l’exposé de la géométrie élémentaire en disant : ✭✭ Soit un espace
vectoriel sur le corps des réels. ✮✮ Dans cette perspective, les notions de départ ne sont plus les
points, les droites et les plans, mais les vecteurs et les nombres réels. Les droites et les plans sont
alors des notions construites.

Ainsi, il a fallu quasiment trois siècles et de multiples recherches sur des questions dont beaucoup
n’étaient pas géométriques, pour aboutir à ce renversement majeur : la possibilité de fonder la
géométrie sur une toute autre base que les notions traditionnelles de point, droite et plan. D’où la
question : peut-on expliquer simplement pourquoi les vecteurs ont fini par s’imposer avec une telle
force ?

La réponse est nécessairement dans l’histoire. Mais comme nous l’avons vu, celle-ci est longue et
touffue et nous n’essaierons pas ici de la suivre en détail. D’où la question : y a-t-il moyen, en
demeurant sur le terrain de la géométrie élémentaire, de montrer en peu de pages les arguments
forts qui poussent à créer les vecteurs et à les mettre à la base de la géométrie ?

Notre objectif dans ce chapitre est d’organiser un passage, le plus direct et le mieux motivé possible,
entre la géométrie analytique et les vecteurs. Ce sera de l’histoire refaite et simplifiée, schématisée,
une sorte d’accouchement provoqué, mais que l’on espère éclairant. Ce ne sera en tout cas pas un
exposé purement déductif, mais bien l’élaboration argumentée d’une structure nouvelle à partir
de la critique d’une structure familière. Nous supposons donc le lecteur familier de la géométrie
analytique en axes orthonormés et de l’algèbre des premier et deuxième degrés telle qu’on l’enseigne
dans les lycées. Et nous lui demandons de faire comme s’il ignorait les vecteurs.

Terminons cette introduction par deux indications pratiques. Tout notre exposé se situera dans le
plan, mais uniquement par raison de simplicité : tout ce que nous ferons s’étend de manière naturelle
à l’espace, moyennant des calculs un peu plus longs. Cet exposé devrait être accessible aux élèves
motivés des sections scientifiques de la fin du secondaire et pourrait leur faciliter la transition vers
des études supérieures. Il lève un petit coin du voile vers les géométries embôıtées du Programme
d’Erlangen de F. Klein. À ce titre, il peut servir d’introduction à une lecture de ce programme.
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Nos deux sources principales sont le volume consacré à la géométrie par F. Klein [1908] dans
ses Mathématiques élémentaires d’un point de vue avancé, et le chapitre intitulé ✭✭ Géométries
abstraites ✮✮ (rédigé par E. Lehman) dans l’ouvrage de B. Sénéchal [1979] intitulé Groupes et
géométries. Nous renvoyons à celui-ci le lecteur qui souhaiterait situer notre exposé dans un contexte
plus abstrait, où les groupes précèdent les vecteurs.

2 De la géométrie à l’algèbre et vice-versa

Dans un premier temps, demandons-nous quel est le principe même de la géométrie analytique.
Autrement dit, comment passe-t-on sans ambigüıté des figures aux relations algébriques qui les
représentent et inversement ? Voyons d’abord cela sur quelques exemples.

O 1

1 P

Q

x1

x2

Fig. 1

O x1

x2

1

1 P

Q

U

Fig. 2

Soit tout d’abord un repère orthonormé Ox1x2, comme celui de la figure 1. Et soient un point P de
coordonnées (p1, p2) et un point Q de coordonnées (q1, q2). Imposons à ces deux points la propriété
que la droite PQ soit parallèle à l’axe des x2. Cette condition a pour expression algébrique

p1 = q1. (1)

La figure formée des deux points P et Q satisfait à (1). Mais il y a une infinité de figures analogues
qui satisfont à cette relation. En fait, toute figure formée de deux points situés sur une parallèle
à l’axe des x2 satisfait à (1), et toute figure formée de deux points satisfaisant à (1) est sur une
parallèle à l’axe des x2. Il revient exactement au même de se donner la relation (1) et de se donner
l’ensemble de toutes les figures formées de deux points situés sur une parallèle à l’axe des x2. Si
on dessinait toutes ces figures, le plan serait noir de points et même chaque point appartiendrait à
une infinité de figures. Le principe de la géométrie analytique est là : au lieu d’étudier une infinité
de figures en regardant l’une d’elles (considérée comme typique), on étudie la relation algébrique
qui représente fidèlement cet ensemble infini.

Ainsi d’un côté il y a une infinité de figures, et de l’autre seulement une égalité entre des symboles
algébriques. Mais cette simplicité de l’algèbre ne doit pas faire illusion : en fait la relation (1) est
équivalente à la donnée de l’ensemble infini de tous les quadruplets

(p1, p2, q1, q2)

satisfaisant à (1). La relation algébrique, dans sa concision, ne nous délivre pas entièrement de
l’infinité de situations qu’elle recouvre.
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Considérons un autre exemple où la correspondance entre figures et expression algébrique s’avérera
un peu plus difficile à établir. Soit, comme sur la figure 2, trois points P , Q et U alignés, de
coordonnées respectives (p1, p2), (q1, q2) et (u1, u2). Pour exprimer que ces points sont alignés,
appliquons le théorème de Thalès, qui nous donne

q1 − p1

q2 − p2
=

u1 − p1

u2 − p2
. (2)

Mais une telle relation ne représente pas toutes les figures constituées de trois points alignés. Elle ne
s’applique en effet pas aux cas où P et Q seraient confondus, aux cas où P et U seraient confondus,
aux cas où les trois points seraient confondus, et non plus aux cas où les points se trouveraient sur
une parallèle à l’axe des abscisses.

Toutefois, il n’est pas difficile de remplacer la relation (2) par une autre qui prenne en compte tous
ces cas particuliers. C’est la relation

(q1 − p1)(u2 − p2)− (q2 − p2)(u1 − p1) = 0. (3)

Tout triplet de points alignés a des coordonnées qui satisfont à (3), et si les coordonnées de trois
points satisfont à (3), les points correspondants sont alignés. Nous avons ainsi une bonne correspon-
dance entre la propriété géométrique d’alignement et son expression algébrique. Nous sommes donc
sur une base saine pour commencer à étudier algébriquement la propriété géométrique d’alignement.

Les figures constituées de trois points alignés sont en nombre infini, et si on voulait les dessiner
toutes, le plan serait ici aussi couvert de points. La relation (3) correspond à l’ensemble infini des
sextuplets

(p1, p2, q1, q2, u1, u2)

de nombres réels qui satisfont à (3).

Voici un autre exemple de relation entre trois points :

(q1 − p1)2 + (q2 − p2)2 = (u1 − q1)2 + (u2 − q2)2 = (p1 − u1)2 + (p2 − u2)2. (4)

Cette relation représente toutes les figures constituées par trois points occupant les sommets d’un
triangle équilatéral.

Il serait peu utile de multiplier les exemples. Nous voyons en effet maintenant comment transposer
en algèbre les situations que nous rencontrons en géométrie, et comment revenir de l’algèbre à la
géométrie. En géométrie, on n’étudie pas les figures mais, dans chaque cas, l’ensemble des figures
qui ont telles ou telles propriétés (il revient au même de dire que l’on étudie ces propriétés).
Nous appellerons de tels ensembles de figures des configurations. Se donner une configuration, c’est
comme de se donner un ensemble de propriétés, ou aussi de se donner une relation algébrique2,
et une relation algébrique c’est aussi un ensemble de n-uples de nombres réels, chaque n-uple
correspondant à une figure.

La différence entre les deux points de vue, c’est qu’on ne sait pas calculer avec des figures, tandis
qu’on sait le faire avec des relations algébriques. Celles-ci ont hérité des règles de calcul sur les
nombres réels.

Puisque notre intention est de faire de la géométrie par calcul, installons-nous donc, au moins
provisoirement, dans l’univers des relations algébriques. Mais alors nous devons tout de suite nous
souvenir que chacune de ces relations s’établit relativement à un repère donné. Et pourtant nous
aimerions faire une géométrie générale, indépendante du choix d’un repère. Notre expérience de la

2 Une relation peut être donnée par plusieurs équations, des inéquations, . . .
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géométrie analytique nous apprend qu’une relation algébrique peut complètement changer de visage
dans un changement de repère. Par exemple une parabole qui s’écrit y = x2 dans un repère donné
s’écrira de façon plus compliquée dans un autre. Si nous découvrons des propriétés en raisonnant
sur l’équation y = x2, comment seront nous sûrs que ces propriétés seront celles de la configuration
géométrique elle-même ?

Avant d’étudier cette question, rappelons comment on fait pour changer de repère. C’est l’objet de
la section suivante.

3 Changer de repère

O 1

1

X

x1

x2

S

11

x'1

x'2

0,80,6

0,60,8 A

B

DC

Fig. 3

La figure 3 montre deux repères orthonormés, l’un Ox1x2 et l’autre Sx′
1x

′
2, muni des mêmes unités

que le premier. Soit X un point quelconque de coordonnées (x1, x2) dans le premier repère et
(x′

1, x
′
2) dans le second.

Considérons d’abord la ligne brisée OSAX que la figure suffit à définir, les points A et S ayant
respectivement pour coordonnées dans le premier repère (a1, a2) et (s1, s2). Projetée sur l’axe des
abscisses du premier repère, cette ligne brisée nous donne

x1 = s1 + (a1 − s1) + (x1 − a1). (5)

Dans le cas de la figure 3, on a :
s1 = 2. (6)

D’autre part, en exprimant que deux triangles appropriés sont semblables, nous obtenons

x′
1

1
=

a1 − s1

0, 8
. (7)

Et de même
x′

2

1
=

s1 − c1
0, 6

=
a1 − x1

0, 6
. (8)
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En transformant le second membre de (5) grâce à (6), (7) et (8), nous obtenons que

x1 = 2 + 0, 8x′
1 − 0, 6x′

2. (9)

En partant ensuite de la ligne brisée OSBX, nous obtenons par des considérations analogues que

x2 = 0, 8 + 0, 6x′
1 + 0, 8x′

2. (10)

Les formules (9) et (10) nous permettent de passer d’un repère à l’autre. D’autre part, le retour
du second repère au premier est possible, puisque les équations (9) et (10) sont solubles pour x′

1

et x′
2. En effet, le déterminant formé par les coefficients de x′

1 et x′
2 est différent de 0. Il vaut

(0, 8)2 + (0, 6)2 = 1.

Dans le cas général, et en nous aidant de la figure 4, nous voyons que les formules sont de la forme

x1 = r11x
′
1 + r12x

′
2 + s1,

x2 = r21x
′
1 + r22x

′
2 + s2.

(11)

O 1

1

X

x1

x2

S

11

x'1

x'2

A

B

DC
r11r12

r21
r22

Fig. 4

Dans celles-ci (r11, r21) sont les projections dans le premier repère du segment orienté unitaire
porté par Sx′

1 et (r12, r22) sont les projections dans ce repère du segment orienté unitaire porté par
Sx′

2. Dans ces formules nous avons, selon l’usage, placé en dernier lieu les termes indépendants des
coordonnées. Ici aussi, le déterminant des coefficients de x′

1 et x′
2 est différent de 0. En d’autres

termes, nous avons
r11r22 − r12r21 �= 0. (12)

En effet, en examinant les signes de r11, r12, r21 et r22 pour toutes les directions possibles du repère,
nous réalisons que les deux produits r11r22 et r12r21 ne sont jamais tous les deux nuls, et s’ils sont
tous deux non nuls, ils sont de signes opposés.

Bien que nous ne nous en servirons pas dans l’immédiat, exprimons algébriquement l’orthogonalité
des axes. La figure 4 fait voir deux triangles rectangles isométriques qui nous permettent d’écrire
que

r11

r21
= −r22

r12
,



4. Des relations intrinsèques 529

ou encore que
r11r12 + r21r22 = 0. (13)

On vérifie que, sous cette dernière forme, cette équation exprime encore l’orthogonalité des axes
O′x′

1 et O′x′
2, même si ceux-ci sont parallèles aux axes du premier repère.

Exprimons enfin, quitte à ne nous en servir que plus tard, le fait que les unités sont les mêmes sur
les nouveaux axes que sur les anciens. Nous obtenons

r2
11 + r2

21 = 1 (14)

et r2
12 + r2

22 = 1. (15)

4 Des relations intrinsèques

Maintenant que nous disposons de la formule de changement de repère, revenons à notre propos
qui était de voir comment les relations algébriques se comportent dans un tel changement. Et donc,
pendant un bref moment, concentrons-nous davantage sur la forme algébrique des relations que sur
leur signification géométrique.

Commençons par des exemples très simples. Et d’abord la relation (1), à savoir

p1 = q1. (1)

En lui appliquant la formule (11) de changement de repère, nous obtenons

r11p
′
1 + r12p

′
2 = r11q

′
1 + r12q

′
2. (16)

Cette relation est d’une toute autre forme que (1). Nous n’en tirerons sans doute pas grand chose.

Essayons
p1 = p2. (17)

Nous obtenons de la même façon

r11p
′
1 + r12p

′
2 + s1 = r21p

′
1 + r22p

′
2 + s2,

ce qui s’écrit encore
(r11 − r21)p′1 + (r12 − r22)p′2 = s2 − s1. (18)

Cette relation ne ressemble pas à (17) et ne nous inspire pas beaucoup. Essayons la relation (3), à
savoir

(q1 − p1)(u2 − p2)− (q2 − p2)(u1 − p1) = 0. (3)

Pour y remplacer les anciennes coordonnées par les nouvelles, commençons par calculer

q1 − p1 = (r11q
′
1 + r12q

′
2 + s1)− (r11p

′
1 + r12p

′
2 + s1)

= r11(q′1 − p′1) + r12(q′2 − p′2),

ainsi que les expressions analogues pour u2−p2, q2−p2 et u1−p1. Substituons ensuite ces expressions
dans (3), ce qui donne

[r11(q′1 − p′1) + r12(q′2 − p′2)][r21(u′
1 − p′1) + r22(u′

2 − p′2)]−
[r21(q′1 − p′1) + r22(q′2 − p′2)][r11(u′

1 − p′1) + r12(u′
2 − p′2)] = 0.
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Cette équation devient après calcul

(r11r22 − r12r21)[(q′1 − p′1)(u
′
2 − p′2)− (q′2 − p′2)(u

′
1 − p′1)] = 0,

et ensuite, grâce à (12),

(q′1 − p′1)(u
′
2 − p′2)− (q′2 − p′2)(u

′
1 − p′1) = 0. (19)

La relation (19) a la même forme que (3). Elle s’exprime de la même façon dans tous les repères.
D’une relation qui possède cette propriété, on dit qu’elle est intrinsèque.

Cette définition est de nature algébrique. Examinons-la maintenant d’un point de vue géométrique,
en considérant à nouveau l’exemple de la relation (3).

Plaçons-nous dans le premier repère et pensons à tous les triplets satisfaisant à cette relation, c’est-
à-dire à tous les triplets de points alignés. Bien sûr ils remplissent tout le plan, et même chaque
point du plan appartient à une infinité de triplets. N’empêche, par un effort d’imagination, nous
voyons que le plan est rempli de triplets de manière homogène et isotrope3. Aucune région du plan
n’est privilégiée. On comprend alors pourquoi, si on recommence à construire les triplets à partir
du second repère, on retombe sur les mêmes. C’est là ce qui caractérise une relation intrinsèque.

Éclairons encore davantage la définition en regardant comme contre-exemple la relation (1). Géo-
métriquement, elle exprime que les couples de points P et Q sont sur une parallèle à l’axe des
x2. Ces couples en nombre infini noircissent aussi tout le plan, dans lequel ils sont répartis de
manière homogène. Ceci explique qu’une translation du repère n’affecterait pas cette relation. On
ne retrouve d’ailleurs ni s1 ni s2 dans (16). Mais les couples de points ne sont pas disposés dans le
plan de manière isotrope. Ils appartiennent tous à la même direction. Ceci explique qu’une rotation
des axes affecte la relation (1). Et de fait, dans (16) on retrouve les coefficients r11, r12, r21 et r22.

La relation (17) est instructive aussi. Quand on la transforme, on trouve dans la relation transformée
aussi bien r11, r12, r21 et r22 que s1 et s2. C’est que les points qui satisfont à (17) sont sur une
bissectrice du premier repère, et que, dans la plupart des changements de repère que l’on peut
envisager, cette droite n’est plus bissectrice du repère à l’arrivée.

Exercice. Imaginer une nouvelle relation qui ne change pas dans une rotation des axes autour de
l’origine. Interpréter géométriquement le résultat. Réponse possible : p1q2 − p2q1 = 0.

D’un certain point de vue, on peut considérer un repère comme un poste d’observation. Les relations
intrinsèques sont celles qui définissent des configurations (des ensembles de n-uples de points) que
l’on voit de la même façon – que l’on ne peut pas discerner –, quel que soit le poste d’observation
que l’on choisisse. Ces configurations sont proprement géométriques, au sens où la géométrie est
la même dans tous les patelins du monde. Les relations non intrinsèques par contre définissent
des configurations qui sont liées à un lieu donné, que l’on voit différemment lorsqu’on change de
poste d’observation. On pourrait dire que ces configurations relèvent plutôt de la géographie que
de la géométrie. Le mot est de F. Klein, mais il s’agit bien entendu d’une géographie quelque peu
théorique, où les accidents de terrain ne sont ni des montagnes, ni des villes.

Pour en finir avec l’idée des relations intrinsèques, notons que le recours aux relations en géométrie
nous a amenés à changer profondément notre perception des figures. En géométrie synthétique, on
raisonne sur une figure typique, c’est-à-dire sur une figure qui représente toutes les figures répondant
aux hypothèses que l’on s’est fixées. Mais souvent ces autres figures, dont l’ensemble constitue ce
que nous avons appelé une configuration, se trouvent quelque peu reléguées dans notre subconscient.

3 Isotrope veut dire qu’aucune direction du plan n’est privilégiée.
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Au contraire, en regardant une configuration comme définie par une relation algébrique, nous
sommes poussés à donner aux variables toutes les valeurs possibles, ne serait-ce qu’en imagination
(c’est un infini potentiel) et à imaginer de ce fait toutes les figures possibles, quelle que soit leur
situation dans le plan. Notre analyse des changements de coordonnées et des relations intrinsèques a
amené dans le champ de la géométrie une chose qui ne s’y trouvait auparavant que de manière plus
implicite : par delà les propriétés données, l’ensemble de toutes les figures possédant ces propriétés.
On a souvent observé que la notion d’espace n’apparaissait pas dans Euclide. Au point où nous
en sommes, l’espace (en l’occurrence le plan) est bien là et il est bien occupé.

5 Naissance des vecteurs

Nous savons maintenant qu’il est équivalent de se donner une relation algébrique intrinsèque ou une
configuration possédant les propriétés géométriques correspondantes. Une différence importante
demeure pourtant : avec la relation algébrique, on peut calculer, avec la figure non. Mais notre
propos est toujours d’introduire un calcul sur les figures, pas sur les coordonnées.

Nous ne pouvons pas espérer calculer avec toutes espèces de figures. Pour trouver celles qui nous
permettront de fonder un calcul commode et de portée générale, cherchons des relations algébriques
simples et intrinsèques.

5.1 Deux segments orientés équipollents

Prenons par exemple quatre points P , Q, U et V , tels que le segment orienté [PQ] soit parallèle4

au segment orienté [UV ] et de même sens et de même longueur que lui (figure 5). Cette propriété
est exprimée par les deux équations

q1 − p1 = v1 − u1,

q2 − p2 = v2 − u2.
(20)

Celles-ci ne contiennent que des différences de coordonnées, ce qui nous laisse espérer que dans le
changement de repère, au moins s1 et s2 disparâıtront.

O 1

1

x1

x2

P
Q

U
V

Fig. 5

4 Abus de langage : ce sont les droites portant les deux segments qui sont parallèles.
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De fait si on applique à (20) le changement de repère (11), on obtient

q′1 − p′1 = v′1 − u′
1,

q′2 − p′2 = v′2 − u′
2.

(21)

Par conséquent la relation est intrinsèque. Elle porte un nom : on dit que le segment orienté [PQ]
est équipollent au segment orienté [UV ].

5.2 Allonger ou raccourcir un segment orienté

Soient maintenant trois points P , Q et U tels que

u1 − p1 = λ(q1 − p1),
u2 − p2 = λ(q2 − p2),

(22)

où λ est un nombre réel quelconque (égal à 4/3 sur la figure 6).
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Après changement de repère, on obtient

u′
1 − p′1 = λ(q′1 − p′1),

u′
2 − p′2 = λ(q′2 − p′2).

(23)

Donc ici aussi, la relation est intrinsèque. C’est en fait une relation du premier degré qui exprime
l’alignement des points P , Q et U .

5.3 Trois points

Soient P , Q et U trois points situés de façon quelconque (figure 7). Leurs coordonnées satisfont aux
deux équations

(q1 − p1) + (u1 − q1) + (p1 − u1) = 0,
(q2 − p2) + (u2 − q2) + (p2 − u2) = 0. (24)

Ce sont des identités. La relation qu’elles déterminent est R6 tout entier. Il n’est pas besoin de leur
appliquer explicitement le changement de repère pour savoir que l’on a aussi

(q′1 − p′1) + (u′
1 − q′1) + (p′1 − u′

1) = 0,
(q′2 − p′2) + (u′

2 − q′2) + (p′2 − u′
2) = 0. (25)
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La relation correspondante dans Π3 n’est autre que Π3 tout entier. Elle comprend tous les triplets
de points possibles et imaginables.

On pensera peut-être qu’autant vaudrait ne pas parler d’une relation aussi triviale. Quoiqu’il en
soit, nous verrons sous peu – chose étonnante – que les équations (24) récrites sous la forme

(u1 − p1) = (q1 − p1) + (u1 − q1),
(u2 − p2) = (q2 − p2) + (u2 − q2),

(26)

nous seront fort utiles.

5.4 Se débarrasser des repères

Arrivés à ce stade de notre étude, nous savons qu’il existe des relations géométriques élémentaires
qui, étant intrinsèques, s’écrivent de la même manière dans tous les repères orthonormés. D’où la
question : pourquoi continuer à particulariser les notations, à écrire p1 et p2 si on est dans un
premier repère, p′1 et p′2 si on est dans un autre, etc. ?

Par ailleurs, ce sont les points qui sont intéressants, pas les coordonnées. Celles-ci ne sont qu’un
instrument pour accéder aux points, puisque ce que nous voulons, c’est faire de la géométrie.
Essayons donc de privilégier les points par rapport aux coordonnées.

Récrivons nos trois relations (22), (24) et (26) dans la première colonne d’un tableau.

q1 − p1 = v1 − u1

q2 − p2 = v2 − u2 Q− P = V − U

u1 − p1 = λ(q1 − p1)
u2 − p2 = λ(q2 − p2) U − P = λ(Q− P )
u1 − p1 = (q1 − p1) + (u1 − q1)
u2 − p2 = (q2 − p2) + (u2 − q2) U − P = (Q− P ) + (U −Q)

En nous laissant guider par l’analogie des formes, tentons dans la deuxième colonne une écriture en
termes de points. Il s’agit d’une transposition d’écritures, sans aucune justification mathématique
a priori. Pour nous rassurer, observons que les règles de passage sont bien définies et claires et
que, par convention, ce que nous avons écrit dans la deuxième colonne ne veut rien dire d’autre
que ce qui est écrit dans la première. Il ne s’agit dans ces conditions que d’une sténographie, une
abréviation d’écriture.

Mais ce n’est pas là se débarrasser franchement des coordonnées, puisque l’on ne donne ainsi un sens
à la colonne de droite qu’en retournant à celle de gauche. Essayons donc maintenant de donner aux
formules exprimées en termes de points un sens mathématique autonome, c’est-à-dire qui s’exprime
en termes de points. Pour cela, il faut accepter que les symboles

✭✭ = ✮✮, ✭✭ · ✮✮ (ou l’absence de symbole) et ✭✭ + ✮✮

changent de sens lorsque l’on passe d’une colonne à l’autre. Nous devrons redéfinir ces symboles
pour l’usage que nous voulons en faire lorsque nous parlons non plus de coordonnées mais de points.

Revenons à la relation d’équipollence. Elle nous a suggéré d’écrire

Q− P = V − U.

Bien entendu, nous voulons maintenir au signe ✭✭ = ✮✮ sa valeur universelle en mathématiques, qui
est de désigner deux écritures distinctes pour un même objet . Il faut donc que Q− P soit la même
chose que V − U . Et même que Q− P soit la même chose que Y −X, où X et Y sont des points
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quelconques tels que le segment orienté Y −X soit équipollent à Q−P . Une solution audacieuse (y
en a-t-il d’autres ?) consiste à dire que les écritures Q− P , V − U et Y −X renvoient toutes trois
à l’ensemble de tous les segments équipollents à Q− P . Solution audacieuse, peu naturelle, car elle
consiste à remplacer l’objet géométrique élémentaire que constitue le segment orienté par un objet
multiple, infini, aussi peu quotidien que possible. . .

On appelle vecteur libre l’ensemble de tous les segments orientés équipollents à un segment orienté
donné. Si un segment appartient à un vecteur libre, on dit qu’il le représente, qu’il en est un
représentant. Ainsi la définition de vecteur nous permet d’évoquer la figure 5 dans des termes
nouveaux : au lieu de dire qu’elle représente deux segments orientés équipollents, nous pouvons
dire qu’elle montre deux représentants d’un même vecteur libre. Et effectivement, pour connâıtre
un vecteur libre, il suffit de connâıtre un quelconque de ses représentants. Par abus de langage,
nous dirons le plus souvent vecteur au lieu de vecteur libre.
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x2

P

Q

Fig. 8

La figure 8 montre quelques représentants d’un vecteur libre. Pour la facilité, nous avons dessiné
une pointe de flèche à l’extrémité de chacun des segments orientés. Il va de soi que nous ne pouvons
pas dessiner tous les représentants du vecteur, car alors le plan serait tout noir.

Comme nous l’avons vu, les notations Q−P , Q′−P ′, . . . désignent toutes le même vecteur. Chacune
de ces notations a l’avantage de désigner un représentant du vecteur, mais elle a l’inconvénient de
lier fortement celui-ci à l’un de ses représentants. Lorsqu’on rencontre une expression telle que
Q− P , il faut donc bien se souvenir que le vecteur Q− P n’est lié à aucun point du plan, et qu’en
particulier il n’a aucune relation privilégiée avec Q, non plus qu’avec P .

Un vecteur étant par ailleurs un objet mathématique à part entière, rien n’empêche de le désigner
par un symbole qui ne rappelle aucun point ni aucun segment particulier. La convention est d’utiliser
une lettre surmontée d’une flèche, comme par exemple −→a , −→b , . . . Notons aussi que l’on écrit souvent−→
PQ au lieu de Q− P .

Passons ensuite à la deuxième ligne du tableau et à la figure 6. Sur cette dernière nous discernons
maintenant les vecteurs Q− P et U − P , que nous pouvons appeler −→a et −→b . L’égalité

U − P = λ(Q− P ) ou encore −→
b = λ−→a ,

définit ce que nous appellerons le produit d’un vecteur par un réel (on dit aussi par un scalaire). La
définition de cette opération s’obtient, en termes de coordonnées, en retournant à la partie gauche
du tableau. Et puisque nous savons que ce que nous y lisons, à savoir

u1 − p1 = λ(q1 − p1),
u2 − p2 = λ(q2 − p2),
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est indépendant du repère choisi, nous sommes assurés que notre définition n’est pas ambiguë.

Mais nous pouvons aussi définir géométriquement le produit d’un vecteur par un réel. Soit le vecteur
−→a = Q− P . Multiplions la longueur du segment [PQ] par λ et considérons le segment [PU ] ayant
cette nouvelle longueur, et ayant le sens de [PQ] ou le sens opposé selon que λ est > 0 ou < 0.
Alors le segment [PU ] est un représentant de λ−→a = λ(Q− P ).

Enfin considérons la dernière ligne du tableau et la figure 7. Sur celle-ci nous voyons maintenant
les trois vecteurs Q− P , U −Q et U − P , que nous pouvons aussi appeler −→a , −→b et −→c . L’égalité

U − P = (Q− P ) + (U −Q) ou encore −→c = −→a +−→b

nous conduit à ce que nous appellerons naturellement la somme de deux vecteurs.

La définition de cette opération s’obtient, en termes de coordonnées, en retournant à la partie
gauche du tableau. Et puisque nous savons que ce que nous y lisons, à savoir

u1 − p1 = (q1 − p1) + (u1 − q1),
u2 − p2 = (q2 − p2) + (u2 − q2),

est indépendant du repère choisi, nous sommes assurés que notre définition n’est pas ambiguë.

Mais nous pouvons aussi définir géométriquement la somme de deux vecteurs. Supposons que −→a
et −→b aient des représentants [AA′] et [BB′] situés n’importe où dans le plan. Considérons alors un
représentant [A′B] de −→b qui s’enchâıne avec [AA′]. Alors le segment [AB] est un représentant de
la somme −→a +−→b (voir figure 9).
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536 Chapitre 15. De la géométrie analytique aux vecteurs

Pour obtenir la somme −→a +−→b à partir des deux représentants [AA′] et [BB′], nous aurions pu aussi
considérer un représentant [AB] de −→b issu de l’origine de [AA′], et ensuite construire la somme
selon la diagonale du parallélogramme dont trois sommets consécutifs sont A,A′ et B (voir figure
10). Cette façon d’engendrer la somme de deux vecteurs s’appelle règle du parallélogramme.

5.5 Des règles de calcul

Nous venons de définir les vecteurs et les deux premières opérations qu’on leur applique. On aura
compris qu’il ne s’agit pas là d’un épisode banal de notre étude, mais bien d’un véritable accouche-
ment . Toutefois nous ne sommes pas au bout de nos peines, car maintenant que nous avons deux
opérations nouvelles, nous devons encore nous assurer qu’elles obéissent à des règles de calcul qui
nous conviennent.

Nous n’avons plus vraiment le choix de ces règles, car elles découlent des définitions du vecteur et
des deux opérations5. Ce sont celles qui constituent les axiomes d’un espace vectoriel. Rappelons-les.

(I) L’addition des vecteurs est commutative : −→a +−→b = −→b +−→a ;

(II) l’addition est associative : −→a + (−→b +−→c ) = (−→a +−→b ) +−→c ;

(III) il existe un unique vecteur −→0 tel que −→a +−→0 = −→a pour tout −→a ;

(IV) à tout vecteur −→a correspond un unique vecteur −−→a tel que −→a + (−−→a ) = −→0 ;

(V) la multiplication par un scalaire est associative : α(β−→a ) = (αβ)−→a ;

(VI) 1−→a = −→a pour tout −→a ;

(VII) la multiplication par un scalaire est distributive par rapport à l’addition des vec-
teurs : α(−→a +−→b ) = α−→a + α

−→
b ;

(VIII) la multiplication par un scalaire est distributive par rapport à l’addition des vec-
teurs : (α + β)−→a = α−→a + β−→a .

On trouve les démonstrations de ces propriétés, par la voie des coordonnées ou par raisonnement
géométrique direct, dans beaucoup d’introductions au calcul vectoriel : voir par exemple le chapitre
8 du présent ouvrage.

Ces règles de calcul sont satisfaisantes dans la mesure où elles ne nous obligent pas, lorsque nous
en arrivons aux vecteurs, à changer trop les habitudes de calcul que nous avons acquises dans le
champ des nombres.

Montrons maintenant a contrario que ces règles commodes, qui découlent du tableau ci-dessus (voir
section 5.4), n’étaient pas acquises d’avance. Reprenons en effet notre projet à son début. Nous
souhaitions introduire en géométrie un calcul intrinsèque, c’est-à-dire indépendant de tout système
de coordonnées. Une idée qui aurait pu s’imposer à nous aurait été d’adopter directement les
segments orientés comme objets géométriques élémentaires à soumettre au calcul. Ils sont des
figures simples et commodes, moins compliquées que les classes d’équivalence de tels segments.
Un regard sur les vitesses et les forces nous aurait aussi quelque peu poussés dans cette voie. Et
nous aurions alors pu définir leur addition de deux façons. Soit deux segments [AB] et [BC] sont
enchâınés et nous convenons que leur somme sera [AC], mais alors la somme ne sera définie que
pour des segments enchâınés ; soit deux segments [AB] et [AC] sont issus d’un même point A, et

5 Dans le présent exposé, nous constatons que les règles de calcul se maintiennent pour l’essentiel. D’autres exposés
aboutissent aux vecteurs en partant de l’objectif que les règles de calcul soient conservées. Un tel objectif correspond
à ce que Freudenthal appelle le principe de permanence algébrique (voir par exemple Freudenthal [1973]).
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nous définissons leur somme par la règle du parallélogramme, mais alors la somme n’est définie que
pour les segments ayant même origine. Nous voyons que, dans l’un et l’autre cas, l’addition n’est
pas définie sur l’ensemble des segments, ce qui est un désavantage évident.
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D’autre part, si nous adoptons l’addition par enchâınement, nous observons que certaines des règles
(I) à (VIII) ci-dessus ne sont pas satisfaites.

Par exemple, partons des deux segments [AB] et [BC] et de leur somme [AB] + [BC] = [AC] (voir
figure 11). Nous voudrions commuter cette somme et donc la remplacer par [BC] + [AB]. Mais ce
n’est pas possible, parce que [BC] et [AB] (pris dans cet ordre bien entendu) n’étant pas enchâınés,
leur somme n’est pas définie.

Autre exemple : soit comme sur la figure 12, les segments enchâınés [AB] et [BC] et leur somme
[AC]. Multiplions les deux premiers par un scalaire λ, par exemple λ = 1, 5. Nous obtenons ainsi
λ[AB] = [AB′] et λ[BC] = [BC ′]. Nous voudrions pouvoir appliquer la règle de la distributivité
sous la forme

λ([AB] + [BC]) = λ[AB] + λ[BC].

Mais malheureusement [AB′] et [BC ′] ne sont plus enchâınés, et nous ne pouvons par conséquent
pas les additionner.

Peut-être alors aurions nous plus de chance en considérant la somme tirée de la règle du parallé-
logramme. Dans cette hypothèse, considérons tous les segments orientés issus d’un seul point, de
manière que la somme soit définie pour tout couple d’entre eux. On vérifie alors facilement que
toutes les règles (I) à (VIII) sont satisfaites.
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C’est un résultat intéressant. Ce qui est dommage par contre, c’est qu’au passage nous avons
privilégié un point, à savoir l’origine commune de tous les segments. Nous nous interdisons de
considérer a priori un segment situé n’importe où dans le plan, ce qui est une décision désagréable
pour celui qui cherche à faire de la géométrie en un sens ordinaire, c’est-à-dire dans un espace
homogène.

Exercice. Établir quelles sont les règles de calcul (I) à (VIII) que l’on peut transposer aux segments
orientés additionnés par enchâınement, et quelles sont celles que l’on ne peut pas transposer.

Exercice. Vérifier explicitement que tous les segments orientés issus d’un point donné et addi-
tionnés par la règle du parallélogramme vérifient les règles (I) à (VIII).

6 Les géométries affine, euclidienne et métrique

6.1 La perpendicularité

Dans cette étude, nous n’avons pas encore abordé la propriété de perpendicularité. Rappelons donc
d’abord comment elle s’exprime dans un système de coordonnées, et voyons ensuite comment elle se
comporte dans un changement de repère. Soit donc, comme toujours jusqu’ici, un repère orthogonal
muni de la même unité sur chacun des deux axes. Et soient deux segments orthogonaux [PQ] et
[PU ] (voir figure 13). À cause de la perpendicularité, les deux triangles rectangles PAQ et PBU
sont semblables.
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1
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U

Fig. 13

Cette propriété s’exprime comme ceci

q1 − p1

q2 − p2
=

u2 − p2

p1 − u1
.

Cette relation n’est évidemment valable que si les segments ne sont pas parallèles aux axes. Pour
obtenir une expression générale de la perpendicularité, nous la remplacerons par

(q1 − p1)(u1 − p1) = −(q2 − p2)(u2 − p2),

que nous écrirons plus volontiers sous la forme

(q1 − p1)(u1 − p1) + (q2 − p2)(u2 − p2) = 0. (27)
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Par définition, nous comprendrons même, dans la propriété en question, les cas extrêmes où deux
des points P , Q ou U sont confondus, et aussi le cas où les trois points sont confondus.

Il nous reste à voir maintenant ce que devient cette relation dans un changement de repère du type
(11). Après calcul, nous obtenons

(q′1 − p′1)(u
′
1 − p′1)(r

2
11 + r2

21) + (q′2 − p′2 ) (u′
2 − p′2)(r

2
12 + r2

22)
+(q′1 − p′1)(u

′
2 − p′2) + (q′2 − p′2)(u

′
1 − p′1 ) ](r11r12 + r21r22) = 0.

(28)

Souvenons-nous alors que nos axes sont orthogonaux et sont tous munis de la même unité. Nous
pouvons donc appliquer les formules (13) à (15), ce qui nous donne au lieu de (28) la formule
simplifiée

(q′1 − p′1)(u
′
1 − p′1) + (q′2 − p′2)(u

′
2 − p′2) = 0. (29)

Ainsi, la relation de perpendicularité est intrinsèque.

Remarquons toutefois que, par comparaison avec les autres relations étudiées jusqu’à présent, pour
établir que la relation de perpendicularité est intrinsèque, nous nous sommes appuyés sur la condi-
tion (13) d’orthogonalité des axes et sur les conditions (14) et (15) exprimant que l’unité choisie
est la même sur tous les axes.

Mais regardons d’un peu plus près le passage de (28) à (29). En fait, au lieu de (14) et (15), nous
aurions pu dans le calcul utiliser la condition moins restrictive qui s’écrit

r2
11 + r2

21 = r2
12 + r2

22. (30)

Celle-ci exprime que l’unité est la même sur les deux axes Sx′
1 et Sx′

2, mais pas forcément égale
à celle choisie sur Ox1 et Ox2. Nous pourrions donc, en ce qui concerne la perpendicularité, re-
commencer la théorie en vérifiant que, lorsqu’on passe d’un repère orthonormé à un autre avec un
éventuel changement d’unité, on a encore les relations (11), (12) et (13), et que l’on a en outre (30).

Ceci fait, on aurait montré que la relation de perpendicularité (17) est intrinsèque pour une classe
de repères plus grande que celle considérée jusqu’ici, à savoir la classe de tous les repères ayant des
unités identiques sur les deux axes, même si cette unité varie d’un repère à l’autre.

Notons enfin que, la relation d’orthogonalité ne dépendant que des projections des segments orientés,
elle s’étend naturellement de ces derniers aux vecteurs. Et donc, si nous considérons que [PQ] et
[PU ] représentent respectivement deux vecteurs −→a et −→b , nous pouvons dire que −→a et −→b sont
orthogonaux si et seulement si on a la condition (27).

6.2 La distance

Soient P et Q deux points. Grâce au théorème de Pythagore, nous pouvons écrire pour le carré de
la distance qui les sépare

d2(P,Q) = (q1 − p1)2 + (q2 − p2)2. (31)

Vient ensuite bien entendu la question de savoir comment cette expression se transforme dans le
changement de repère. Après calcul, nous obtenons

d(P,Q) = (q′1 − p′1)
2(r2

11 + r2
21) + (q′2 − p′2)

2(r2
12 + r2

22) + 2(q′1 − p′1)(q
′
2 − p′2)(r11r12 + r21r22).

Mais en vertu de (13) à (15), nous obtenons aussi

d2(P,Q) = (q′1 − p′1)
2 + (q′2 − p′2)

2. (32)

Ce que nous observons ici est non plus seulement une relation intrinsèque, mais une fonction
intrinsèque. Nous pouvons la qualifier d’intrinsèque, car elle a la même expression dans tous les
repères (orthogonaux et munis cette fois d’unités identiques sur tous les axes).



540 Chapitre 15. De la géométrie analytique aux vecteurs

6.3 Trois ensembles de repères

Jetons un regard en arrière sur les repères que nous avons envisagés jusqu’ici. À la section 3, nous
sommes partis avec des repères orthonormés et la même unité dans tous les repères. Comme nous
venons de le voir, c’est par rapport à cette classe de repères que la distance est intrinsèque.

Nous avons montré par ailleurs que la perpendicularité était intrinsèque par rapport à la classe des
repères orthonormés munis d’unités éventuellement différentes d’un repère à l’autre.

Mais tous comptes faits, pour prouver le caractère intrinsèque des relations (20), (22) et (24) qui
fondent le calcul vectoriel, nous ne nous sommes appuyés sur aucune des conditions (13) à (15).
D’où l’idée que, sans doute, les vecteurs et le calcul vectoriel sont intrinsèques par rapport à la
classe de tous les repères, sans condition d’orthogonalité et sans qu’on exige rien des unités.

Pour s’assurer de cela, il suffit de vérifier que les formules (11) et (12) de changement de repère
sont applicables dans cette classe de repères beaucoup plus générale. Nous laissons cette preuve en
exercice.

Nous aboutissons ainsi à une conclusion importante : toutes les propriétés géométriques qui ne
dépendent que de la somme des vecteurs et du produit d’un vecteur par un nombre sont intrinsèques
dans la classe des repères les plus généraux. Ces propriétés sont regroupées sous la dénomination
de géométrie affine.

Les propriétés qui sont intrinsèques pour la classe des repères satisfaisant à la condition (13) d’or-
thogonalité et à la condition (30) d’égalité des unités dans un même repère, sont connues comme
formant la géométrie euclidienne ou géométrie de la similitude.

Enfin les propriétés qui sont intrinsèques pour la classe de repères la plus restreinte, celle qui exige
les conditions (13) à (15), forment la géométrie métrique.

On dit que ces trois géométries sont embôıtées, car tout ce qui est affine est vérifié dans les géométries
euclidienne et métrique, et tout ce qui est affine et euclidien est vérifié dans la géométrie métrique.

6.4 Des axes obliques

Pour illustrer ces résultats, donnons-nous deux repères non orthogonaux avec des unités différentes
sur chaque axe. Une manière simple pour obtenir cela consiste à modifier la figure 3 pour remplacer
le réseau de carrés par un réseau de parallélogrammes, ce qui est simple à faire à l’ordinateur. À
ceci près, aucune des notations de la figure ne doit être changée.
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Mais ceci nous amène une surprise. Aucun des points de la figure n’a changé de coordonnées. Les
formules (11)

x1 = r11x
′
1 + r12x

′
2 + s1,

x2 = r21x
′
1 + r22x

′
2 + s2.

(11)

sont bien entendu toujours valables. Elles se particularisent en

x1 = 2 + 0, 8x′
1 − 0, 6x′

2, (9)

x2 = 0, 8 + 0, 6x′
1 + 0, 8x′

2. (10)

Mais les formules (13) à (15), à savoir

r11r12 + r21r22 = 0, (13)

r2
11 + r2

21 = 1, (14)

r2
11 + r2

22 = 1, (15)

sont, elles aussi, encore satisfaites !

Que se passe-t-il ? Nous voulions des repères non orthonormés et voilà que la relation d’orthogonalité
et celle qui exprime l’égalité des unités sur tous les axes sont encore vérifiées. C’est choquant !

Il ne faut pas chercher l’explication trop loin. Ce qui diffère principalement d’un cas à l’autre,
c’est qu’aux figures 3 et 4 le repère de départ était orthonormé. C’est donc dans un tel repère que
les conditions (13) à (15) expriment l’orthogonalité des axes et l’égalité des unités dans les deux
repères.

Dès que l’on passe à des axes obliques munis d’unités quelconques, les conditions (13) à (15) peuvent
être satisfaites, mais peuvent aussi ne pas l’être, comme le montre la figure 15.

O 1

1
O'

1
1

Fig. 15

Que conclure de cette situation intrigante ? Devant la difficulté que nous avons mise en évidence,
nous pouvons prendre deux positions très différentes.

Première position. – Les axes des figures 3 et 4 sont perpendiculaires et portent tous les quatre
la même unité. Mais d’abord, de quelle perpendicularité s’agit-il ? En regardant nos figures, nous
voyons tout de suite qu’il s’agit de l’angle droit physique : c’est celui que l’on trouve en un lieu
donné entre une verticale et une horizontale qui la coupe. C’est aussi celui que l’on obtient en pliant
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soigneusement une feuille de papier en quatre. Nous avons des raisons de souhaiter que les angles
droits soient ceux-là et seulement ceux-là.

Il en va de même pour l’égalité des unités portées sur les différents axes. Ces unités sont égales au
sens où, si on porte physiquement le segment qui représente l’une d’elles sur chacune des autres,
on arrive dans chaque cas à les faire cöıncider.

Si nous décidons que, pour nous, la perpendicularité et l’isométrie des segments c’est cela, alors
forcément, les conditions (13) à (15) n’expriment ces deux propriétés que si on les applique dans
des axes de départ déjà orthonormés (au sens physique). Et si nos axes de départ sont autres, les
conditions (13) à (15) expriment d’autres propriétés, qui resteraient à interpréter.

Deuxième position. – Mais nous pourrions prendre une autre décision : celle que, quel que soit le
système d’axes de départ, les conditions (13) à (15) définissent la première la perpendicularité des
nouveaux axes et les deux autres l’égalité des unités sur tous les axes. Dans cette perspective, on
ne peut plus dire qu’un repère est orthonormé absolument parlant . Il faut dire au contraire qu’un
repère est orthonormé par rapport à un autre. L’orthonormalité devient une propriété des couples
de repères. Et en particulier alors, tout repère est orthonormé par rapport à lui-même, puisque les
équations de passage sont du type

x1 = x′
1,

x2 = x′
2,

et qu’elles satisfont aux conditions d’orthonormalité (13) à (15).

Nous venons de voir que la relation ✭✭ un repère est orthonormé par rapport à un autre ✮✮ est
réflexive. Elle est aussi symétrique et transitive. Donc c’est une équivalence.

Par conséquent, l’ensemble de tous les repères se répartit en classes d’équivalence, et au départ
d’un repère quelconque, quelle que soit l’inclinaison (physique) de ses axes et les unités portées par
ceux-ci, on peut définir une géométrie qui conserve entre autres les perpendiculaires et les distances.
Bien entendu, il ne faut pas entendre par là les perpendiculaires et les distances au sens familier (ou
physique), mais bien les perpendiculaires et les distances définies respectivement par les relations
(27) et (30).

Éclairons ces constatations d’une autre manière. Ne parlons plus pendant un moment ni de plan, ni
de droites, ni de points, et ne considérons plus que l’ensemble R2 des couples (x1, x2) de nombres
réels. Installons-nous donc dans l’univers (l’espace ?) des nombres. Considérons ensuite tous les
changements de variables définis par des équations du type (11), à savoir

x1 = r11x
′
1 + r12x

′
2 + s1,

x2 = r21x
′
1 + r22x

′
2 + s2.

(11)

avec la condition r11r22 − r12r21 �= 0.

Les relations intrinsèques pour ces changements seront dites affines. Nous avons ainsi défini une
géométrie affine sans sortir du domaine des nombres.

Considérons maintenant l’ensemble des changements du même type, mais qui satisfont en outre
aux conditions (13) à (15), à savoir

r11r12 + r21r22 = 0, (13)

r2
11 + r2

21 = 1, (14)

r2
12 + r2

22 = 1. (15)
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Ces changements de variables ne se mélangent pas aux autres : si on en compose deux, on obtient
encore un changement du même type. Les relations et fonctions intrinsèques par ces changements
moins généraux seront dites métriques. Nous avons ainsi défini une géométrie métrique sans sortir
du domaine des nombres, et cette géométrie résulte d’une particularisation de la géométrie affine.

Le fond de l’histoire – mais nous ne développerons pas cette considération ici –, c’est que les
changements de variables affines forment un groupe pour l’opération de composition, et que les
changements de variables métriques forment un sous-groupe de ce groupe.

Là où les choses se compliquent, c’est lorsqu’on veut mettre ces changements de variables et ces
relations en correspondance avec le plan Π de la géométrie ordinaire, celle où on parle de points et
non plus de couples de nombres réels. Le fait est, comme nous l’avons vu, que la correspondance
peut s’établir au moyen d’un repère de départ quelconque, et que tous les repères sont équivalents
à cet égard. Il s’agit-là d’un authentique principe de relativité.

Il existe une infinité de géométries métriques, chacune définie par une classe de repères orthonormés
les uns par rapport aux autres et tous munis de la même unité. Si on revient à l’univers physique,
on retrouve les repères orthonormés au sens familier.

Une géométrie métrique construite au départ d’un repère non orthonormé au sens familier fournit
des résultats assez étonnants pour le sens commun. C’est ainsi que la figure 16 montre deux triangles
isométriques. Quant à la figure 17, elle exprime graphiquement le théorème de Pythagore.

1

1

Fig. 16

1

1

Fig. 17

Ces conclusions étonnantes s’éclairent si on se souvient de ce qui se passe à une dimension. Pour
fixer un repère sur une droite, on peut choisir une unité arbitraire. Une fois ce choix fait, tout
autre repère sera réputé normé s’il est construit sur la même unité. Bien entendu, à une dimension,
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les angles n’interviennent pas. Ce que nous avons découvert ci-dessus, c’est qu’à deux dimensions
comme à une, les repères sont relatifs. Mais à deux dimensions, les angles interviennent. Et la grande
différence, c’est que la nature ne nous a pas donné une unité de longueur naturelle, qui s’impose
plutôt que tout autre, tandis qu’elle nous a donné l’angle droit physique auquel notre imagination
est très attachée.

Exercices.

1) Considérons quatre points P , Q, U , V disposés en parallélogramme comme à la figure 18,
autrement dit les points P , Q, U , V vérifient la relation algébrique

(q1 − p1) + (u1 − p1) = v1 − p1,

(q2 − p2) + (u2 − p2) = v2 − p2.

P
U

V

Q

O 1

1

Fig. 18

Montrer que cette relation est intrinsèque pour n’importe quel changement de repère, autrement
dit qu’elle relève de la géométrie affine.

2) Soient trois points P , Q, U vérifiant la relation algébrique

p1 + q1 = u1,

p2 + q2 = u2.

Pour quel type de changement de repère cette relation est-elle intrinsèque ? Donner une interpré-
tation géométrique du résultat.

7 Commentaires

7.1 Regard en arrière sur notre parcours

Pour apprendre ou enseigner les vecteurs, on peut songer à en parcourir la genèse historique.
Mais on sait que celle-ci, à laquelle sont associés les noms d’Argand, Grassmann, Hamilton,
Heaviside et beaucoup d’autres, a été extraordinairement longue et tortueuse. Les pionniers des
vecteurs ont avancé sur un terrain accidenté, et l’historien ne peut qu’essayer de comprendre leur
difficile progression, en s’interdisant tous les raccourcis que pourrait suggérer la théorie actuellement
connue, mais inexistante alors. Ceci fait qu’en l’occurence l’histoire fidèlement relatée n’est pas
appropriée à un premier enseignement.

Les exposés axiomatiques d’autre part, en s’accrochant à un petit nombre de propriétés de départ
et en procédant par la seule déduction, occultent les questions qui ont engendré la théorie et les
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difficultés essentielles qu’elle permet de vaincre. La pureté d’une théorie radicalement déductive est
souvent aveuglante. Elle appelle un discours interprétatif laborieux.

Dans notre introduction aux vecteurs, nous n’avons suivi ni la voie de l’histoire fidèle, ni celle de
l’axiomatique pure. Nous avons cherché une voie concise qui réponde au besoin de sens, qui montre
à chaque étape, à chaque carrefour, les raisons qui l’ont fait choisir. S’agissant des vecteurs, on
peut dire en schématisant quelque peu, que l’histoire est obscure mais pleine de sens, et que les
exposés axiomatiques sont clairs mais souffrent d’une insuffisance de sens. Nous avons cherché ici à
construire un exposé qui soit à la fois pourvu de sens et clair. Pourvu de sens parce qu’il évoque les
questions motivantes et mobilise les démarches heuristiques autant que les preuves et les calculs, –
et sur ce point il ressemble à l’histoire –, clair parce qu’il emprunte les chemins raccourcis qu’on
peut aujourd’hui discerner dans l’histoire décantée.

Avons-nous réussi cette entreprise ? Le lecteur en jugera. Quoiqu’il en soit, pour approfondir notre
réflexion sur les vecteurs tout en réfléchissant sur notre type de démarche, rappelons les épisodes
principaux du parcours, en en soulignant au passage les significations heuristiques et théoriques.

Notre point de départ a été la géométrie analytique näıve en axes orthonormés. Cette géométrie
répond au besoin d’étudier les figures par calcul. Mais elle impose l’usage d’un repère, en principe
arbitraire.

Les figures géométriques que l’on veut étudier sont là avant qu’on introduise le repère. Pour les
étudier analytiquement, on les représente par des relations algébriques. Mais une fois qu’elles sont
ainsi représentées en coordonnées, à quoi voit-on encore qu’elles sont indépendantes du repère ?
C’est là une première question.

Ensuite, après avoir représenté algébriquement des figures familières, connues au préalable, on
peut partir de relations algébriques quelconques (et c’est bien une curiosité qui est apparue dans
l’histoire). Chacune représente une figure. Mais parmi cette foule de figures, n’y en a-t-il pas qui
changent quand le repère change ? C’est une deuxième question.

À ces questions répond la distinction entre relations intrinsèques ou non. Il existe des relations non
intrinsèques (et c’est sans doute une surprise). Nous avons dit qu’elles étaient plutôt géographiques
que géométriques. Elles sont attachées à un repère, à un lieu donné.

On compare volontiers le repère à un observateur, ou plus modestement à un instrument d’observa-
tion (muni de deux échelles de mesure). Il est naturel de chercher, comme nous venons de l’évoquer,
quelles sont les propriétés géométriques qui ne dépendent pas du repère, celles qui ont de ce fait
une valeur universelle6.

Nous avons testé quelques figures élémentaires – quelques relations algébriques simples –, pour leur
caractère intrinsèque. C’étaient les couples de points équipollents, puis un segment et un autre
de même origine et même direction mais de longueur différente, et troisièmement la configuration
triangulaire.

Ceci fait, la reconnaissance du caractère intrinsèque nous poussait à échapper aux coordonnées pour
ne plus calculer qu’avec des points, éléments géométriques indépendants du repère. Pour y arriver,
nous avons introduit un calcul purement formel , en nous réservant la possibilité de le justifier
pleinement plus tard. C’est là une démarche heuristique, injustifiée sur le plan déductif, mais qu’on
trouve plusieurs fois dans l’histoire des mathématiques7.

La seule exigence de maintenir le sens du signe égal nous a alors conduits aux vecteurs libres.
Nous avons été forcés d’accepter cet objet insolite. Ceci fait, le symbole pour le produit d’un

6 Par raison de simplicité, nous n’avons pas évoqué la question de l’orientation des repères.
7 Par exemple lors de l’introduction des nombres négatifs, des nombres complexes, du calcul symbolique de Hea-

viside.
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vecteur par un nombre (en l’occurrence l’absence de symbole) et le symbole pour la somme, non
seulement prenaient d’office une signification nouvelle parce qu’ils étaient appliqués à des objets
nouveaux, mais cette signification nous était imposée, et nous arrivions à décrire ces opérations
géométriquement (c’est-à-dire sans plus retourner aux repères). Et pour la somme, nous avions
même deux constructions équivalentes. Nous tenions donc les éléments d’un calcul intrinsèque
appliqué aux vecteurs libres.

Le pas suivant a consisté à nous libérer , dans la notation adoptée pour les vecteurs, de toute
référence à un couple de points représentant celui-ci. Le vecteur, ensemble infini de couples de
points équipollents, se voyait ainsi attribuer un symbole simple, reconnaissant son existence d’objet
mathématique indépendant.

Bien entendu, nous devions alors nous poser la question des règles de ce nouveau calcul. Heureuse
surprise, toutes les règles que nous espérions (parce qu’elles nous étaient familières dans le cas des
nombres) se trouvent d’office vérifiées. Elle sont démontrables par retour aux coordonnées, mais
aussi directement par la géométrie élémentaire. Pour ceux qui le connaissaient déjà, un espace
vectoriel était ainsi reconstruit.

Tout cela par la vertu du seul signe ✭✭ = ✮✮. Mais le vecteur libre avec son infinité de segments est un
monstre. D’où la question : pourquoi ne pas chercher à construire un calcul géométrique au départ
des seuls segments ? Cette idée nous a conduits à une première déconvenue : avec la somme des
segments par enchâınement, on n’obtient pas de règles de calcul commodes, car la somme n’est pas
définie assez souvent. Par contre une bonne surprise avec la somme par la règle du parallélogramme :
si on ne considère que les segments issus d’un seul point, toutes les règles de calcul sont réalisées.
On retrouve un autre espace vectoriel. Malheureusement , pour faire de la géométrie, le lien obligé
à un point est une contrainte gênante.

Ceci fait, nous voyions comment se comportent quelques relations simples dans des changements
de repère. Mais certaines propriétés géométriques, par exemple la perpendicularité et la distance,
s’expriment par des relations ou des fonctions que nous n’avions pas encore examinées. D’où la
question du caractère intrinsèque de ces dernières.

Or nous nous sommes aperçus que la perpendicularité et la distance étaient bien intrinsèques pour
la catégorie de repères que nous avions choisie, à savoir celle des repères orthonormés munis d’une
même unité de longueur. Mais notre attention était attirée sur le fait que, pour établir ce caractère
intrinsèque, nous devions nous appuyer sur les conditions d’orthonormalité. Observation curieuse,
car pour les relations étudiées jusque-là, il n’en avait rien été.

D’où une nouvelle question : ne pouvions-nous pas nous attendre à ce que l’équipollence des seg-
ments, la multiplication des segments par un nombre et la configuration triangulaire, soient intrin-
sèques pour des changements de repères non orthonormés ? Et supposons même que nous n’ayons
pas fait cette observation sur le rôle des conditions d’orthonormalité. Après tout, pour donner des
coordonnées aux points, un repère oblique muni d’unités quelconques fait aussi bien l’affaire qu’un
repère orthonormé. Et donc il est assez naturel de se demander jusqu’où on peut fonder la géométrie
si on considère d’emblée tous ces repères.

La réponse à cette question ne nous demandait pour commencer qu’un simple travail de vérifica-
tion. Et nous avons eu la satisfaction de constater que tout ce que nous avions démontré et défini
pour des relations du premier degré pouvait être conservé sans changement.

Mais une grosse surprise nous attendait. En effet, pour le premier exemple que nous avions choisi
montrant le passage d’un repère oblique à un autre, celui de la figure 14, nous constations que
les conditions d’orthonormalité étaient vérifiées. D’où une véritable (re)découverte, à savoir que
l’orthonormalité n’est la propriété d’aucun repère particulier, mais bien qu’elle est une relation
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entre deux repères. L’angle droit n’était-il donc pas ce que nous pensions ? C’était une nouvelle
question.

Enfin, voyant que certaines relations algébriques (certaines propriétés) résistaient à certains change-
ments de repère, mais non à tous, nous avons cherché pour chacune des propriétés de base étudiées
jusque-là, à quelle classe de changements de repère elle résistait. Cela nous a permis de définir la
géométrie affine, la géométrie des similitudes et la géométrie métrique.

Nous pouvons certes conclure qu’aller à la recherche des vecteurs n’était ni un cheminement déductif,
ni une démarche de routine.

7.2 Le vecteur : un monstre commode !

Lorsque nous pensons à la géométrie au sens le plus ordinaire, nous voyons au départ des points, des
droites (et des plans si nous considérons la troisième dimension). Or dans notre exposé, il y avait
bien des points au départ, mais nous n’avons pas évoqué les droites. Même la condition d’alignement
concernait une relation entre trois points et ne s’appuyait pas sur la connaissance des droites. Ce
n’est pas un mal car on peut considérer, du point de vue du bon sens, que la droite est un monstre
tellement grand qu’il est difficile à imaginer. Qui plus est, au fur et à mesure de notre exposé, les
points sont passés au deuxième plan, et ont cédé la place aux vecteurs libres8.

D’un certain point de vue, les vecteurs libres sont moins monstrueux que les droites, car on les
construit avec des segments, qui sont des figures bornées. Encore qu’il existe des segments aussi
grands que l’on veut. . . Mais si le vecteur échappe jusqu’à un certain point au handicap de la
longueur infinie, par contre il est monstrueux parce qu’il est infini du côté des nombres : chaque
vecteur libre est un ensemble infini de segments. Que gagne-t-on à passer ainsi d’une monstruosité
à une autre ?

Un élément de réponse est assez clair : avec les vecteurs on peut calculer, avec les droites non.
Avec les points représentés par des coordonnées on peut aussi calculer, mais les coordonnées ne
sont pas intrinsèques, et la géométrie analytique conduit souvent à calculer en aveugle. Le vecteur
est libre d’abord parce qu’en le créant, on l’a libéré des coordonnées. Mais il est doublement libre,
parce qu’on l’a aussi libéré des couples de points. En fait – nous l’avons dit à suffisance –, si on
devait le voir strictement comme l’ensemble de tous les couples de points équipollents à un couple
donné, un seul vecteur noircirait tout le plan et on n’y verrait rien du tout. Mais l’imagination de
l’être humain a des ressources indispensables à la pensée mathématique. On peut voir le vecteur
comme une infinité seulement potentielle de couples de points, se dire qu’on peut représenter un
tel couple n’importe où, mais qu’on n’est pas obligé de le faire. Le vecteur libre est partout, il a le
don d’ubiquité, mais on le manifeste où on veut. Le plus intéressant est de le voir au bon endroit
dans la figure que l’on étudie. Il y apparâıt comme un segment orienté, une flèche que l’on combine
à d’autres flèches, en général sans perdre de vue ce que l’on fait, ni ce que l’on veut faire. Et on
conserve par devers soi la certitude que ces pseudo-flèches ont un statut théorique qui légitime ce
que l’on fait. Mais on sait que dans beaucoup de cas, à la fin il va falloir revenir aux nombres.
Face à une situation géométrique donnée, et comme l’écrivent G. Noël et al. [1998], on réalise
un véritable plan de calcul en allant placer les vecteurs là où ils manifestent le plus clairement les
propriétés données, en les combinant par calcul pour arriver au résultat escompté, et finalement
en les projetant dans un repère choisi de façon à minimiser les calculs lors du nécessaire retour au
numérique.

8 Les vecteurs ont la vocation de se substituer totalement aux points comme termes de base de la géométrie. En
effet, les exposés modernes de la géométrie commencent souvent comme ceci : soit un espace vectoriel sur un corps. Et
à partir de là, on construit la notion d’espace affine, ce qui ramène l’imagination vers les points. Pour un bel exemple
de cela, proposé pour les classes avancées du secondaire, voir E. Artin [1960].
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Tant qu’à parler du vecteur tel que nous le percevons maintenant, notons enfin qu’il n’est pas
un concept isolé, et c’est là sans doute une observation d’une grande portée pour l’enseignement.
Nous l’avons vu : le vecteur est né dans le champ des coordonnées, des changements de repère,
de la recherche du caractère intrinsèque, des géométries affine, euclidienne et métrique. Il est vrai
que face à un problème géométrique, on peut choisir de le traiter, selon l’avantage que l’on y
voit, analytiquement, vectoriellement, par transformations. . . Mais d’après ce que nous avons vu,
il y aurait une perte de sens à décider que, dans l’apprentissage de la géométrie, on privilégiera
l’analytique, ou les transformations, ou les vecteurs.

7.3 Et sur le plan philosophique ?

Notre étude a abouti à des conclusions mathématiques précises. Mais elle provoque aussi au passage
plusieurs questions de nature philosophique. En voici deux, parmi les plus visibles. Le lecteur que
la philosophie ennuie peut sauter cette section.

Premièrement, nous avons importé un calcul formel dans l’univers des différences de points : c’était
un parachutage de symboles sur des choses dont nous ne savions pas a priori si elles pouvaient
accepter cette violence. Or elles ne l’acceptaient pas. Le signe ✭✭ = ✮✮ était immédiatement mis en
cause. Ou bien nous maintenions que notre calcul portait sur des différences de points, mais alors le
signe ✭✭ = ✮✮ tel que nous l’avions introduit était absurde ; ou bien nous maintenions le sens habituel
du signe ✭✭ = ✮✮, mais alors il nous fallait redéfinir ce sur quoi portait notre calcul. C’est ce que nous
avons fait. Un être nouveau est né là. Lorsque le signe ✭✭ = ✮✮ est en cause, on touche à une question
ontologique.

Et quelle est la nature de cet être nouveau ? C’est un être collectif, une collection infinie des choses
de départ (les couples de points). Pourquoi ? C’est étrange, mais cela s’explique sans doute. Un
couple de points est une chose particulière, trop particulière. On voudrait qu’il demeure lui-même
quand on le déplace (par équipollence), comme une chaise ne cesse pas d’être elle-même lorsqu’on la
déplace. Mais un couple de points déplacé est un autre couple de points. Notre géométrie familière
ne nous permet pas de telles identifications. Des points distincts sont des points distincts. Quelle est
la solution ? C’est de dire que notre nouvel objet sera, non pas un couple de points déplaçable à gré,
puisque nous ne pouvons pas faire cela, mais l’ensemble de tous les couples de points équipollents
à un couple donné. L’objectivation, la fabrication du nouvel objet est une collectivisation. Le sens
commun en prend un coup. Tant pis s’il s’y trouve assez d’avantages par ailleurs9.

Un autre point intrigant de notre étude concerne les repères orthonormés, et plus généralement la
géométrie métrique. Nous vivons dans un monde où les angles droits sont aisément reconnaissables
et où nous pouvons aller mesurer des longueurs n’importe où et dans n’importe quelle direction,
à l’aide d’une règle graduée indéformable. Mais réfléchissons un moment : comment savons-nous
que notre règle est indéformable ? Est-ce parce que nous pouvons vérifier qu’elle ne change pas de
longueur, en nous servant d’une autre règle ? Mais alors, comment vérifier cette dernière ? Nous
sommes dans l’impasse. De deux choses l’une : ou bien notre règle change de longueur, mais nous
ne pourrons jamais le vérifier, ou bien la question n’a pas de sens.

9 Ce procédé de collectivisation n’est pas propre aux mathématiques. Par exemple, M. Merleau-Ponty [1945]
observe que notre perception visuelle ou tactile d’un objet quelconque est essentiellement variable, instable, et qu’elle
dépend des situations de l’objet par rapport à nous. Il se demande alors ce qui en fonde le caractère objectif, quelle est
cette chose stable, invariable, à laquelle nous identifions l’objet. Et sa réponse est qu’il s’agit de l’ensemble structuré
de ses apparences possibles. En passant des apparences particulières et fortuites à l’ensemble des apparences connues
par l’expérience, il échappe au caractère particulier et fortuit. Cet ensemble d’apparences est partagé (ou au moins
partageable) par tous les êtres humains. Il est objectif. Il s’agit bien ici aussi d’un procédé de collectivisation. Pour
échapper au particulier, on regroupe adéquatement assez de choses particulières.
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Examinons les choses un peu autrement. Dans le plan qui nous est familier, à chaque repère même
oblique et muni d’unités quelconques, nous pouvons faire correspondre un modèle de la géométrie
métrique. Dans un tel modèle, tous les repères sont orthogonaux les uns par rapport aux autres,
bien que nous ne leur trouvions, par rapport à nos critères familiers, ni angles droits, ni mêmes
unités sur les axes. Mais supposons que débarque chez nous un arpenteur venu d’ailleurs avec ses
instruments. Et supposons que son équerre – vue par nous –, change son angle principal de sorte
qu’il déclare droits certains angles que nous ne voyons pas tels. Et supposons que sa règle graduée
– vue par nous –, change de longueur lorsqu’il la tourne, de sorte en particulier qu’il vérifie l’égalité
des unités sur ses deux axes. Cet arpenteur estimera que nos repères orthonormés ne le sont pas.
Aura-t-il raison ? Une commission d’enquête de l’Académie des Sciences pourra-t-elle trancher ?
Qui nous dit qu’il existe bien dans la nature un prototype d’angle droit différent de tous les autres ?
Un angle qui serait droit par essence ? Et non pas par rapport à d’autres ? Nous croyons volontiers
que les choses existent par elle-mêmes avec leurs propriétés familières, et que nous les percevons
objectivement. Le malheur veut que, dès que nous voulons les penser , nous sommes obligés de les
penser par rapport à d’autres, de les expliquer en nous appuyant sur d’autres. Mais est-ce bien un
malheur ? Ou est-ce seulement la nature de l’esprit qui veut que l’on pense non les choses, mais
les relations ? Platon pensait que les choses existaient dans un paradis des idées, lieu de la réalité
éternelle. Mais au cours des siècles, les mathématiques ont dit de moins en moins ce qu’étaient
les choses, pour se concentrer sur leurs relations, pour étudier des structures. Elles ont en outre
contribué, au cours du XXe siècle, à l’émergence d’un courant structuraliste dans des disciplines
aussi diverses que la linguistique, l’anthropologie et l’analyse de textes en littérature.

8 Appendice : les transformations

Nous avons introduit les géométries affine, euclidienne et métrique par le truchement des change-
ments de repère et des relations intrinsèques. Or souvent on aborde ces mêmes théories en parlant
de transformations du plan et de relations ou de propriétés invariantes pour des tranformations.
Montrons maintenant que les deux approches sont équivalentes. En fait, même si changer de repère
et transformer le plan sont deux opérations très différentes dans la pratique et pour l’intuition, elles
se correspondent parfaitement, comme nous allons le montrer.

Reprenons le changement de repère illustré par la figure 3 et exprimé par les équations (9) et (10).
Dans cette situation, il y a un plan (et un seul) et deux façons d’en coder les points.

O 1

1

X

x1

x2

O'

11

0,80,6
0,60,8

X*

x1

x2

A

Fig. 19

Regardons maintenant la figure autrement (cf. figure 19). Imaginons que nous fassions bouger le
premier repère et qu’il entrâıne avec lui tous les points du plan. Envoyons le sur le second repère.
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Ainsi tout le plan est déplacé. Et un point X de coordonnées (x1, x2) dans le premier repère est
envoyé sur le point X∗ de coordonnées également (x1, x2) dans le second (qui cöıncide avec le
premier déplacé). Nous venons de définir ce que l’on appelle techniquement un déplacement du
plan.

Exprimons maintenant, dans le premier repère, les coordonnées (x∗
1, x

∗
2) de X∗ en fonction de celles

(x1, x2) de X. En considérant tout d’abord les abscisses, nous voyons que

x∗
1 = s1 + (a1 − s1) + (x∗

1 − a1). (34)

En remplaçant s1 ainsi que les différences (a1 − s1) et (x∗
1 − a1) par leurs valeurs calculées de la

même façon qu’à la section 3, nous obtenons

x∗
1 = 2 + 0, 8x1 − 0, 6x2. (35)

Et nous obtenons de même pour les ordonnées

x∗
2 = 0, 8 + 0, 6x1 + 0, 8x2. (36)

De manière générale, les formules qui traduisent un tel déplacement s’écrivent
x∗

1 = r11x1 + r12x2 + s1,

x∗
2 = r21x1 + r22x2 + s2.

(37)

Ces égalités sont de la même forme que (11), à ceci près qu’on y trouve aux premiers membres les
coordonnées (dans le premier repère) du point image X∗, et aux seconds membres celles du point
X de départ.

Nous appellerons le déplacement du plan que nous venons de définir ainsi déplacement associé au
changement de repère.

Démontrons maintenant de manière générale l’identité de forme des équations de changement de
repère et des équations du déplacement associé.

Pour cela considérons d’abord le changement de repère. On part d’un point quelconque P du
plan. Soient r(P ) ses coordonnées dans le premier repère et r′(P ) ses coordonnées dans le second.
Comment passe-t-on de r′(P ) à r(P ) ? On a

r(P ) = r ◦ r′−1 ◦ r′(P )

et donc la fonction qui envoie r′(P ) sur r(P ) est r◦r′−1. Nous savons par ailleurs que cette fonction
est décrite par les équations (6), mais en l’occurrence, cela n’a pas d’importance.

Regardons maintenant le déplacement. On part d’un point P . Ses coordonnées dans le premier
repère sont r(P ). Mais, par définition même du déplacement, l’image P ∗ de P est le point qui a
r(P ) pour coordonnées dans le deuxième repère. Donc on a

P ∗ = r′−1 ◦ r(P ).

Prenons l’image de chacun des deux membres de cette équation par la fonction r ou, en d’autres
termes, passons aux coordonnées dans le premier repère. Il vient

r(P ∗) = r ◦ r′−1 ◦ r(P ),

ou encore
r(P ∗) = (r ◦ r′−1) ◦ r(P ).
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Ainsi, la fonction qui envoie r(P ) sur r(P ∗) est bien également r ◦ r′−1.

Pour expliquer la notion de relation invariante, partons de l’exemple de la relation (3), à savoir

(q1 − p1)(u2 − p2)− (q2 − p2)(u1 − p1) = 0. (3)

En nous plaçant dans le premier repère, nous avons construit les triplets de points satisfaisant à
cette relation (voir figure 2). En nous plaçant dans le second, nous pouvons construire les triplets
satisfaisant à (19). Mais comme (3) et (19) sont de la même forme, ces triplets ne seront rien
d’autre que les triplets associés au premier repère, mais transportés un peu plus loin, entrainés
dans le déplacement qui a porté le premier repère sur le second (voir figure 20).
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D’autre part, nous savons aussi que les triplets de points satisfaisant à (19) sont les triplets construits
dans le premier repère, mais vus du second, c’est-à-dire exprimés au moyen des coordonnées dans
le second repère. Et par conséquent, l’ensemble des triplets transportés est identique à l’ensemble
des triplets de départ. Nous pouvons donc remplacer dans (3) les coordonnées de départ par les
coordonnées des points déplacés, ce qui nous donne

(q∗1 − p∗1)(u
∗
2 − p∗2)− (q∗2 − p∗2)(u

∗
1 − p∗1) = 0. (38)

Nous pouvons confirmer ce résultat de la manière suivante. Passons dans (3) des coordonnées de
départ aux coordonnées des points déplacés, ce qui se fait grâce aux équations (37). Nous retrouvons
l’égalité (38). Celle-ci montre donc bien que les points déplacés satisfont à la même relation que les
points de départ. D’une telle relation, on dit qu’elle est invariante.

Le type de raisonnement que nous venons de faire peut être appliqué à une relation quelconque. Et
donc nous avons montré qu’une relation est invariante si et seulement si elle est intrinsèque.

À un changement de repère tout à fait général (avec des axes obliques) caractérisé par les équa-
tions (11), est associé une transformation du plan caractérisée par les mêmes équations. Une telle
transformation est dite affine. Les relations intrinsèques par les changements de repère quelconques
sont donc des invariants pour les transformations affines. Par exemple, on dira que les transforma-
tions affines conservent l’alignement de trois points, l’équipollence de deux segments orientés, ou le
rapport des longeurs de deux segments orientés parallèles.

Si par contre l’on passe d’un repère orthonormé à un autre en gardant la même unité de longueur,
les déplacements associés sont des isométries. Nous avons donc vu que la distance entre deux points
est conservée par isométrie. À la section 6.4, nous avons également remarqué que la perpendicularité
occupait une position inermédiaire, puisqu’elle est intrinsèque pour une classe de changements de
repère correspondant à la géométrie euclidienne. Les transformations associées à ces changements
de repère sont des similitudes, et la perpendicularité est donc un invariant des similitudes.
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CHAP. LXVI.

Of Negative Squares, and their Imaginary Roots in Algebra.

. . .
These Imaginary Quantities (as they are commonly called) arising from the Supposed Root of a
Negative Square, (when they happen,) are reputed to imply that the Case proposed is Impossible.
And so indeed it is, as to the first and strict notion of what is proposed. For it is not possible,
that any Number (Negative or Affirmative) Multiplied into itself, can produce, (for instance)
−4. Since that Like Signs (whether + or −) will produce +; and therefore not −4.
But it is also Impossible, that any Quantity (though not a Supposed Square) can be Negative.
Since that it is not possible that any Magnitude can be Less than Nothing, or any Number Fewer
than None.
Yet is not that Supposition (of Negative Quantities,) either Unuseful or Absurd; when rightly
understood. And though, as to the bare Algebraick Notation, it import a Quantity less than
nothing: Yet, when it comes to a Physical Application, it denotes as Real a Quantity as if the
Sign were +; but to be interpreted in a contrary sense.
As for instance: Supposing a man to have advanced or moved forward, (from A to B,) 5 Yards;
and than to retreat (from B to C) 2 Yards: If it be asked, how much he had Advanced (upon
the whole march) when at C? I find (by Subducting 2 from 5,) that he is Advanced 3 Yards.
(Because +5− 2 = +3.)

A BCD

But if, having Advanced 5 Yards to B, he thence Retreat 8 Yards to D; and it be then asked
How much he is Advanced when at D, or how much Forwarder then when he was at A: I say −3
Yards. (Because +5− 8 = −3.) That is to say, he is advanced 3 Yards less than nothing.
Which in propriety of Speech, cannot be, (thince there cannot be less than nothing.) And
therefore as to the Line AB Forward, the case is Impossible.
But if (contrary to the Supposition,) the Line from A, be continued Backward, we shall find D,
3 Yards Behind A. (Which was presumed to be Before it.)
And thus to say, he is Advanced −3 Yards; is but what we should say (in ordinary form of
Speech), he is Retreated 3 Yards; or he wants 3 Yards of being so Forward as he was at A.
Which doth not only answer Negatively to the Question asked. That he is not (as was supposed,)
Advanced at all: But tells moreover, he is so far from being advanced, (as was supposed) that
he is Retreated 3 Yards; or that he is at D, more Backward by 3 Yards, than he was at A.
And consequently −3, doth as truly design the Point D; as +3 designed the Point C. Not
Forward, as was supposed; But Backward from A.
So that +3, signifies 3 Yards Forward; and −3, signifies 3 Yards Backward: But still in the same
Streight Line. And each designs (at least in the same Infinite Line,) one Single Point: And but
one. And thus it is in all Lateral Equations; as having but one Single Root.



556 Fiche 78 : Suite du texte extrait de l’Algèbre de J. Wallis

Now what is admitted in Lines, must on the same Reason, be allowed in Plains also.
As for instance: Supposing that in one Place, we Gain from the Sea, 30 Acres, but Lose in
another Place, 20 Acres: If it be now asked, How many Acres we have gained upon the whole:
The Answer is, 10 Acres, or +10. (Because of 30 − 20 = 10.) Or, which is all one 1600 Square
Perches. (For the English Acre being Equal to a Plain of 40 Perches in length, and 4 in breadth,
whose Area is 160; 10 Acres will be 1600 Square Perches.) Which if it lye in a Square Form, the
Side of that Square will be 40 Perches in length; or (admitting of a Negative Root,) −40.
But if then in a third Place, we lose 20 Acres more; and the same Question be again asked, How
much we have gained in the whole; the Answer must be −10 Acres. (Because 30−20−20 = −10.)
That is to say, The Gain is 10 Acres less than nothing. Which is the same as to say, there is a
Loss of 10 Acres: or of 1600 Square Perches.
Anf hitherto, there is now new Difficulty arising, nor any other Impossibility than what we met
with before, (in supposing a Negative Quantity, or somewhat Less than nothing:) Save only that√

1600 is ambiguous; and may be +40, or −40. And from such Ambiguity it is, that Quadratick
Equations admit of Two Roots.
But now (supposing this Negative Plain, −1600 Perches, to be in the form of a Square;) must
not this Supposed Square be supposed to have a Side? Anf if so, What shall this Side be?
We cannot say it is 40, nor that it is −40. (Because either of these Multiplyed into itself, will
make +1600; not −1600).
But thus rather, that it is

√
− 1600, (the Supposed Root of a Negative Square;) or (which is

Equivalent thereunto) 10
√
− 16, or 20

√
− 4, or 40

√
− 1.

Where
√

implies a Mean Proportional between a Positive and a Negative Quantity. For like as√
b c signifies a Mean Proportional between +b and +c; or between −b, and −c; either of which,

by Multiplication, makes +bc:) So doth
√
− b c signify a Mean Proportional between +b and −c,

or between −b and +c; either of which being Multiplied, make −bc. And this as to Algebraick
consideration, is the true notion of such Imaginary Root,

√
− bc.
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Ces quantités, dites imaginaires, provenant des racines supposées de carrés négatifs, sont censées
impliquer que la situation est impossible. Et il en est effectivement ainsi si l’on s’en tient stricte-
ment à ce qui est communément admis. Car il est impossible qu’un nombre (négatif ou positif),
multiplié par lui-même puisse produire (par exemple) −4, en vertu de la règle des signes. Mais
il est tout aussi impossible qu’une quantité quelconque, même non supposée carrée, puisse être
négative. En effet, il n’est pas possible qu’une grandeur puisse être moindre que rien, ou qu’un
nombre soit plus petit que zéro.
Mais cette supposition (de l’existence de quantités négatives) n’est ni inutile, ni absurde, lors-
qu’elle est bien comprise. Et si, du point de vue de la notation algébrique pure, cela amène une
quantité inférieure à zéro, lorsqu’on l’applique à la physique, elle représente une quantité tout
aussi réelle que si le signe était +, mais il faut l’interpréter en sens contraire.
Ainsi, par exemple : supposons qu’un homme ait avancé (de A vers B) de 5 yards, et qu’ensuite,
il ait reculé (de B vers C) de 2 yards. Si on demande de combien il a avancé (quand il est en
C), ou à combien de yards il est devant A, je trouve (en soustrayant 2 de 5) qu’il a avancé de 3
yards (parce que 5− 2 = 3).

A BCD

Mais si, ayant avancé de 5 yards vers B, il recule ensuite de 8 yards vers D, et qu’on demande
de combien il a avancé quand il est en D, ou combien plus en avant il est de A, je dis −3 yards
(parce que 5− 8 = −3). C’est-à-dire qu’il a avancé de 3 yards de moins que rien.
Ce qui, du point de vue de la justesse de l’expression ne peut être, puisqu’il ne peut exister
moins que rien. Ainsi, si on se limite à la ligne AB vers l’avant, la situation est impossible.
Mais si (contrairement à notre supposition) la ligne partant de A peut être prolongée vers
l’arrière, nous trouverons D 3 yards derrière A (ce qui est supposé être avant lui).
Et donc, dire qu’il a avancé de −3 yards représente ce que nous exprimerions, en langage
ordinaire, par : il a reculé de 3 yards, ou il manque 3 yards pour être aussi en avant qu’il l’était
en A.
Ceci ne répond pas seulement par un nombre négatif à la question posée, car il n’a pas (comme
on l’avait supposé) avancé du tout, mais au contraire, il est si loin d’avoir avancé, qu’il a reculé
de 3 yards, et qu’il est en D, 3 yards plus en arrière que lorsqu’il était en A.
Et, par conséquent, −3 désigne le point D aussi réellement que +3 désigne le point C. Non pas
en avant, comme on l’avait supposé, mais en arrière de A. Ainsi, +3 signifie 3 yards en avant et
−3, 3 yards en arrière, mais toujours sur la même ligne droite. Et chacun désigne (en tout cas
sur la même ligne droite infinie) un et un seul point. Et il en va ainsi pour toute équation du
premier degré qui n’admet qu’une seule racine.
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Maintenant, ce qu’on admet sur les droites doit, pour la même raison, être admis dans les plans.
Et par exemple, supposons qu’en un endroit, nous gagnons 30 acres sur la mer, mais que nous
en perdons 20 en un autre lieu, et qu’on demande combien d’acres nous avons gagné en tout ;
la réponse est 10 acres ou +10 (parce que 30 − 20 = 10). Ceci représente aussi 1600 perches
carrées (car l’acre anglais est une surface rectangulaire de 40 perches de longueur sur 4 perches
de largeur dont l’aire est 160 ; 10 acres valent donc 1600 perches carrées).
Si cette surface est un carré, son côté sera long de 40 perches ou (si on admet la racine négative)
−40. Mais si en un troisième endroit, on perd 20 acres de plus, et qu’on pose la même question :
combien avons nous gagné en tout ? La réponse doit être −10 acres (car 30 − 20 − 20 = −10)
c’est-à-dire que le gain est de 10 acres moins que rien. Ce qui revient à dire qu’il y a une perte
de 10 acres ou de 1600 perches carrées.
Et de là nâıt une nouvelle difficulté, qui n’est pas plus une impossibilité que celle que nous
avons rencontrée précédemment (en supposant une quantité négative ou moindre que rien). Ne
considérer que

√
1600 est ambigu, cela peut être 40 ou −40. Et de cette ambigüıté, il ressort que

les équations quadratiques ont deux racines.
Maintenant (en supposant que cette surface négative −1600 perches a la forme d’un carré), ne
doit-on pas admettre que ce supposé carré possède un côté ? Et si oui, que sera ce côté ?
Nous ne pouvons pas dire qu’il vaut 40, ni −40 (parce que l’une ou l’autre de ces valeurs,
multipliée par elle-même, donnera +1600, pas −1600). Mais plus vraisemblablement, sa valeur
est
√
−1600 (la supposée racine d’un carré négatif) ou (ce qui est équivalent) 10

√
−16 ou 20

√
−4

ou 40
√
−1. Le symbole

√
suggère une moyenne proportionnelle entre une quantité positive et

une quantité négative. Car, de la même manière que
√
bc représente une moyenne proportionnelle

entre +b et +c, ou entre −b et −c (dont le produit vaut bc dans les deux cas),
√
−bc indique une

moyenne proportionnelle entre +b et −c, ou entre −b et +c (dont le produit vaut −bc). Et ceci,
sur le plan algébrique, fournit la véritable interprétation d’une telle racine imaginaire

√
−bc.
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6. Si l’on opère sur le symbole a+b
√
−1 par le moyen du facteur

√
−1, on obtient −b+a

√
−1 ; ce

résultat établit que les coordonnées x, y du point représenté sont respectivement −b et a ; mais,
d’après la seconde manière de voir, −b + a

√
−1 représente la droite menée de l’origine au point

(−b, a). La longueur de cette droite est demeurée égale à
√
a2 + b2, mais la direction de la droite

fait avec l’axe des x un angle égal à tang −1
(
−a

b

)
, angle qui dépasse de 90◦ l’angle tang −1

(
b
a

)
,

comme il est facile de s’en assurer.
7. Le théorème de Moivre nous aidera à avancer d’un pas de plus en avant dans la voie. En effet,
si nous multiplions, non plus par

√
−1 mais par un facteur plus général égal à cosα+

√
−1 sinα,

ce facteur, opérant sur une droite quelconque dans le plan des xy, aura pour effet de la faire
tourner, dans le sens positif, d’un angle égal à α. [On s’aperçoit du reste que le facteur

√
−1

employé en premier lieu ne représente qu’un cas particulier de cosα+
√
−1 sinα, correspondant

à α = 1
2π.]

Nous aurons ainsi, en effectuant la multiplication d’après les règles ordinaires,

(cosα +
√
−1 sinα)(a + b

√
−1) = a cosα− b sinα +

√
−1(a sinα + b cosα).

On s’aperçoit, par la forme même du résultat, que le produit indique l’effet de la rotation d’un
angle α, et l’on peut vérifier le fait en faisant tourner les axes de coordonnées d’un angle α (mais
dans le sens contraire), à l’aide des formules connues pour le changement d’axes. Nous pouvons
aussi vérifier le fait de la rotation de la manière suivante : en premier lieu, la longueur sera

[(a cosα− b sinα)2 + (a sinα + b cosα)2]
1
2 = (a2 + b2)

1
2 ,

ce qu’elle était auparavant ; en second lieu, l’inclinaison sur l’axe des Ox est égale à

tang −1

(
a sinα + b cosα
a cosα− b sinα

)
= tang −1

(
tangα + b

a

)(
1− b

atangα
) = α + tang −1

(
b

a

)
.

8. Par ce qui précède nous pouvons maintenant nous rendre compte du sens de la formule

(cosα +
√
−1 sinα)m = cosmα +

√
−1 sinmα.

En effet, le premier membre représente un opérateur qui produit m rotations successives, d’un
angle α chacune ; le second membre exprime l’opérateur d’une rotation unique d’un angle mα
d’un seul trait.
Arrivés à ce point de la question, nous avons intérêt à constater, par anticipation, qu’un qua-
ternion est généralement susceptible d’être mis sous la forme

N(cos θ + I sin θ),

N étant une quantité purement numérique, θ un angle réel et I répondant à

I2 = −1.

Cette forme de représentation d’un quaternion et les formes d’expression qui entrent dans la
formule de Moivre ont entre elles une grande ressemblance ; mais il y a entre elles une différence
essentielle (et c’est en elle que réside le point capital de l’invention de Hamilton), savoir que
I n’est pas l’équivalent de l’élément algébrique

√
−1, mais qu’il représente l’unité de longueur

dirigée dans une direction donnée quelconque dans l’espace.
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Two right lines are added if we unite them in such a way that the second line begins where the
first one ends, and then pass a right line from the first to the last point of the united lines. This
line is the sum of the united lines.
For example, if a point moves forward three feet and backward two feet, the sum of these two
paths is not the first three and the last two feet combined ; the sum is one foot forward. For this
path, described by the same point, gives the same effect as both the other paths.
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Questo metodo soddisfa un desiderio del Carnot di trovare un algoritmo, che rappresenti nello
stesso tempo e la grandezza e la posizione delle varie parti di una figura ; ne risultano quindi, per
via diretta, eleganti e semplici soluzioni grafiche dei problemi geometrici. Il metodo delle equi-
pollenze comprende come casi particolari i metodi delle coordinate parallele o polari, il calcolo
baricentrico ecc. : i problemi sulle curve vi si risolvono in generale senza preferire una maniera
di rappresentazione ad un’ altra ; perlochè i calcoli sono più spediti di quelli della Geometria
analitica, ed i risultamenti sono espressi sotto forma più semplice.
È essenziale nel metodo delle equipollenze la distinzione delle parti positive dalle negative, sicchè
la correlazione delle figure è una conseguenza necessaria dell’ algoritmo, senza che vi sia bisogno
di alcuna speciale osservazione, perlochè viena tolta ogni tema di errore. Chi sia abituato ai
principj della Géometrie de Position troverà facile seguirmi nelle poche convenzioni su cui si
appogia il metodo ; forse si potrebbero rendere ancora più conformi all’ uso ordinario ; ma non
trovo conveniente di posporre la brevità delle formule ad una leggerissima facilità. Le convenzioni
saranno facili da ritenersi a memoria, perchè alcune conformi alle solite regole relative alle quan-
tità positive e negative, altre conformi alla notissima composizione delle forze. Le equipollenze
esprimono relazioni di rette considerate non solo rispetto alla direzione (o inclinazione che voglia
dirsi) ; sicchè esse sono essenzialmente differenti dalle equazioni, che esprimono relazioni di sole
quantità reali ; nulladimeno il calcolo delle equipollenze segue precisamente le stesse regole, che
valgono nel calcolo delle equazioni, il che torna non poco vantaggioso.
. . .
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CHAPITRE II
Multiplication et division des droites.

Produit de deux droites.–Produits de plusieurs droites.

28. Jusqu’à présent, dans les calculs que nous avons effectués sur les droites, nous n’avons fait
intervenir que la multiplication par un nombre réel. Nous avons maintenant à considérer des
produits de droites multipliées les unes par les autres, et pour cela, nous devons tout d’abord
définir le produit de deux droites, que nous supposerons ramenées à la même origine O.

Le produit de deux droites OA, OB est une droite OC dont la longueur est égale au produit
des longueurs de OA et OB, et dont l’ inclinaison est égale à la somme des inclinaisons de
OA et OB.

Il suit de là que l’équipollence10 OA.OB = OC entrâıne les deux égalités11

gr.OA × gr.OB = gr.OC et inc.OA + inc.OB = inc.OC.

Une première remarque, indispensable à faire, c’est que, tandis que la somme de deux droites
était tout à fait indépendante de tout autre élément du plan, leur produit dépend au contraire
de l’origine des inclinaisons que l’on a choisie.

Malgré la multiplicité des inclinaisons d’une droite donnée, il ne peut y avoir aucune indécision
sur la direction du produit, puisque l’inclinaison de celui-ci ne peut jamais être altérée que d’un
nombre entier de circonférences, ce qui ne change rien à sa direction.

Sans contester ce qu’une définition comme celle que nous venons de donner peut en apparence
présenter d’arbitraire a priori, il est bon de montrer cependant qu’elle se justifie assez naturelle-
ment, à la condition qu’on admette pour unité la droite OI de longueur égale à l’unité et dirigée
suivant l’origine des inclinaisons.

D’après la définition de la multiplication admise en Arithmétique, on doit former le produit OC,
au moyen du multiplicande OA, comme le multiplicateur OB est formé au moyen de l’unité OI.
Or, quelles opérations a-t-on fait subir à OI pour l’amener en OB? On a modifié la longueur dans

le rapport
gr.OB
gr.OI

= gr.OB, puis on a fait tourner la droite ainsi obtenue, dans le sens convenable,

de l’angle β = inc.OB. L’analogie nous conduit donc à dire, que pour avoir le produit OA.OB,
nous devons modifier la longueur de OA dans le rapport gr.OB, ce qui donnera une droite de
longueur gr.OA x gr.OB dirigée suivant OA, puis faire tourner cette droite de l’angle β. Or, elle
avait pour inclinaison α = inc.OA. Son inclinaison après la rotation sera donc α+β; c’est-à-dire
que nous retombons précisément sur la droite OC, telle que nous l’avons définie plus haut.

10 Il faut entendre l’égalité.
11 La notation gr.AB désigne la longueur (grandeur) d’une droite AB, indépendam-

ment de la direction de cette droite.
La notation inc.AB désigne l’inclinaison d’une droire AB. C’est l’angle formé par la

droite OM (OM=AB) et une droite OX appelée origine des inclinaisons. L’inclinaison
est positive si la rotation qui amène OX sur OM s’effectue dans le sens contraire à celui
des aiguilles d’une montre, sinon elle est négative.
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La linéarité comme fil conducteur

. . . on trouve à l’origine des mathématiques des problèmes qui se résolvent par une seule mul-
tiplication ou division, c’est-à-dire par le calcul d’une valeur d’une fonction f(x) = ax, ou la
résolution d’une équation ax = b : ce sont là des problèmes typiques d’algèbre linéaire, et il n’est
pas possible de les traiter, ni même de les poser correctement sans ✭✭ penser linéairement ✮✮.
. . . on s’est aperçu du caractère essentiellement linéaire de presque toute l’algèbre moderne, dont
cette ✭✭ linéarisation ✮✮ est elle-même l’un des traits marquants.

N. Bourbaki

1 Introduction

Tout notre travail jusqu’ici a consisté à illustrer la notion de structure linéaire à travers l’ensemble
de la scolarité. Ce dernier chapitre, de nature plus théorique, esquisse le développement de cette
structure depuis les grandeurs jusqu’aux espaces vectoriels et permet ainsi de situer tous les autres
chapitres.

Plus précisément, nous essayons de montrer d’abord comment nâıt la notion de rapport entre deux
grandeurs, avant même que celles-ci soient mesurées, et ensuite ce que devient cette notion dès qu’il
est question de mesures, la mesure d’une grandeur étant un nombre positif. Après nous regardons
ce que deviennent les rapports lorsqu’on en arrive aux grandeurs orientées, c’est-à-dire celles dont
les mesures sont des nombres relatifs. Et enfin nous étudions les mutations considérables que subit
la notion de rapport lorsqu’on essaie de l’appliquer aux grandeurs vectorielles, ce qui nous amène
jusqu’aux deux concepts de combinaison linéaire et de transformation linéaire.

Ce qui s’appelle rapport au départ d’une telle étude ne peut plus, après quelques mutations, conti-
nuer à porter le même nom. C’est pourquoi nous désignons du nom de structure linéaire ou de
linéarité cette plante dont la semence est le rapport entre deux grandeurs et qui, sans cesser ja-
mais d’être elle-même, se développe et finit par produire des fruits qui s’appellent combinaisons et
transformations linéaires.

Soulignons un choix méthodologique important. Qui dit rapport évoque une certaine relation entre
deux choses. Qui dit proportion évoque l’égalité de deux rapports et renvoie donc à quatre choses.
Nous adoptons ici de bout en bout un point de vue que nous croyons beaucoup plus éclairant,
à savoir celui de fonction linéaire, renvoyant d’emblée à une multitude de rapports égaux. Notre
idée est de partir des tableaux de proportionnalité entre grandeurs – ces tableaux expriment des
fonctions –, et de voir comment il faut adapter de tels tableaux pour passer des grandeurs aux
mesures des grandeurs, puis aux grandeurs orientées et enfin aux vecteurs.
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Notre parcours est un survol. À aucun moment nous ne nous attardons aux détails sans grande
portée. À chaque étape, nous essayons de montrer les contextes significatifs où nâıt une théorie et les
grands axes de celle-ci, qui expliquent son efficacité. Nous essayons de montrer sur quelles difficultés
bute chaque théorie lorsqu’on tente de l’appliquer dans de nouveaux contextes, et comment il faut la
plupart du temps la restructurer pour dépasser les obstacles. La restructurer plutôt que la retoucher,
car une théorie est une construction logique, et dès qu’on change un axiome ou une définition, tout
ce qui en résulte est à refaire. Ce qui nous intéresse, c’est l’enchâınement des idées, le développement
d’une pensée qui augmente sa puissance, c’est-à-dire sa généralité, par bonds successifs.

Au terme du parcours, la théorie la plus générale et la plus abstraite puise son sens dans tous les
contextes, tous les champs de phénomènes et de problèmes qu’elle a traversés, tous les obstacles
qu’elle a surmontés pour se constituer en instrument de pensée efficace. La théorie abstraite exposée
comme un monument logique isolé provoque l’admiration et fige la pensée. La théorie abstraite
conquise au terme d’un parcours de questions significatives et de révisions motivées1, provoque les
transferts d’intuition, la mobilité de la pensée, la capacité de résoudre des problèmes. Elle a des
racines pour l’alimenter.

Voyons maintenant à quels lecteurs cette étude est destinée. L’idée d’analyser l’évolution d’une
notion à travers une succession de contextes problématiques de plus en plus généraux ne peut
évidemment pas inspirer directement un enseignement d’initiation. La motivation d’un premier
enseignement se trouve en effet dans les phénomènes intrigants, les questions curieuses, et non dans
les concepts qui servent d’instruments pour en parler et y répondre. L’intérêt pour les concepts
eux-mêmes, que ce soit sur un plan mathématique ou épistémologique, ne vient qu’après. Il est le
fait d’une pensée qui réfléchit sur elle-même.

Mais une telle réflexion peut fournir un fil conducteur pour l’enseignement. En particulier, parcourir
les étapes de généralisation successives d’une théorie peut inspirer un enseignement en spirale. On
dit souvent – à raison –, que les enseignants doivent en savoir plus que leurs élèves. Toutefois, si
les choses qu’ils savent en plus ne sont que des théories sans racines, fussent-elles brillantes, ils
en seront embarrassés. Le savoir supplémentaire dont les enseignants ont un pressant besoin, c’est
un savoir à la fois mathématique et épistémologique, ce sont des mathématiques alimentées par
l’expérience.

2 Un exemple élémentaire

Comme nous l’avons dit, toute cette étude porte sur la proportionnalité et les phénomènes apparen-
tés. Notre propos sera simplifié si nous commençons par un exemple familier qui illustre les diverses
facettes de l’idée de proportionnalité. Presque tous les matériaux dont sont faits les objets usuels
peuvent nous fournir un tel exemple. Pour fixer les idées, considérons l’aluminium.

(1) Une fonction. Supposons que nous disposions d’un certain nombre d’objets en aluminium,
des gros, des moyens, des petits, dans le désordre. Mesurons le volume et la masse de chacun et
disposons nos résultats en tableau, le volume d’un objet à gauche et sa masse en regard sur la même
ligne (voir tableau 1). Ce tableau comporte autant de lignes que nous avons d’objets. Mais nous
pouvons toujours l’étendre en y écrivant le volume et la masse d’un nouvel objet en aluminium
absolument quelconque.

1 On parle beaucoup aujourd’hui du constructivisme comme philosophie de l’enseignement. Mais si ce que l’on
enseigne est, par nécessité, soumis à des révisions, cela signifie que le savoir ne se construit pas comme une maison,
au départ d’un plan préétabli, et en ajoutant à chaque étape de nouvelles briques à la partie déjà définitivement en
place. Dans la construction du savoir, il faut au contraire refaire le plan à diverses reprises.



2. Un exemple élémentaire 567

On dit qu’il existe une fonction qui à tout volume d’aluminium fait
correspondre sa masse et réciproquement. Le tableau 1 représente une
petite partie de cette fonction.

(2) Deux additions. On peut additionner les volumes : par exemple
rassembler 5 dm3 et 2 dm3. On peut aussi additionner les masses : par
exemple ajouter 4 kg à 10 kg. Ainsi la fonction en question fait cor-
respondre une grandeur munie d’une somme (le volume) à une autre
grandeur munie elle aussi d’une somme (la masse).

(3) Les sommes se correspondent. Prenons deux éléments dans la
première colonne du tableau et faisons-en la somme :

2 dm3 + 3 dm3 = 5 dm3.

volume masse
1 dm3 2, 7 kg
2 dm3 5, 4 kg
5 dm3 13, 5 kg

20 dm3 54 kg
12 dm3 32, 4 kg
15 dm3 40, 5 kg
8 dm3 21, 6 kg
3 dm3 8, 1 kg

. . . . . .

Tableau 1.

Celle-ci se trouve dans le tableau en regard de la somme des masses correspondantes :

5, 4 kg + 8, 1 kg = 13, 5 kg.

Ainsi, une somme de volumes a pour masse la somme des masses correspondantes et réciproquement.

(4) La proportionnalité. Deux volumes quelconques sont entre eux comme les masses corres-
pondantes. Par exemple 2 dm3 est à 3 dm3 comme 5, 4 kg est à 8, 1 kg. On exprime souvent cela
en abrégé sous la forme

2
3

=
5, 4
8, 1

.

(5) Égalité des rapports internes. On exprime aussi cette dernière propriété autrement, à savoir
en parlant de rapports internes. On passe de 2 à 3 dm3 en multipliant 3 dm3 par 1,5 ou 3/2. Le
rapport est le même entre les masses correspondantes : on passe de 5, 4 kg à 8, 1 kg en multipliant
5, 4 kg par 1,5 ou 3/2. L’adjectif interne exprime le fait que les rapports considérés sont internes à
une colonne du tableau.

(6) La règle de trois. La règle de trois est une expression calculatoire de la même situation. Si
2 dm3 pèsent 5, 4 kg, alors 1 dm3 pèse 2 fois moins, c’est-à-dire 2, 7 kg. Mais alors 3 dm3 pèsent 3
fois plus, c’est-à-dire 8, 1 kg.

(7) Le rapport externe. Dans notre exemple, ce que l’on désigne du
nom de rapport externe est la masse volumique, qui est de 2, 7 kg/dm3.
On passe d’un volume quelconque à la masse correspondante en multi-
pliant le volume par la masse volumique. Par exemple :

3 dm3 × 2, 7 kg/dm3 = 8, 1 kg.

L’adjectif externe exprime le fait que le rapport en question fait sortir
d’une colonne pour aller vers l’autre.

(8) Des accroissements constants. Si dans la première colonne du
tableau on passe de chaque ligne à la suivante en ajoutant toujours la
même quantité, il en va de même dans la deuxième colonne, et récipro-
quement. C’est ce qu’illustre le tableau 2.

volume masse
1 dm3 2, 7 kg
2 dm3 5, 4 kg
3 dm3 8, 1 kg
4 dm3 10, 8 kg
5 dm3 13, 5 kg
6 dm3 16, 2 kg
7 dm3 18, 9 kg
8 dm3 21, 6 kg

. . . . . .

Tableau 2.
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(9) Un graphique en ligne droite. Si on porte les masses en fonction des volumes dans un
système d’axes gradués régulièrement, on obtient un graphique en ligne droite.

(10) Une pente constante. Ce graphique monte avec une pente constante. Cette pente peut être
identifiée à la masse volumique.

(11) Une formule, une fonction du premier degré. La masse m s’exprime en fonction du
volume v par la formule m = av, dans laquelle a représente la masse volumique. La fonction qui se
trouve au second membre de cette égalité est du premier degré.

Ce sont-là onze facettes de la linéarité, observées sur un exemple particulier et à un niveau d’abs-
traction modéré. Elles nous serviront de référence – par analogie et constraste –, pour parler ci-après
de la linéarité à d’autres niveaux, plus élémentaires ou plus avancés. La multiplicité même de ces
facettes montre que le concept de linéarité est moins immédiat qu’on n’aurait tendance à le croire.

Sur les tableaux de proportionnalité en général , voir le chapitre 5.

3 Les rapports de grandeurs

Un rapport est la relation, telle ou telle, selon la taille, entre deux grandeurs du même genre.
Euclide

3.1 Avant les rapports, les grandeurs elles-mêmes

La proportionnalité (ou la linéarité) a des antécédents. Tout commence avec les grandeurs. Rappe-
lons donc brièvement comment celles-ci apparaissent dans l’expérience commune.

Les objets ont, selon le cas, une longueur, une hauteur, une aire, un volume, une masse, . . . Ce sont
là divers types de grandeurs. S’intéresser à un type de grandeur, c’est donc regarder les objets d’un
certain point de vue.

Une fois que l’on a fixé son attention sur un type de grandeur, la première démarche consiste à
vérifier si deux objets ont ou non la même grandeur. S’il s’agit de la longueur de baguettes, de
tiges ou de segments, c’est facile : on les juxtapose. Pour les masses de deux objets, on les met
sur les plateaux d’une balance. L’égalité ou l’inégalité des aires est souvent plus difficile à vérifier,
même pour des surfaces planes. En effet, leur forme empêche souvent lorsqu’on les superpose, soit
de les mettre en cöıncidence, soit d’inclure l’une dans l’autre. Toutefois on vérifie sans peine par
superposition que deux figures planes sont isométriques et donc de même aire. Vérifier l’égalité
ou l’inégalité de deux volumes est aussi bien souvent difficile. Une exception toutefois : celle des
✭✭ capacités ✮✮, qui sont des volumes de liquide remplissant des récipients. Dans ces cas, on procède
par transvasements. Les inégalités de grandeurs conduisent naturellement à ce que Piaget appelle
des sériations, opérations qui consistent à classer des objets par ordre de grandeurs croissantes ou
décroissantes.

Un dernier préliminaire de la linéarité, c’est l’addition des grandeurs. Elle est le plus souvent une
opération simple : on met deux tiges bout à bout pour additionner leurs longueurs, on rassemble
deux objets pour additionner leurs masses, et de même on rapproche deux surfaces pour additionner
leurs aires et deux solides pour additionner leurs volumes.

Jusqu’ici nous avons parlé de diverses grandeurs que peuvent avoir des objets. Mais les intervalles de
temps, qui ne sont pas des objets au sens immédiat de ce terme, ont aussi une grandeur (leur durée),
et l’on est amené à les comparer, sérier, additionner. Ils posent un problème particulier du fait qu’ils
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ne se transportent pas dans le temps comme les objets se transportent dans l’espace. Pour manipuler
des intervalles de temps, il faut identifier des phénomènes de même durée et reproductibles.

L’observation suivante est évidente, mais elle jouera un grand rôle dans la suite de ce travail : on
ne peut jamais comparer ou additionner que deux grandeurs de même espèce : cela n’a pas de sens
de comparer ou additionner par exemple une longueur et une masse, ou une surface et un temps.

Sur les grandeurs en général, voir les chapitres 1, 2 et 3.

3.2 Deux grandeurs de natures différentes

Observons quelques phénomènes familiers. Pour peindre une surface deux fois plus grande qu’une
autre, on a besoin de deux fois plus de peinture. Si on marche deux fois plus longtemps – d’un
même pas –, on va deux fois plus loin. Avec deux fois plus d’essence, on va deux fois plus loin.
Si on ensemence un champ deux fois plus grand, on obtient sauf exception une récolte deux fois
plus abondante. Deux fois plus de longueur d’un câble pèse deux fois plus lourd. Deux fois plus de
surface découpée dans une tôle pèse deux fois plus lourd.

Mais les choses ne sont pas toujours aussi régulières. Un être humain deux fois plus âgé qu’un autre
n’est ni deux fois plus haut, ni deux fois plus lourd que le premier. Un carré de côté double d’un
autre n’a pas une aire double, mais bien une aire quadruple. Quand une voiture va deux fois plus
vite, sa distance de freinage en cas d’urgence est plus que deux fois plus longue.

Quoiqu’il en soit, dans beaucoup de phénomènes, deux fois d’un côté correspond à deux fois de
l’autre.

Et d’autre part, le rapport le plus simple à saisir est celui du simple au double. Mais si on double
le double, on obtient le rapport de un à quatre. Le rapport de un à un demi est aussi un rapport
facile. Par exemple, couper une ficelle ou une bandelette en deux parts égales est une opération
élémentaire. La diviser exactement en trois exige par contre un tâtonnement. Ensuite couper deux
fois en deux amène à un quart. Lorsqu’on dispose d’un demi, on arrive facilement à un et un demi.
Il existe ainsi un petit nombre de rapports que nous concevons facilement. Nous n’envisagerons que
ceux-là pour commencer et nous n’introduirons des rappports plus compliqués qu’à la section 4.

Dans chacune des situations évoquées ci-dessus, nous avons mis deux grandeurs
en correspondance. Par exemple, toute surface à peindre exigeait un volume dé-
terminé de peinture, et avec un volume donné de peinture, on peut peindre une
surface bien déterminée. Nous pouvons représenter cela par un tableau en deux
colonnes. Dans la première nous inscrivons les aires a1, a2, a3, . . . des surfaces à
peindre, et en face les volumes de peinture v1, v2, v3, . . . correspondants. Bien
entendu, un tel tableau n’aura jamais qu’un nombre fini de lignes, mais on peut
toujours l’allonger en y inscrivant de nouvelles aires et de nouveaux volumes.

aire vol.
a1 v1

a2 v2

a3 v3

a4 v4

a5 v5

a6 v6

. . . . . .

Tableau 3.

Ce tableau est l’expression d’une fonction. La notion de fonction est très importante pour nous :
en effet, toutes les situations que nous envisagerons dans la suite auront pour première expression
une fonction, représentable par un tableau en deux colonnes.

Le tableau 3 possède la propriété des rapports internes au sens où, comme nous l’avons vu, si on
passe, dans la colonne de gauche, d’une certaine aire à une autre deux fois plus grande (ou quatre
fois, ou une fois et demie plus grande, ou deux fois plus petite, . . .) on trouve dans la colonne de
droite un volume double (ou, selon le cas, quatre fois, ou une fois et demie plus grand, ou deux fois
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plus petit, . . .). On exprime aussi cela en disant que les aires et les volumes sont proportionnels.
On dit également, en choisissant à titre d’exemple deux couples de valeurs correspondantes, que

a1 est à a2 comme v1 est à v2.
À cause de cette propriété, on dit que le tableau 3 est un tableau de proportionnalité. Rappelons
que les rapports en question sont appelés rapports internes parce qu’ils concernent deux grandeurs
situées à l’intérieur d’une même colonne.

Ce tableau possède aussi la propriété de la somme. En effet, pour peindre deux surfaces, on peut –
mais cela va sans dire ! –, rassembler les deux volumes de peinture préparés pour chacune d’elles.
En se référant au tableau, on exprime cela de la manière suivante : à la somme de deux éléments
de gauche (par exemple a1 et a2, et nous noterons leur somme a1 ⊕ a2) correspond la somme des
deux éléments correspondants de droite (ici v1 ⊕ v2). Nous utilisons le symbole ⊕ pour désigner la
somme de deux grandeurs, pour éviter la confusion avec la somme de deux nombres.

3.3 Deux grandeurs de même nature

Passons maintenant à la proportionnalité entre deux grandeurs de même nature. Elle va nous
apporter tout un lot de propriétés nouvelles. Nous commencerons par quelques situations concrètes
qui font voir des proportions entre longueurs. Les figures habituellement associées au théorème de
Thalès pourraient en inspirer d’autres, que le lecteur évoquera sans peine. Nous passerons ensuite
aux masses. Pour être complet, il faudrait aussi évoquer les aires, les volumes, les durées, . . .

Les objets semblables

Très jeunes, les enfants s’aperçoivent que deux objets ont la même forme, même si leurs dimensions
sont différentes. Par exemple, ils voient bien qu’un petit bateau est un modèle réduit d’un grand,
ou qu’une photographie est un agrandissement d’une autre. Considérons donc, à titre d’exemple,
le dessin d’un tangram et sa reproduction en deux fois plus grand (voir figure 1).

b b©

b

b©

c

c©

a
a©

d

d©

e

e©

f

f ©

Fig. 1
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À tout segment tel que a de la figure de gauche correspond un segment a′ deux fois
plus grand dans la figure de droite. Disposons dans la première colonne d’un tableau
les segments (ou plutôt les lettres qui les représentent) relevés dans le petit tangram.
Il y en a de six longueurs différentes. Écrivons en regard les segments du tangram
agrandi (voir tableau 4). Ce tableau représente une fonction, en l’occurrence avec un
nombre fini de lignes. On passe d’un segment de gauche au segment correspondant
de droite en multipliant la longueur par deux.

a a′

b b′

c c′

d d′

e e′

f f ′

Tableau 4.

L’existence d’un rapport entre les deux éléments d’une même ligne du tableau est une propriété
nouvelle pour nous : en effet, à la section précédente, nos fonctions mettaient en relation deux gran-
deurs de natures différentes, et il n’existe aucun rapport, aucune comparaison possible entre de telles
grandeurs. Lorsque comme ici il existe toujours un même rapport entre éléments correspondants
de la fonction, nous appelons ce rapport le rapport externe.

D’autre part, le tableau 4 possède aussi la propriété des rapports internes, comme on le vérifie sur
quelques exemples : ainsi, c vaut deux fois a, et c′ vaut deux fois a′ ; de même f vaut deux fois c,
et f ′ vaut deux fois c′ ; ou encore e vaut une fois et demie c, et de l’autre côté e′ vaut une fois et
demie c′. Ce dernier cas relève aussi, si on veut, de la propriété de la somme : on peut dire en effet
que e, qui vaut a⊕ c, correspond dans le tableau à e′, qui vaut a′ ⊕ c′.

Nous avons donc maintenant affaire à un tableau qui possède les trois propriétés respectivement
du rapport externe, des rapports internes et de la somme. Bien entendu, nous n’avons vérifié ces
deux dernières propriétés que sur quelques cas, mais nous nous satisferons pour l’instant de cette
vérification partielle. D’autre part, il y dans le tangram au moins un rapport plus compliqué que
les quelques rapports simples que nous avons identifiés jusqu’ici. En effet, le rapport de a à b n’est
ni le rapport de un à deux, ni le rapport de un à un et demi. Il en va de même du rapport de b à
c, et de celui de c à d. C’est un rapport inconnu comme nous en trouverons quelques-uns sur notre
chemin2.

Les formats de papier

Nous venons d’engendrer un tableau de proportionnalité à partir de deux figures semblables. Restons
dans le domaine des longueurs et construisons une fonction à partir d’une toute autre expérience.

Si on plie une feuille de format A3 en deux dans le sens de sa largeur, on obtient le format A4. Si
on fait de même avec ce dernier, on obtient le format A5. Et on peut continuer de même. Chose
remarquable, si on dispose toutes les feuilles rectangulaires obtenues comme sur la figure 2 qui
les représente à l’échelle, on s’aperçoit que les diagonales de tous les rectangles sont alignées. On
n’observe pas ce curieux phénomène avec tous les formats de papier. Par exemple, si on part du
format Quarto, on obtient des rectangles dont les diagonales ne se superposent qu’une fois sur deux.
C’est ce qu’on voit sur la figure 3, qui les montre elle aussi à l’échelle.

2 Notre propos est de construire la notion de proportionnalité. Dans un exposé déductif, on ne laisse pas trâıner
de difficulté non résolue. Par contre lorsqu’on construit un concept en cherchant une voie d’accès pas trop difficile,
on est amené non pas à ignorer, mais à renvoyer à plus tard certaines questions inaccessibles à un stade donné de
la construction. Comment croire en effet que l’on pourrait régler d’emblée le problème des rapports irrationnels, ou
même celui des rapports exprimés par des fractions compliquées ? La connaissance de quelques rapports simples nous
semble être un soutien assez clair à ce stade de la construction.
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Revenons à la figure 2, et disposons dans la première colonne d’un tableau tous
les petits côtés des rectangles, et dans la seconde colonne tous les grands côtés
(voir tableau 5). On dirait que ce tableau est comme le précédent constitué sur
la base d’un même rapport entre a et a′, b et b′, etc. Mais alors que, dans le cas
du tangram agrandi, ce rapport externe était de un à deux, ici ce n’est aucun des
rapports simples qui nous sont familiers. En effet a ne va dans a′ ni deux fois, ni
une fois et demie, ni une fois et un quart. . . Mais il semble pourtant, à vue, que
a va dans a′ autant de fois que b dans b′, c dans c′, etc. Laissons en suspens la
détermination exacte de ce rapport.

a a′

b b′

c c′

d d′

e e′

f f ′

Tableau 5.
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Fig. 4

Quoiqu’il en soit, nous reconnaissons dans le tableau 5 l’égalité
de quelques rapports internes. En effet, étant donné la façon
dont nous avons obtenu nos rectangles par pliage, nous voyons
par exemple que c va deux fois dans a et c′ deux fois dans a′,
que e va deux fois dans c et e′ deux fois dans c′. De même f
va quatre fois dans b, et f ′ quatre fois dans b′. Ces quelques
exemples nous portent à croire que le tableau 4 satisfait à la
propriété des rapports internes.
En définitive, ce que la figure 2 suggère, c’est que si l’on as-
semble des rectangles de manière que leurs diagonales se su-
perposent de la manière indiquée, les côtés de ces rectangles
sont proportionnels. Ainsi, pour créer des couples de segments
de même rapport, il suffit de dessiner, comme sur la figure 4,
une demi-droite dans un angle droit et d’ajouter à la figure des
segments tels que x, x′, y, y′, etc. C’est là une sorte de machine
à fabriquer des segments proportionnels.

Sur les figures semblables, voir le chapitre 2. Sur le théorème de

Thalès, qui est la clef des similitudes, voir chapitre 6.
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La balance

Avec une balance ordinaire, on peut par tâtonnement créer une masse égale à une masse donnée, et
donc ensuite doubler une masse. Il faut pour cela disposer d’une matière qui, telle la plasticine, se
laisse couper en morceaux quelconques. On peut aussi diviser une masse en deux parts égales. On
arrive ainsi à prendre une fois et demie une masse donnée. On voit qu’on peut dans le domaine des
masses, réaliser les quelques rapports simples auxquels nous nous sommes bornés jusqu’ici. Nous
laissons au lecteur le soin d’imaginer comment l’on peut non seulement réaliser ces rapports, mais
aussi, lorsque deux masses sont données, vérifier si elles ont entre elles un de ces rapports simples.

Il existe d’ailleurs une façon commode de réaliser ou de vérifier un rapport de masses donné. Par
exemple, pour réaliser le rapport de deux à trois, qui est aussi le rapport de un à un et demi, on
construit une balance dont les longueurs des bras sont entre elles comme deux est à trois (voir
figure 5). Une telle balance est en équilibre lorsque les masses posées sur ses plateaux sont entre
elles comme deux est à trois, la masse deux étant du côté du bras de longueur trois et la masse
trois du côté du bras de longueur deux. On a là une sorte de machine à fabriquer des masses
proportionnelles.

Fig. 5

Créons donc à l’aide d’une telle balance un ensemble de couples de masses
(m1,m

′
1), (m2,m

′
2), etc. et mettons-les en tableau (voir tableau 6). Ce tableau

possède la propriété des rapports internes. Cela signifie que si la balance de la
figure 5 est équilibrée, elle le demeurera si on double les deux masses, ou si on
les multiplie par un et demi, etc. Le tableau 5 possède aussi la propriété de la
somme, dont il est facile de se donner un exemple.

Sur les poids et les balances, voir chapitre 2.

m1 m′
1

m2 m′
2

m3 m′
3

m4 m′
4

m5 m′
5

m6 m′
6

. . . . . .

Tableau 6.

4 Numérisation des rapports, mesures

MESURE. s. fem. Ce qui sert à connôıtre la grandeur, l’étenduë, la quantité de quelque corps.
La mesure des longueurs est la ligne ou grain d’orge, le pouce contenant douze lignes, le pied
douze pouces, le pas geometrique cinq pieds, la toise six pieds, la perche des Geometres dix
pieds ; en quelques lieux elle va jusqu’à vingt-deux pieds ; le stade cent vingt-cinq pas ; le mille
huit stades ; la lieue Françoise trois mille.

A. Furetiere (1694)
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Reprenons les choses à la base. Deux grandeurs de même espèce peuvent être comparées pour voir
si elles sont égales, ou si l’une est plus grande que l’autre (voir 3.1). Souvent dans le quotidien on ne
se contente pas de constater l’inégalité : on la qualifie en disant que telle grandeur est un peu plus
grande que telle autre, ou beaucoup plus grande, ou énormément plus grande, etc. En s’exprimant
ainsi, on compare certes dans chaque cas deux grandeurs, mais on va vers la comparaison des
rapports. En effet, si une grandeur est beaucoup plus grande qu’une autre, le rapport entre les
deux est plus grand que si la première est seulement un peu plus grande que l’autre.

Pour dépasser cette vue qualitative des rapports, nous avons chiffré quelques rapports simples. Les
tout premiers, ceux de un à deux, de un à un demi, et de un à un et demi, étaient parfois simples
à percevoir. Par exemple on voit à peu près bien qu’un objet est deux fois plus long qu’un autre
lorsque les deux ne sont ni trop grands ni trop petits et qu’ils sont disposés parallèlement dans un
plan frontal par rapport à l’observateur. Il est déjà beaucoup plus difficile d’estimer si un objet
est deux fois plus lourd qu’un autre, en les soupesant l’un dans une main et l’autre dans l’autre.
Estimer qu’un intervalle de temps est deux fois plus long qu’un autre ne peut se faire à peu près
correctement que pour des intervalles situés dans une gamme de durées assez restreinte et proches
l’un de l’autre dans le temps.

S’il est vrai que les rapports de grandeurs ne peuvent être perçus que dans de tels cas simples, par
contre des rapports un peu plus compliqués peuvent être construits ou vérifiés par des opérations
mécaniques. Comme nous l’avons vu, on engendre par itération du doublement les rapports de un
à quatre, ou de un à huit, et par itération du partage en deux parts égales, les rapports de un à un
quart ou un huitième. Par reports successifs, on vérifie sans peine qu’une tige est trois ou quatre
ou cinq fois plus grande qu’une autre. Par contre un rapport de quatre à sept par exemple est déjà
beaucoup plus difficile à vérifier.

Ainsi, caractériser numériquement tous les rapports possibles n’est pas une question triviale. Il s’agit
du problème de la mesure, qui est l’objet de cette nouvelle section. Ce sera un voyage comportant
un bon nombre d’étapes.

4.1 Fixer une unité de mesure

Nous pourrions attaquer la question sous l’angle le plus général possible, en nous demandant com-
ment attacher un nombre au rapport de deux grandeurs quelconques. Mais l’intérêt principal de
pouvoir chiffrer les rapports réside dans la possibilité, pour chaque domaine de grandeur (les lon-
gueurs, les masses, etc.) de rapporter chaque grandeur à une grandeur particulière choisie pour
unité. Faire cela, c’est ramener la comparaison des grandeurs d’une même espèce à la comparaison
de leur rapport chiffré à l’unité, c’est-à-dire de leur mesure. Très tôt dans l’histoire, les communau-
tés humaines ont découvert cette pratique extraordinairement féconde qui consiste à choisir dans
chaque domaine une grandeur de référence (ou un petit nombre de telles grandeurs). Nous plaçons
la suite de notre exposé dans cette perspective-là.

Sur le choix d’une unité, qu’elle soit de rencontre ou conventionnelle, voir les chapitres 1, 2.

4.2 Mesure en nombre entier et encadrement

Multiplier une grandeur a par un nombre naturel3 n, c’est faire la somme de n grandeurs égales à
a, ce qui se note na.

3 Nous supposons les nombres naturels connus, au moins dans leurs propriétés les plus élémentaires. Par ailleurs,
ce n’est pas ici le lieu de rappeler en détail comment on les construit, que ce soit dans leur aspect cardinal, ou dans
leur aspect ordinal. Cette construction a des analogies avec celle des grandeurs. On trouvera quelques compléments
d’information à ce sujet dans N. Rouche [1992]. Bien entendu, dans la réalité, les enfants n’apprennent pas d’abord
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Soient deux grandeurs u et a, et n un nombre naturel. Si u multipliée par n est égale à a, autrement
dit si a = nu, alors on dit que n est la mesure de a dans l’unité u. On dit aussi que u va n fois
dans a, ou encore que u est contenue n fois dans a. Le rapport entre les grandeurs u et a est ainsi
caractérisé par le seul nombre n.

Il arrive souvent, lorsqu’on a deux grandeurs u et a, avec u plus petite que a, que pour un certain
nombre n, nu soit plus petite que a, et que par contre (n+1)u soit plus grande que a. On dit alors
que la grandeur a est encadrée par nu et (n + 1)u.

Dans un tel cas, la mesure de a n’est connue qu’approximativement. Une première façon d’affiner
la mesure consiste simplement à choisir une unité plus petite. Mais on voit tout de suite combien
une telle décision est peu commode. En effet si, pour chaque mesure que l’on veut faire, on choisit
une unité assurant la précision que l’on désire, on obtiendra des mesures rapportées à toutes sortes
d’unités, qui ne seront pas facilement comparables entre elles. Il faut donc chercher des solutions
plus commodes.

Sur les mesures en nombres entiers et les encadrements, voir les chapitres 1, 2.

4.3 Les unités de commune mesure

Lorsque l’unité u n’est pas contenue un nombre naturel de fois dans une grandeur a, il arrive qu’il
existe une troisième grandeur c qui soit contenue un nombre entier m de fois dans u, et aussi un
nombre entier n de fois dans a. Autrement dit, on a alors

u = mc et a = nc.

La grandeur c est appelée unité de commune mesure entre a et b. On dit alors que

u est à a comme m est à n.

Le rapport entre les deux grandeurs u et a est dans ces conditions caractérisé par deux nombres.

On se demande naturellement si, étant donné deux grandeurs, il en existe toujours une troisième
qui soit unité de commune mesure pour les deux autres. La réponse n’a rien d’évident. On la doit
aux Pythagoriciens vers les VIe ou Ve siècles avant J.-C. Et cette réponse est non. Parfois il y a
une unité de commune mesure, et parfois il n’y en a pas. Dans le premier cas, on dit que le rapport
des deux grandeurs est rationnel, et dans le second qu’il est irrationnel4.

4.4 Les mesures fractionnaires

Ramener la comparaison de deux grandeurs à celle de deux nombres est une idée intéressante,
quoique recourir à un seul nombre est évidemment plus pratique. Mais nous avons vu ci-dessus
qu’étant donné deux grandeurs u et a, u étant la plus petite, on ne peut pas toujours trouver un
nombre naturel n qui soit la mesure de a dans l’unité u. Toutefois si on ne peut pas trouver un
nombre naturel, peut-être peut-on trouver un nombre d’un autre type ? Ou alors, si on n’a pas
encore de nombre adéquat, comment étendre la notion de nombre pour que, quelles que soient deux
grandeurs u et a, on trouve un nombre µ tel que a = µu ? Pour arriver à ce résultat, l’humanité est
passée par plusieurs étapes.

les naturels, et ensuite les grandeurs : ces deux apprentissages non seulement progressent simultanément, mais encore
s’épaulent fortement l’un l’autre. Cette remarque suffit à montrer que notre étude ne saurait être considérée comme
un projet d’enseignement. En dissociant ici dans une certaine mesure les naturels des grandeurs, nous avons pour
seul objectif de montrer le plus clairement possible comment les mesures dépendent des naturels.

4 L’adjectif irrationnel renvoie à la difficulté de rendre raison de tous les rapports entre grandeurs en recourant
aux seuls nombres naturels. Il est remarquable d’ailleurs que le mot raison vienne du latin ratio, qui veut dire rapport.
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Repartons du fait que toute grandeur peut-être multipliée par un nombre naturel n quelconque.
Cette opération de multiplication possède une réciproque : toute grandeur peut être partagée (divi-
sée) en n parts égales, quel que soit le nombre naturel n. Diviser une grandeur a par n, c’est trouver
une grandeur b telle que a = nb. Le résultat de la division de a par n s’écrit b = a

n ou b = 1
na.

On peut aussi enchâıner une division d’une grandeur a par un nombre naturel n, ce qui donne
1
na, et une multiplication du résultat par un nombre naturel m, ce qui donne m( 1

na). Comme on
obtient le même résultat en exécutant les deux opérations dans l’ordre inverse5, on peut supprimer
les parenthèses et écrire simplement m

n a. On dit alors que m
n est un opérateur fractionnaire agissant

sur a.

Rappelons que, si deux grandeurs u et a sont telles que a = nu, nous disons que n est la mesure de
a dans l’unité u. Si maintenant deux grandeurs a et u sont telles que a = m

n u, nous dirons que m
n

est la mesure de a dans l’unité u. Il s’agit cette fois d’une mesure fractionnaire. La fraction comme
opérateur composé (deux opérations enchâınées) se mue ici en un nombre qui exprime un rapport.
Ce changement de statut de la fraction n’est pas facile à admettre, les enseignants en savent quelque
chose.

Étant donné deux grandeurs u et a, existe-t-il toujours deux nombres naturels m et n tels que
a = m

n u ? La réponse est non, comme tout à l’heure, lorsque nous nous interrogions sur l’existence
d’une commune mesure entre deux grandeurs quelconques. Nous ne nous attarderons pas ici sur
cette impossibilité.

Dans la pratique, on trouve toujours une mesure exprimable par une fraction (sachant bien par
ailleurs que toute mesure est approximative). C’est pourquoi, dans ce qui suit, nous supposerons
qu’étant donné deux grandeurs u et a de même nature, il existe toujours un nombre α tel que
a = αu. Ce nombre α est l’expression numérique du rapport entre u et a.

Quoiqu’il en soit, les mesures fractionnaires ont été très communément utilisées au cours de l’his-
toire. Mais elles ont un inconvénient grave. En effet, lorsqu’on a mesuré des grandeurs, on est
souvent amené à calculer avec les mesures. L’ennui est que le calcul sur les fractions n’est pas facile,
comme en témoignent les écoliers.

Examinons maintenant un autre perfectionnement de l’idée de mesure.

Sur les mesures fractionnaires, voir chapitre 2.

4.5 Les mesures décimales

Une démarche importante dans l’histoire de l’humanité a consisté à mesurer toute grandeur non
seulement dans une unité convenue, mais encore en utilisant ses sous-unités décimales, de sorte que le
nombre exprimant la mesure soit décimal, avec toutes les facilités de calcul que cela comporte. Ceci
fait, on dispose de la notion la plus répandue de mesure d’une grandeur. Soit u l’unité convenue :
à toute grandeur a nous pouvons associer le nombre décimal α tel que a = αu. Le nombre α
peut être un décimal très long. Il peut même être de longueur infinie, et être périodique ou non.
Nous n’examinerons pas ces phénomènes ici, d’autant que, dans la pratique, toute mesure est
approximative et s’arrête à quelques chiffres après la virgule.

Sur les mesures décimales, voir chapitre 3.

5 Ce qui n’a rien d’évident : couper une tarte en 4 et prendre 3 morceaux, c’est bien autre chose que de partager
3 tartes entre 4 personnes. Sur cette difficulté, cf. N. Rouche [1992].
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1 cm 1

a 1,5

b 4

c 3

d 4,5

e 2,5

Fig. 6

4.6 Le rapport entre deux nombres

Nous venons de voir, très sommairement, comment les nombres fraction-
naires et décimaux peuvent nâıtre des rapports entre grandeurs6. Mais
les nombres eux-mêmes7, munis des opérations que nous connaissons,
se comportent à beaucoup d’égards comme des grandeurs. En particu-
lier, entre deux nombres quelconques, nous pouvons définir un rapport.
Soient α et β deux nombres (α non nul). Il existe un nombre ρ tel que
β = ρα. Or, nous savons que ρ = β

α . En gros, le nombre ρ dit combien
de fois α va dans β. Nous dirons que ρ est le rapport entre α et β.

4.7 Un tableau de mesures

Considérons maintenant un tableau dans la première colonne duquel
nous disposons des segments, avec chaque fois leur mesure en regard
dans la deuxième colonne : voir figure 6. Il n’y a pas de rapport (au sens
technique du terme rapport) entre un segment et sa mesure : on ne peut
pas augmenter ou diminuer un segment en espérant obtenir un nombre.
Le tableau en question ne comporte pas de rapport externe. Le principe
qui a permis de le constituer est la mesure des longueurs de la première
colonne.
Par contre il existe évidemment des rapports internes à la première co-
lonne, et aussi – nous venons de le voir –, des rapports internes entre les
nombres de la deuxième colonne. Il résulte des propriétés de la mesure
que ces rapports sont égaux. Montrons-le sur un exemple. Les grandeurs
a et b de la figure 6 sont telles que a = 1, 5 cm et b = 4 cm. Le rapport
des deux mesures est ici 1,5

4 . Par ailleurs b
4 = 1 cm. Il vient donc que

a = 1, 5( b
4) = 1,5

4 b, et le rapport de a à b est donc bien de 1,5
4 .

Enfin nous retrouvons ici la propriété de la somme. En effet, la mesure
de la somme de deux longueurs est égale à la somme de leurs mesures.
Ces résultats, que nous venons de montrer sur un tableau de longueurs,
sont valables pour une grandeur de nature quelconque. Quel est l’avan-
tage d’avoir ainsi mis des mesures (des nombres) en regard des gran-
deurs ? Cet avantage est décisif. Comparer des grandeurs, les addition-
ner, les multiplier par un nombre, les diviser en parts égales sont des
opérations souvent malaisées, voire impossibles dès qu’elles mettent en
œuvre des objets difficiles à manipuler vu leur encombrement ou leur
poids. Les mesures ont pour vocation, pour fonction essentielle, de se
substituer aux grandeurs chaque fois que c’est possible. Les mesures sont
✭✭ les grandeurs passées sur le papier et dans la tête ✮✮. Elles représentent
fidèlement les grandeurs parce que, comme nous venons de le voir, entre
les grandeurs et leurs mesures, il y a proportionnalité : les sommes et
les rapports se conservent : on peut manipuler les mesures au lieu des
grandeurs elles-mêmes.

6 C’est bien aussi comme cela qu’ils sont nés dans l’histoire, même si, depuis la fin du XIXe siècle, la plupart des
traités construisent les nombres dans la théorie des ensembles, ce qui fait que, dans ce cas, ils précèdent la géométrie
et les rapports géométriques.

7 Remarquons que les nombres dont nous parlons sont les réels positifs. Nous nous occuperons des nombres relatifs
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0,39371

0,59061,5

1,57484

1,18113

1,77174,5

0,98432,5

cm pouces

Fig. 7

4.8 Changer d’unité

L’unité que l’on choisit pour mesurer des grandeurs est ar-
bitraire : le choix n’obéit qu’à des motifs de commodité.
Qu’arrive-t-il si on change d’unité ? Revenons à notre ta-
bleau de longueurs de la figure 6. Les longueurs y sont mesu-
rées en centimètres. La figure 7 montre les mêmes longueurs
mesurées en pouces : 1 pouce vaut 2,54 cm. Les nouvelles
mesures s’obtiennent à partir des anciennes en multipliant
celles-ci par la mesure de l’ancienne unité dans la nouvelle.
Un phénomène paradoxal déroute beaucoup de gens : c’est
que plus l’unité est petite, plus les mesures sont grandes. Les
deux dernières colonnes de la figure 7 constituent elles aussi
un tableau de proportionnalité.
Sur les changements d’unité, voir le chapitre 3.

4.9 Les représentations de données

S’il est vrai, comme nous l’avons souligné à la section 4.7,
qu’il est souvent avantageux de substituer les mesures aux
grandeurs, il est parfois utile de revenir des mesures à des
grandeurs faciles à percevoir, telles que des longueurs, des
secteurs circulaires, etc. Ainsi lorsqu’on dispose d’un en-
semble de données sous forme de mesures, on peut les re-
présenter graphiquement, ce qui a l’avantage, par rapport
à la consultation d’un tableau de nombres, d’offrir une vue
d’ensemble des données et de faciliter les comparaisons.
Montrons sur un exemple qu’une représentation graphique
s’obtient à la suite de deux opérations. Le tableau 7 montre
les consommations journalières d’eau d’une famille.

alimentation 5 l
vaisselle 8 l
hygiène corporelle 38 l
WC 43 l
lessive 16 l
entretien 10 l

Tableau 7.

D’abord, on choisit une échelle de 1 cm pour 10 litres, en vue
de représenter les quantités par des bâtonnets. Le tableau 8
montre dans sa troisième colonne, les longueurs obtenues.
Les deux dernières colonnes du tableau expriment une pro-
portionnalité.

à la section 6.
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Ensuite il faut construire le graphique, c’est-à-dire des-
siner (par exemple) des bâtonnets dont les hauteurs
aient les mesures calculées. C’est de nouveau l’expres-
sion d’une proportionnalité. La figure 8 montre le dia-
gramme.
On peut aussi transformer ces données en pourcen-
tages de la consommation totale, comme le montre le
tableau 9. La réduction à la base 100, si on la fait pour
plusieurs familles, facilite la comparaison des propor-
tions d’eau consacrées par ces familles aux différents
usages. Par contre elle fait disparâıtre la communica-
tion des valeurs réellement consommées.

alimentation 5 l 0,5 cm
vaisselle 8 l 0,8 cm
hygiène corporelle 38 l 3,8 cm
WC 43 l 4,3 cm
lessive 16 l 1,6 cm
entretien 10 l 1 cm

Tableau 8.
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Fig. 8

alimentation 5 l 4,1 %
vaisselle 8 l 6,7 %

hygiène corporelle 38 l 31,6 %
WC 43 l 35,8 %

lessive 16 l 13,3 %
entretien 10 l 8,3 %

Tableau 9.

Les pourcentages peuvent se traduire en
diagrammes circulaires. Il faut pour cela
les convertir en secteurs circulaires, ce qui
est encore une opération de proportionna-
lité.

Sur divers modes de représentation de données, voir les chapitres 4 et 5.

5 Les rapports de mesures

L’espace et le temps sont des quantités de nature différente, . . . on sent bien qu’on ne peut diviser
l’espace par le temps ; ainsi quand on dit que les vitesses sont comme les espaces divisés par les
temps, c’est une expression abrégée qui signifie que les vitessses sont comme les rapports des
espaces à une même commune mesure, divisés par les rapports des temps à une même commune
mesure ; c’est-à-dire que si l’on prend, par exemple, le pied pour la mesure des espaces, et la
minute pour la mesure des temps, les vitesses de deux corps qui se meuvent uniformément sont
entre elles comme les nombres de pieds parcourus divisés par les nombres de minutes employées
à les parcourir, et non pas comme les pieds divisés par les minutes.

J. d’Alembert

Voyons maintenant ce que deviennent les tableaux de proportionnalité lorsqu’on passe des grandeurs
aux mesures. L’effet le plus notable de ce passage sera de nous faire retrouver un rapport externe
pour les tableaux de proportionnalité entre grandeurs d’espèces différentes.
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5.1 Grandeurs de même nature

Commençons toutefois par des grandeurs de même nature,
et retournons au tableau 4 qui mettait en regard les lon-
gueurs des segments visibles sur un petit tangram et sur un
autre deux fois plus grand. Complétons ce tableau en lui ad-
joignant à gauche une colonne reprenant les longueurs des
segments du petit tangram, et à droite une colonne avec les
longueurs des segments du grand (voir tableau 10). Pour
toutes les mesures, nous avons choisi pour unité la longueur
du segment a.

1 a a′ 2
1,41. . . b b′ 2,82. . .
2 c c′ 4
2,82. . . d d′ 5,64. . .
3 e e′ 6
4 f f ′ 8

Tableau 10.

Entre la première et la quatrième colonnes du tableau, il y proportionnalité, avec 2 pour rapport
externe. On vérifie sans peine pour ces colonnes de mesures la propriété des rapports internes et
celle de la somme.

Sur les tableaux de proportionnalité entre grandeurs de même nature, voir le chapitre 5. Dans le

même chapitre, on étudie un dessin à l’échelle.

5.2 Grandeurs de natures différentes

Revenons maintenant aux tableaux qui établissent une correspondance entre grandeurs de natures
différentes, telles par exemple que des volumes et des masses de solides d’une même matière. Choi-
sissons l’aluminium comme à la section 2 et reprenons dans un tableau quelques volumes et quelques
masses (voir tableau 11). Ajoutons à ce tableau deux nouvelles colonnes : une à gauche des volumes
et qui représente leurs mesures en dm3, et une à droite des masses et qui représente leurs mesures
dans l’unité kg : voir tableau 12. Ce qui est intéressant maintenant, c’est que la première et la
quatrième colonnes sont deux colonnes de nombres. Or nous avons vu qu’entre deux nombres (non
nuls), il y a un rapport. Si nous enjambons les deux colonnes centrales, nous retrouvons un rapport
externe (que nous n’avions pas entre les grandeurs elles-mêmes), et qui se trouve être le même pour
tous les couples. Nous avons donc construit un tableau de proportionnalité entre les mesures.

vol. masse
v1 m1

v2 m2

v3 m3

v4 m4

v5 m5

v6 m6

. . . . . .

Tableau 11.

dm3 vol. masse kg
2 v1 m1 5,4
3 v2 m2 8,1
5 v3 m3 13,5
12 v4 m4 32,4
15 v5 m5 40,5
8 v6 m6 21,6
. . . . . . . . . . . .

Tableau 12.

Ce rapport constant est appelé la masse volumique de la matière dont sont faits les corps que nous
étudions. Évidemment, cette masse volumique dépend des unités que nous avons choisies. Dans
notre exemple, et puisque nous avons choisi pour unité de volume le dm3 et pour unité de masse le
kg, la masse volumique vaut 2,7 kg/dm3.

Sur le tableau de proportionnalité des mesures, nous retrouvons aussi la propriété des rapports
internes : le rapport des mesures de volumes de deux corps est toujours égal au rapport des mesures
de leurs masses.
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Et enfin, nous retrouvons aussi la propriété de la somme : la somme de deux mesures de volumes
correspond à la somme des mesures des masses correspondantes.

En conclusion, lorsque nous avons affaire à un tableau de proportionnalité qui met en correspon-
dance deux grandeurs de deux natures différentes, le tableau de leurs mesures possède les trois
propriétés de l’existence d’un rapport externe, de l’égalité des rapports internes et de la correspon-
dance des sommes.

Voir au chapitre 5 un exemple de proportionnalité entre massse et volume.

5.3 Graphiques de fonctions linéaires

À titre d’exemple, repartons du tableau 12. Nous voulons le mettre en graphique, ce qui aboutira
à la figure 9. Montrons que cette opération se décompose en plusieurs autres.
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Fig. 9

Ayant décidé de représenter les volumes par des segments, nous devons choisir la longueur du
segment qui représentera l’unité de volume : disons 0,5 cm pour 1 dm3. Nous devons choisir ensuite
une longueur de segment pour représenter l’unité de masse : disons 0,25 cm pour 1 kg. Ceci fait,
nous pouvons comme le montre le tableau 13 faire correspondre des mesures de longueurs aux
volumes et aux masses. Mais ce n’est pas tout, car nous devons encore convertir ces longueurs en
segments, pour pouvoir les reporter sur le graphique. C’est ce que montre le tableau 14.
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On retrouve dans la figure 9 les rectangles à
côtés proportionnels avec leurs diagonales su-
perposées, que nous avons déjà rencontrés à la
section 3.3. Le tableau 14 montre comment on
recourt de façon répétée à des proportionnali-
tés pour représenter une fonction de façon com-
mode. Remarquons que le choix de deux échelles
et le retour aux grandeurs par le tracé des axes
gradués sont des opérations de routine pour re-
présenter des fonctions quelconques, et donc pas
seulement des fonctions linéaires.

cm dm3 vol. masse kg cm
1 2 v1 m1 5,4 1,35

1,5 3 v2 m2 8,1 2,025
2,5 5 v3 m3 13,5 3,375
6 12 v4 m4 32,4 8,1

7,5 15 v5 m5 40,5 10,125
4 8 v6 m6 21,6 5,4
. . . . . . . . . . . . . . . . . .

Tableau 13.

long. cm dm3 vol. masse kg cm long.
l1 1 2 v1 m1 5,4 1,35 l′1
l2 1,5 3 v2 m2 8,1 2,025 l′2
l3 2,5 5 v3 m3 13,5 3,375 l′3
l4 6 12 v4 m4 32,4 8,1 l′4
l5 7,5 15 v5 m5 40,5 10,125 l′5
l6 4 8 v6 m6 21,6 5,4 l′6
. . . . . . . . . . . . . . . . . . . . . . . .

Tableau 14.

Voir des exemples et contre-exemples de fonctions linéaires aux chapitres 5 et 6.

5.4 Des objets et des opérateurs

Pour faire le point, à ce stade de notre étude, réexaminons les divers rôles qu’y ont joués les
grandeurs et les nombres.

Au début nous n’avions pratiquement que des grandeurs. Nous ne nous sommes servis à ce stade
initial que de nombres très simples tels que 2, 1

2 ou 1 et 1
2 .

Puis nous avons opéré sur les grandeurs en nous servant des nombres : nous avons multiplié une
grandeur par un naturel, divisé une grandeur par un naturel, puis combiné ces deux opérations
pour arriver à multiplier une grandeur par une fraction (un rationnel). Et nous avons soupçonné
au passage l’arrivée de nouveaux nombres, les irrationnels, mais avec une fonction analogue, celle
d’opérer sur une grandeur en la ✭✭ multipliant ✮✮.

À ce stade, nous nous intéressions donc à deux sortes de choses : les grandeurs (et leurs rapports)
d’une part, et les nombres opérant sur les grandeurs de l’autre. Les grandeurs étaient plutôt de
l’ordre des choses que l’on perçoit, et les nombres de l’ordre des choses qui guident une action, des
choses avec lesquelles on agit, des sortes d’outils.

Les opérateurs numériques nous ont amenés à exprimer les rapports par des nombres. Et, moyennant
le choix d’une unité standard, nous sommes arrivés à associer à chaque grandeur sa mesure, et à
toute mesure la grandeur correspondante. Nous pouvions alors, et c’était bien commode, substituer
le plus souvent les mesures aux grandeurs. Mais à partir de là, les nombres jouaient un double
rôle : d’une part à travers les mesures, ils prenaient la place des grandeurs, mais d’autre part ils
continuaient à jouer le rôle d’opérateurs, non plus sur les grandeurs mais sur leurs mesures.
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De là viennent des distinctions plus ou moins éclairantes comme celle des nombres concrets (par
exemple 4 dans ✭✭ 4 mètres ✮✮) et des nombres abstraits (par exemple 3 dans ✭✭ 3 fois 4 mètres ✮✮,
ou encore 3 et 4 dans ✭✭ 3 × 4 ✮✮ lorsque les nombres ne renvoient qu’à eux-mêmes). Ou encore
la distinction entre multiplicande et multiplicateur puisque dans un produit, les deux facteurs ne
jouent pas toujours le même rôle8.

Pour la suite de l’exposé, retenons principalement qu’à ce stade, un seul et même type d’objet
mental, à savoir les nombres, joue deux rôles. Plus tard, dans le développement de la structure
linéaire, ces deux rôles seront assumés par des objets mentaux distincts.

6 Les rapports de grandeurs orientées

Nous prendrons toujours la dénomination de nombres dans le sens où on l’emploie en arithmétique,
en faisant nâıtre les nombres de la mesure absolue des grandeurs ; et nous appliquerons uniquement
la dénomination de quantités aux quantités réelles positives ou négatives, c’est-à-dire, aux nombres
précédés des signes + ou −. De plus, nous regarderons les quantités comme destinées à exprimer des
accroissements ou des diminutions ; en sorte qu’une grandeur donnée sera simplement représentée par un
nombre, si l’on se contente de la comparer à une autre grandeur de même espèce prise pour unité, et par
ce nombre précédé du signe + ou du signe −, si on la considère comme devant servir à l’accroissement
ou à la diminution d’une grandeur fixe de la même espèce.

A.-L. Cauchy

Jusqu’ici tout notre exposé a porté sur les grandeurs et la mesure des grandeurs. La mesure d’une
grandeur est toujours un nombre positif. Nous n’avons donc à aucun moment éprouvé le besoin de
recourir à des nombres négatifs. Mais il y a des situations où apparaissent des ✭✭ grandeurs ✮✮ de
deux types, que l’on pourrait dire antagonistes, et qui conduisent à des mesures tant négatives que
positives. Tel est le cas par exemple des abscisses sur une droite, des temps sur l’échelle des durées,
des vitesses, des charges électriques et de bien d’autres. Nous regroupons ces types de grandeurs
sous la dénomination commune de grandeurs orientées9.

Commençons par étudier deux d’entre elles qui sont apparentées aux longueurs, à savoir les positions
et variations de position sur une droite.

Au début de cet exposé, nous avons étudié les grandeurs en elles-mêmes, munies d’un ordre et
d’une somme (cf. 3.1) avant d’étudier les rapports de grandeurs et les tableaux de proportionnalité
(cf. 3.2 et 3.3). Nous procéderons ici dans le même ordre, en rappelant d’abord ce que sont ces
grandeurs orientées munies d’un ordre et d’une somme, puis en nous occupant à leur propos des
rapports et proportions.

6.1 Les positions et les variations de position

Pour situer un point sur une droite, on choisit une origine sur celle-ci, on se donne la longueur du
segment entre le point et l’origine et on marque cette longueur par un symbole arbitraire exprimant
le fait que le point se trouve d’un côté ou de l’autre de l’origine. Le symbole peut être un + ou un
−, mais remarquons que nous ne parlons pas encore ici de mesures. Ces longueurs marquées sont
ordonnées, mais pas du tout comme les longueurs ordinaires. En ce qui les concerne, les symboles

8 Et qu’en outre lorsqu’on les dispose l’un en dessous de l’autre pour effectuer l’algorithme de la multiplication, il
faut bien en mettre un au dessus et l’autre en dessous, et que l’algorithme n’est pas le même selon le choix que l’on
fait.

9 Dans cette étude, nous réservons le nom de grandeur orientée aux ✭✭ grandeurs ✮✮ qui sont mesurées par un nombre
relatif. Nous n’utiliserons donc pas cette expression pour les grandeurs de nature vectorielle à deux dimensions ou
davantage.
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< et > veulent dire respectivement non pas plus petit et plus grand, mais bien avant et après dans
le sens choisi sur la droite.

Une longueur marquée a pour fonction première de repérer un point sur la droite, de dire où il est.
À cause de cela, on voit mal a priori le sens qu’il y aurait à définir une addition sur ces longueurs.

Passons maintenant aux variations de position sur une droite. Ce sont les distances (plus précisément
les longueurs) dont on peut déplacer un point sur la droite, mais affectées d’un signe (par exemple +
ou −) selon que le point est déplacé dans un sens ou l’autre sur la droite. On ordonne les variations
de position en disant que

1) si deux variations de position sont positives, l’une est plus petite que l’autre si la distance (au sens
ordinaire) correspondant à la première est plus petite que la distance correspondant à la seconde ;

2) si les deux variations sont l’une positive et l’autre négative, la négative est plus petite que la
positive ;

3) et enfin si les deux variations sont négatives, celle qui correspond à la plus grande distance est
plus petite que l’autre.

Comme on met deux baguettes ou deux segments bout à bout pour les additionner, il semble naturel
de convenir qu’additionner deux variations de position, c’est les exécuter l’une après l’autre, les
enchâıner. Mais cette définition souffre d’une limitation gênante. En effet, pour pouvoir enchâıner
deux variations de position, il faut que le point d’arrivée de la première cöıncide avec le point de
départ de la seconde. Or on voudrait pouvoir additionner deux variations de position quelconques.
Il nous faut pour cela adapter la notion de variation de position.

Répétons que pour additionner deux longueurs, représentées par deux baguettes, nous mettons ces
dernières bout à bout en les alignant. Et pour ce faire, il nous faut le plus souvent déplacer les
baguettes pour les amener dans la position voulue. Une baguette (un segment) donnée représente
toujours la même longueur, où qu’elle se trouve dans l’espace, ce qui nous laisse la liberté de
l’amener où nous voulons.

Pour pouvoir additionner deux variations de position quelconques sur une droite, il nous suffit de
donner aux variations de position sur la droite la même liberté de mouvement que nous donnons
aux baguettes dans l’espace. Autrement dit, deux déplacements d’un point sur la droite (ou deux
segments orientés) seront considérés comme représentant la même variation de position pour autant
qu’ils aient même longueur et même sens. Il faut un effort d’imagination pour assimiler ce nouveau
concept de variation de position.

Jusqu’ici nous avons associé aux positions et variations de position des longueurs munies d’un
signe. Nous n’avons donc pas encore parlé de mesurer ces longueurs. Si nous les mesurons (comme
on mesure des longueurs ordinaires), mais affectons les nombres trouvés, selon le cas, d’un signe
+ ou d’un signe −, nous obtenons les nombres relatifs. En outre, l’ordre sur les positions et les
variations de position nous fournit l’ordre sur les nombres relatifs. Et enfin l’addition des variations
de position nous fournit les règles applicables à l’addition des nombres relatifs.

Jusqu’ici également nous n’avons considéré que des grandeurs orientées qui se ramènent à des
longueurs munies d’un signe. Quant aux autres, les temps, vitesses, etc., elles se ramènent aux
précédentes moyennant des opérations de mesure et des choix d’échelles de représentation analogues
à ceux que l’on rencontre dans les grandeurs ordinaires (cf. section 4). Nous n’en parlerons donc
pas davantage.
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6.2 Les tableaux de proportionnalité entre nombres relatifs

Fixons maintenant notre attention sur les grandeurs orien-
tées mesurées, et donc sur les nombres relatifs. Nous vou-
drions étendre à ceux-ci la notion de tableau de proportion-
nalité. Pour cela, nous devons convenir de ce que sera un
rapport entre deux nombres relatifs. Supposons pour un mo-
ment que les règles de la multiplication des relatifs aient été
élaborées, et justifiées de l’une ou l’autre façon, comme on le
fait dans l’enseignement secondaire. Nous dirons alors que si
y et x sont deux nombres relatifs quelconques, le rapport de
x à y est le nombre (relatif) a qui est tel que y = ax. Ceci
fait, nous pouvons dresser des tableaux de proportionnalité
correspondant à des rapports externes a quelconques.

−3 −6
−2 −4
−1 −2

0 0
1 2
2 4
3 6
4 8
5 10

Tableau 15.

−3 6
−2 4
−1 2

0 0
1 −2
2 −4
3 −6
4 −8
5 −10

Tableau 16.

Les tableaux 15 et 16 sont caractérisés respectivement par les rapports externes 2 et −2.

On vérifie sans peine que dans de tels tableaux, la propriété de la somme et celle des rapports
internes sont vérifiées, ce qui est rassurant. Ces tableaux sont illustrés par les figures 10 et 11.

1 2± 1± 2

1

2

± 1

± 2

x

y

Fig. 10

1 2± 1± 2

1

2

± 1

± 2

x

y

Fig. 11

Supposons maintenant que nous
ayons choisi pour la multiplication
des relatifs une règle des signes dif-
férant de la règle ordinaire. Par
exemple que moins par moins donne
moins et que les autres cas de la
règle des signes demeurent inchan-
gés. Nous devons alors remplacer le
tableau 16 par le tableau 17 et la fi-
gure 11 par la figure 12.

−3 −6
−2 −4
−1 −2

0 0
1 −2
2 −4
3 −6
4 −8
5 −10

Tableau 17.

1 2± 1± 2

1

2

± 1

± 2

x

y

Fig. 12
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Le tableau 17 ne vérifie plus ni la propriété de la somme, ni celle des rapports internes. La figure
12 ne représente plus une droite.

Nous pourrions vérifier de même les perturbations qu’introduiraient d’autres modifications à la règle
des signes. La conclusion est que celle-ci a un effet majeur : elle permet l’extension aux nombres
relatifs de la notion de tableau de proportionnalité, c’est-à-dire de la notion de fonction linéaire.
Elle permet la représentation de chaque droite passant par l’origine par une équation simple. Toute
autre règle bouleverserait la géométrie analytique10.

Sur l’extension des tableaux de proportionnalité aux nombres relatifs, voir le chapitre 5.

6.3 Nouveaux objets, nouveaux opérateurs

Jetons maintenant un coup d’œil d’ensemble sur cette sixième section. Nos avons vu que la notion
de tableau de proportionnalité résiste au passage des grandeurs ordinaires aux grandeurs orientées,
des rapports et mesures positifs aux rapports et mesures exprimés par des nombres relatifs, de la
somme des mesures positives à la somme des mesures exprimées par des nombres relatifs. Toutefois,
dans les nouveaux tableaux de proportionnalité, les rapports externe et internes et la propriété de
la somme ont évidemment changé de visage. Heureusement ce changement est une généralisation :
ce que nous avons dit avant le passage aux nombres relatifs demeure applicable aux situations
nouvelles lorsque celles-ci ne font apparâıtre, parmi les nombres relatifs, que des nombres positifs.

Lorsque nous considérions les grandeurs ordinaires, nous avons remarqué que les mesures et les
opérateurs étaient tous deux des nombres, positifs en l’occurrence (voir 5.4). Ceci demeure vrai
dans le cadre des grandeurs orientées : les mesures et les opérateurs sont encore tous deux des
nombres, à ceci près qu’il s’agit maintenant de nombres relatifs. C’est seulement à la section 7 que
nous verrons les mesures et les opérateurs prendre des visages différents.

6.4 Les fonctions affines

Les fonctions linéaires, représentées
par des tableaux de proportionna-
lité, ont pour graphiques des droites
passant par l’origine (voir figures 10
et 11). Mais dans de nombreuses cir-
constances, d’autres types de fonc-
tions se présentent naturellement.
Par exemple, un mouvement uni-
forme sur un axe des x répond à une
équation du type

x(t) = x0 + vt,

t x(t)
−3 −3, 5
−2 −2
−1 −0, 5

0 1
1 2, 5
2 4
3 5, 5
4 7
5 8, 5

Tableau 18.

1 2± 1± 2

1

2

± 1

± 2

t

x

Fig. 13

où t est le temps, v la vitesse et x0 l’abscisse du point mobile au temps t = 0. Un exemple d’une
telle fonction (que l’on n’obtient bien entendu qu’après avoir choisi des unités pour les abscisses,

10 H. Freudenthal [1983] a observé que c’est à partir du moment où la géométrie analytique est entrée dans la
pratique mathématique courante, c’est-à-dire dans la deuxième moitié du XVIIe siècle, que les nombres relatifs ont
été utilisés constamment.
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les temps et la vitesse) est x(t) = 1 + 1, 5t. Le tableau 18 et la figure 13 sont deux expressions de
cette fonction.

Le tableau 18 n’est pas défini par un rapport externe, et il ne possède
ni la propriété de la somme, ni celle des rapports internes. Il ne repré-
sente donc pas une fonction linéaire. Toutefois, si on met en regard
la différence entre deux termes de la première colonne et la différence
entre les deux termes correspondants de la seconde colonne, et que
l’on fait cela autant de fois que l’on veut, on obtient un tableau de
proportionnalité. Le tableau 19 illustre cette propriété en montrant
les différences entre éléments successifs de chaque colonne.
Cette proportionnalité des différences n’exprime rien d’autre, dans le
cas du mouvement uniforme, que la propriété que résume la formule :
même durée, même distance parcourue.

t x(t)
−3 −3, 5

1 −2 −2 1,5
1 −1 −0, 5 1,5
1 0 1 1,5
1 1 2, 5 1,5
1 2 4 1,5
1 3 5, 5 1,5
1 4 6 1,5
1 5 7, 7 1,5

Tableau 19.

Sur les fonctions affines, voir entre autres le chapitre 6.

7 Les vecteurs et les transformations

Je ne suis toujours pas satisfait de l’algèbre, parce qu’elle ne donne pas la voie d’accès la
plus courte aux plus belles constructions de la géométrie. C’est pourquoi je pense qu’en ce qui
concerne la géométrie, nous avons besoin d’une autre analyse encore qui soit clairement géomé-
trique ou linéaire et qui exprime directement les situations comme l’algèbre exprime directement
les grandeurs.

G. Leibniz

Dans cette étude, nous avons d’abord examiné les grandeurs au sens ordinaire, dont les mesures
étaient des nombres positifs. Nous avons ensuite étudié les grandeurs orientées, dont les mesures
étaient des nombres relatifs. Mais les grandeurs ordinaires et les grandeurs orientées n’épuisent pas
le champ des grandeurs, si on accepte de donner à ce mot une signification assez étendue. En effet,
les changements de position dans l’espace (et non plus seulement sur une droite), les translations,
les forces, les vitesses, les champs électriques et magnétiques, etc. sont autant de choses qui peuvent
être plus ou moins grandes, plus ou moins intenses, et qui sont par conséquent douées de grandeur.
Mais en outre elles ont une direction dans l’espace, et un sens sur cette direction. On les qualifie
de vectorielles.

Nous n’essaierons pas d’étendre la notion de tableau de proportionnalité successivement aux chan-
gements de position, translations, forces, vitesses, etc., car cela nous conduirait trop loin, et dans
certains cas n’aurait guère de sens11. Nous ne ferons ici cette tentative d’extension que pour les
changements de position d’un point dans un plan (et dans l’espace ce serait la même chose), ce qui
nous conduira aux combinaisons et transformations linéaires. Ensuite, à la section 8, nous repren-
drons un par un les autres types de grandeurs vectorielles pour indiquer la spécificité de chacun.

7.1 De la droite au plan

À la section 6.1, nous avons étudié les variations de position sur une droite. Passons maintenant au
plan et à l’espace.

11 Voir à ce sujet la section 8.
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Considérons un mobile ponctuel passant d’un point à un autre. Le mouvement le plus simple qui
réalise cela suit le segment qui a pour origine le point de départ du mobile et pour extrémité son
point d’arrivée. Cette variation de la position est ainsi caractérisée par un segment orienté qui va
du point de départ au point d’arrivée. Ce segment possède une longueur, une direction et un sens.

Si nous voulons étendre la notion de tableau de proportionnalité, ou – si on préfère –, de fonction
linéaire, à ces objets nouveaux, nous devrons d’abord définir, en ce qui les concerne, les notions de
somme et de rapport.

Pour la somme, inspirons nous des variations de position sur une droite. Par définition, additionner
deux variations de position dans un plan ou l’espace consistera à enchâıner les deux segments
orientés qui les représentent. Mais pour que cette addition soit définie pour deux variations de
position quelconques, il faut que nous puissions toujours déplacer les segments orientés pour les
amener en position enchâınée. Et donc, de même – rappelons-le –, que nous pouvions déplacer deux
baguettes quelconques pour additionner leurs longueurs, nous nous donnerons la liberté de déplacer
n’importe quel segment orienté, en prenant toutefois la précaution de lui conserver toujours même
longueur, même direction et même sens. Nous désignerons les segments orientés ainsi libérés, du
nom de vecteurs libres, ou en abrégé de vecteurs.

Venons-en maintenant au rapport de deux vecteurs. On pense tout de suite à ce que peut vouloir
dire multiplier un vecteur par un nombre relatif. C’est multiplier sa longueur par la valeur absolue
de ce nombre et, tout en maintenant sa direction, changer son sens ou non selon que le nombre par
lequel on multiplie est négatif ou positif. Et on est tenté alors de dire que deux vecteurs ont entre
eux le rapport α, où α est un nombre relatif, si en multipliant le premier par α on obtient le second.

Mais une telle définition du rapport n’est pas vraiment satisfaisante. En effet, selon cette définition,
deux vecteurs ne peuvent avoir un rapport entre eux que s’ils ont même direction. Or nous voudrions
assez naturellement que deux vecteurs quelconques, même de directions différentes, aient entre eux
un rapport, ce qui n’est pas possible avec notre définition. Que faire ?

7.2 Un tableau de proportionnalité étriqué

Malgré cette restriction, essayons de construire un tableau de pro-
portionnalité qui s’appuie sur cette notion de rapport. Juste pour
voir. Commençons par deux vecteurs −→a et

−→
a′ = λ−→a , de rapport

λ (voir tableau 20).
Inscrivons ensuite dans notre tableau n’importe quels couples
(−→b ,
−→
b′ ) et (−→c ,

−→
c′ ) tels que

−→a −→
a′ = λ−→a

−→
b = µ−→a −→

b′ = µ
−→
a′

−→c = ν−→a −→
c′ = ν

−→
a′

. . . . . .
−→
b +−→c −→

b′ +
−→
c′

. . . . . .

Tableau 20.−→
b = µ−→a et

−→
b′ = µ

−→
a′ ,

−→c = ν−→a et
−→
c′ = ν

−→
a′ ,

où µ et ν sont deux nombres quelconques, et aussi tout couple de la forme

(−→b +−→c ,
−→
b′ +

−→
c′ ) (1)

à condition que (−→b ,
−→
b′ ) et (−→c ,

−→
c′ ) soient déjà dans le tableau.

On vérifie sans peine que dans un tel tableau, tout vecteur de droite est égal au vecteur correspon-
dant de gauche multiplié par λ. Ainsi λ est le rapport externe du tableau. On vérifie aussi que ce
tableau possède les deux propriétés des rapports internes et de la somme.
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Toutefois, l’objection que nous pouvions craindre est bien là : −→a et
−→
a′ étant choisis au départ dans

une certaine direction, tous les autres vecteurs du tableau ont cette même direction. Et donc nous
ne sommes pas arrivés à construire un tableau de proportionnalité dans la première colonne duquel
nous puissions inscrire n’importe quel vecteur, avec en face celui qui lui correspondrait dans un
rapport donné à l’avance.

À nouveau, que faire ? Nous devons certainement remplacer notre notion trop étroite de rapport.
Il nous faudrait une notion de rapport qui permette le passage d’un vecteur quelconque à un autre
vecteur quelconque. Existe-t-il une telle notion ? Pour l’instant, mystère. . .

7.3 Une généralisation du rapport interne

Ce qui est possible par contre, c’est de passer de deux vecteurs quelconques à un vecteur quelconque,
à condition que les deux premiers soient non nuls et de directions différentes. Soient en effet deux
vecteurs −→a et −→b de ce type. Alors, n’importe quel autre vecteur −→c peut être représenté sous la
forme

−→c = α−→a + β
−→
b , (2)

où α et β sont deux nombres appropriés (rappelons que nous travaillons dans le plan). On dit dans
ces conditions que −→c est une combinaison linéaire de −→a et −→b . Une combinaison linéaire n’est pas
un rapport, mais elle généralise la notion de rapport du fait qu’elle s’y ramène lorsqu’on revient du
plan à la droite.

Pouvons-nous, à partir de là, construire quelque chose qui ressemble à un tableau de proportionna-
lité ? Essayons de remplacer les rapports internes par des combinaisons linéaires. Commençons par
inscrire dans la première colonne deux vecteurs −→a et −→b non nuls et dans la deuxième colonne les
vecteurs

−→
a′ et

−→
b′ tels que (voir tableau 21)

−→
a′ = λ−→a et

−→
b′ = λ

−→
b , (3)

où λ est un nombre non nul. On le voit, nous essayons de maintenir pour le rapport externe notre
ancienne notion de rapport.

Ajoutons ensuite, dans la première colonne, toutes les com-
binaisons linéaires que nous voulons des vecteurs −→a et −→b ,
par exemple α1

−→a + β1
−→
b ou encore α2

−→a + β2
−→
b . Nous pou-

vons par ce procédé inscrire dans cette première colonne n’im-
porte quel vecteur choisi au hasard. Décidons d’inscrire en
face les combinaisons linéaires correspondantes (c’est-à-dire
de mêmes coefficients) de

−→
a′ et

−→
b′ .

−→a −→
a′ = λ−→a

−→
b
−→
b′ = λ

−→
b

α1
−→a + β1

−→
b α1

−→
a′ + β1

−→
b′

α2
−→a + β2

−→
b α2

−→
a′ + β2

−→
b′

. . . . . .

Tableau 21.

De cette façon, les combinaisons linéaires de gauche – qui nous servent de rapports internes –,
correspondent bien à celles de droite. Notre tableau ainsi constitué peut contenir autant de couples
que nous voulons.

Assurons-nous maintenant que notre tableau vérifie la propriété des rapports internes, en prenant
rapport interne au sens nouveau de combinaison linéaire. Soit une combinaison linéaire de deux
éléments quelconques de gauche, par exemple

µ(α1
−→a + β1

−→
b ) + ν(α2

−→a + β2
−→
b ), (4)

ce qui revient aussi à
(µα1 + να2)−→a + (µβ1 + νβ2)

−→
b . (5)
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La même opération exécutée dans la colonne de droite nous amène à

µ(α1
−→
a′ + β1

−→
b′ ) + ν(α2

−→
a′ + β2

−→
b′ ), (6)

et ensuite à
(µα1 + να2)

−→
a′ + (µβ1 + νβ2)

−→
b′ . (7)

Cette expression s’écrit aussi

λ[(µα1 + να2)−→a + (µβ1 + νβ2)
−→
b ]. (8)

On voit ainsi qu’entre (4) et (6) on retrouve le rapport externe λ.

Par ailleurs, nous n’avons pas à contrôler que notre tableau vérifie la propriété de la somme, puisque
la somme est un cas particulier de combinaison linéaire.

Nous avons donc bien construit un tableau de proportionnalité, si nous acceptons d’appeler ainsi
un tableau dans lequel les combinaisons linéaires ont pris la place des rapports internes.

La nature même du rapport externe de ce tableau est telle que tout vecteur de droite est égal au
vecteur correspondant de gauche multiplié par un nombre λ. Une telle transformation des vecteurs
du plan porte le nom d’homothétie. Voilà donc l’aboutissement de notre recherche à ce stade : nous
voyons les homothéties comme pouvant être exprimée par des ✭✭ tableaux de proportionnalité ✮✮, en
un sens convenablement adapté.

Un commentaire s’impose toutefois. Dans le cadre conceptuel où nous nous trouvons, une ho-
mothétie transforme les vecteurs libres, c’est-à-dire ces variations de position que nous pouvons
transporter n’importe où, sans autre contrainte que de respecter leur grandeur, leur direction et
leur sens. Mais le terme homothétie est plus souvent utilisé en un sens différent. Il désigne alors une
transformation du plan dans laquelle un point origine reste fixe tandis que tous les autres s’écartent
ou se rapprochent de l’origine dans une proportion donnée. Dans ce sens, une homothétie n’agit pas
sur des vecteurs libres, mais bien sur des points. Nous reviendrons sur cette distinction à la section
8.1.

7.4 Une généralisation du rapport externe

Mais revoyons maintenant attentivement le développement qui nous a conduits aux homothéties.
Pour constituer le tableau 21, nous avons d’abord inscrit à gauche des combinaisons linéaires quel-
conques de deux vecteurs −→a et −→b , puis des combinaisons linéaires des vecteurs ainsi obtenus. Ceci
fait, nous avons constaté que nous obtenions en face les mêmes combinaisons linéaires, mais cette
fois des vecteurs

−→
a′ et

−→
b′ . Or, et c’est cela qui est curieux, pour prouver ce résultat (la correspon-

dance bien régulière des combinaisons linéaires entre la gauche et la droite, voir l’expression (7)),
nous ne nous sommes pas du tout servis de la condition

−→
a′ = λ−→a et

−→
b′ = λ

−→
b . (9)

Nous n’avions imposé cette dernière condition que pour préserver cette forme de rapport externe
pour notre tableau (ce qui a d’ailleurs réussi).

Donc, si nous voulons, nous pouvons choisir les vecteurs
−→
a′ et

−→
b′ arbitrairement, et la propriété

des rapports internes (des combinaisons linéaires) sera encore vérifiée. Celle de la somme aussi.

Mais, ceci fait, se pose une question cruciale. En effet, dans ces nouvelles conditions, notre rapport
externe est perdu dans la forme que nous lui avions souhaitée. Alors, existe-t-il encore entre les
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deux colonnes quelque chose que nous puissions appeler rapport externe ? Ou en termes plus imagés,
quel peut bien être le contenu géométrique du passage de la colonne de gauche à celle de droite ?

Regardons cela de près. Tout vecteur −→x de gauche peut être écrit sous la forme

−→x = x1
−→a + x2

−→
b . (10)

Le vecteur correspondant de droite est alors de la forme

−→
x′ = x1

−→
a′ + x2

−→
b′ . (11)

Mais
−→
a′ et

−→
b′ peuvent aussi être écrits comme combinaisons linéaires de −→a et −→b , par exemple

sous la forme
−→
a′ = r11

−→a + r12
−→
b ,

−→
b′ = r21

−→a + r22
−→
b .

En tenant compte de (11), nous obtenons encore

−→
x′ = (x1r11 + x2r21)−→a + (x1r12 + x2r22)

−→
b . (12)

Autrement dit, si le vecteur −→x s’exprime en fonction des vecteurs −→a et −→b par le couple (x1, x2),
son image

−→
x′ s’exprime par rapport aux même vecteurs −→a et −→b par le couple (x1r11+x2r21, x1r12+

x2r22). Pour le lecteur qui connâıt déjà un peu le calcul vectoriel, on peut reformuler cela en disant
que la transformation qui envoie −→x sur

−→
x′ a pour expression dans la base (−→a ,

−→
b ),

x′
1 = r11x1 + r21x2,

x′
2 = r12x1 + r22x2.

Telle est donc la loi de passage des −→x aux
−→
x′ ou, en d’autres termes, voilà ce qui nous tient lieu

de rapport externe.

En réalité, nous arrivons là à des tableaux de proportionnalité (considérablement) généralisés qui
expriment ce que l’on appelle les transformations linéaires du plan, pour la découverte desquelles
nous renvoyons le lecteur à des exposés plus complets. Par delà les homothéties, on y trouve les
isométries, les similitudes, les compressions, les cisaillements, . . .

Notons toutefois une difficulté. Ces transformations sont habituellement vues comme expédiant
chaque point du plan sur un autre (et parfois le même). Or un vecteur libre n’est pas a priori
associé à un point. L’intuition le perçoit soit comme un segment orienté transportable, soit comme
l’ensemble des segments orientés de même longueur, direction et sens qu’un segment donné. Dans
les deux cas, cela exige un travail que d’associer tout vecteur libre à un et un seul point du plan et
réciproquement.

7.5 Nouveaux objets, nouveaux opérateurs

Pour en revenir à la mutation à laquelle nous venons d’assister, insistons sur sa signification pro-
fonde. Dans nos tableaux de proportionnalité relatifs aux grandeurs, aux mesures de grandeurs et
aux grandeurs orientées, nous avions des rapports internes et externes, mais ces rapports avec des
noms différents étaient de la même nature et avaient tous le même contenu géométrique simple.
Par contre, en passant aux ✭✭ rapports ✮✮ entre grandeurs à deux dimensions, nous assistons à une
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bifurcation de la notion : les rapports internes deviennent des combinaisons linéaires (notion au
contenu géométrique encore assez simple, caractérisée par deux nombres), mais les rapports ex-
ternes deviennent des relations au contenu géométrique divers, impossibles à saisir d’un seul coup
d’œil intuitif, et caractérisées par quatre nombres.

Remarquons pour en finir avec les variations de position que nous pourrions aussi les étudier dans
l’espace. Les conclusions seraient analogues, quoique nous aurions alors à faire à des combinaisons
linéaires de trois vecteurs, et le substitut des rapports externes serait représenté non plus par quatre
nombres mais par neuf.

Le chapitre 8 introduit au calcul vectoriel en termes de déplacements. Il est complété par le chapitre 9

qui introduit le produit scalaire, expression de la bilinéarité. Voir aussi sur ces deux sujets, le chapitre

15.

7.6 Le plan quadrillé

Une comparaison peut éclairer la façon dont nous avons introduit les variations de position au début
de cette section 7. Lors d’une leçon de gymnastique, un professeur dit à ses élèves : ✭✭ Faites un
pas en avant. ✮✮ Les élèves peuvent exécuter ce mouvement parce qu’ils ont un avant et un arrière :
chacun d’eux est un corps orienté. Tel n’est pas le cas d’un point dans un plan, et il n’est donc pas
possible de décrire de cette façon une variation de position d’un point. Mais le professeur peut dire
aussi : ✭✭ Faites un pas vers le mur de gauche, ou vers le nord. ✮✮ En disant cela, il se réfère à un
repère déjà présent dans l’environnement. Nous aurions pu procéder de manière analogue, mais ce
n’est pas ce que nous avons fait. Enfin le professeur peut faire lui-même un pas dans une direction
choisie au hasard, puis dire à ses élèves : ✭✭ Faites comme moi ✮✮, voulant dire par là : ✭✭ Faites un
pas de la même longueur que le mien, dans la même direction et le même sens. ✮✮ C’est comme cela
que nous avons procédé, en évoquant un mobile ponctuel qui passe d’un point à un autre, puis en
considérant que nous pouvions envisager un mouvement identique à partir de n’importe quel autre
point.

En procédant ainsi, nous avons pu poser, sans avoir à tenir compte de quoi que ce soit d’autre,
d’aucun repère préexistant, la question de ce que pourrait bien être un rapport entre deux varia-
tions de position. En échouant à définir un tel rapport dans le cas général, mais en reconnaissant
ensuite la possibilité d’une sorte de rapport entre deux variations de position (non nulles et de
directions différentes) et une troisième, nous avons fait nâıtre la notion de combinaison linéaire
et, implicitement, celle de base du plan vectoriel. En mettant ensuite au point un ✭✭ tableau de
proportionnalité ✮✮ qui respecte cette sorte de rapport nouveau, nous avons fait nâıtre la notion de
transformation linéaire, autre et dernier avatar du rapport. Tout cela était conforme à l’objectif
annoncé au début de cette étude et qui était de faire apparâıtre diverses mutations de la notion de
rapport.

Il va de soi pourtant que dans la pratique, lorsqu’on veut spécifier une variation de position dans
un plan, celui-ci est souvent déjà occupé par des objets ou des figures pouvant servir de repère. Par
exemple sur les plans de villes, on peut se référer à un quadrillage. Celui-ci tient lieu de repère et
permet d’emblée la décomposition des variations de position en deux composantes : avancer de tant,
dans tel sens, dans une direction du quadrillage, puis de tant, dans tel sens, dans l’autre direction,
le côté du carré servant d’unité de mesure. Cette façon plus concrète d’introduire les variations de
position est mieux adaptée à une première approche de la linéarité que notre recherche des avatars
de la notion de rapport. C’est le moment de rappeler que nous ne proposons pas du tout cette
recherche comme thème d’un enseignement élémentaire.

Sur l’utilisation du plan quadrillé pour introduire les vecteurs géométriques, voir le chapitre 8.
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8 Quelques sources de vecteurs

. . . Toute grandeur vectorielle dépend de deux éléments hétérogènes, l’un de nature arithmétique
et l’autre de nature géométrique, qui sont un nombre et une direction. On peut lui attacher un
vecteur, abstraction mathématique qui est à la grandeur vectorielle ce que le nombre est à la
grandeur scalaire et, de même que l’étude des grandeurs scalaires se ramène à des raisonnements
sur les nombres, celle des grandeurs vectorielles se ramène à des raisonnements sur les vecteurs.

R. Bricard

8.1 Repérer les points d’un plan

À la section 6.1, nous avons étudié le repérage des points sur une droite. Examinons maintenant le
repérage des points d’un plan. On ne peut pas spécifier la position d’un point si ce n’est par rapport
à quelque chose. Et donc il faut au départ se donner un repère. Alors on part d’un point (que l’on
appelle l’origine) dans une direction donnée, ce qui ne conduit qu’aux points d’une seule droite.
Pour balayer les autres points du plan, il faut changer de direction. On peut par exemple tourner
la droite choisie au départ, ce qui engendre les coordonnées polaires. Ici nous choisissons plutôt
une deuxième droite passant par l’origine et partant dans une autre direction que la première. En
munissant chacune des deux droites d’une unité orientée, nous obtenons un repère au sens bien
connu en géométrie.

Si le plan que l’on considère est déjà muni d’un quadrillage (ou d’un pavage de parallélogrammes
identiques entre eux), on installe un repère en choisissant deux droites sécantes du quadrillage, puis
en orientant celles-ci.

La position d’un point par rapport à un repère est donnée par l’enchâınement de deux variations
de position : on avance de tant depuis l’origine le long du premier axe, puis on avance de tant
parallèlement au second axe. C’est là une combinaison linéaire des deux variations de position
représentées par les deux unités orientées. Elle va de l’origine au point que l’on veut situer. Appelons-
la vecteur-position de ce point. Ses deux coefficients sont appelés les coordonnées du point. Les
vecteurs-positions sont aussi parfois appelés vecteurs liés.

Ce procédé fait jouer aux deux axes des rôles différents. Pour leur faire jouer le même rôle, on
peut construire le parallélogramme défini par les deux axes et les parallèles à ceux-ci passant par le
point à situer, puis considérer la variation de position qui, en suivant la diagonale, va de l’origine
au sommet opposé de ce parallélogramme.

Et maintenant pourquoi s’intéresser au produit d’un vecteur-position par un nombre et à la somme
de deux vecteurs-positions ? Car à première vue un tel vecteur semble avoir rempli son office dès
qu’il a montré où est un point.

Toutefois, multiplier les vecteurs-positions de tous les points d’une figure par un même nombre
aboutit à agrandir ou rapetisser la figure sans changer sa forme, ce qui a beaucoup de sens. En
faisant cela, on réalise une homothétie.

D’autre part, si certains points du plan sont affectés d’une masse, pour déterminer le centre d’inertie
de ce système de points, on est amené à faire la somme de tous les vecteurs-positions de ces points
multipliés chacun par la masse correspondante. Cette application justifie amplement le produit d’un
vecteur-position par un nombre et la somme de deux vecteurs-positions.

Ces deux opérations s’introduisent d’ailleurs de façon naturelle, puisque pour multiplier un vecteur-
position par un nombre, il suffit de multiplier chacune de ses coordonnées par le nombre, et pour
additionner deux vecteurs-positions, il suffit d’additionner deux à deux leurs coordonnées.
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Comparés aux variations de position, les vecteurs-positions ont l’avantage de correspondre chacun
à un point du plan et réciproquement. Ils semblent donc particulièrement adaptés à l’étude des
transformations linéaires du plan : ce sont des transformations dans lesquelles chaque point est
envoyé sur un autre point (ou sur lui-même). L’homothétie mentionnée ci-dessus en est un exemple,
mais il y a aussi les rotations, les symétries orthogonales et bien d’autres.

Parmi ces transformations, certaines sont linéaires, c’est-à-dire conservent les combinaisons linéaires,
et d’autres non. Mais c’est là un résultat théorique qui ne sera habituellement rencontré que bien
après l’étude des transformations familières.

8.2 Les translations

Soit une figure dans un plan. Si on la fait glisser sans la tourner vers un autre endroit du plan,
on obtient une deuxième figure identique à la première. En répétant ce mouvement (un glissement
dans la même direction et sur la même distance) à partir de la deuxième figure, on en crée une
troisième. On peut en créer de même une quatrième, une cinquième, etc. On voit ainsi se constituer
une frise. En repartant de la première figure et par des mouvements identiques, quoique de sens
opposé, on allonge la frise de l’autre côté. On peut imaginer une frise infinie dans les deux sens.

On peut aussi passer de la frise à un papier peint (un réseau plan). Il suffit de choisir un deuxième
mouvement, dans une direction différente du premier, et de reproduire la frise autant de fois que
l’on voudra par application réitérée de ce mouvement dans les deux sens.

On peut étudier, sur le papier peint, les passages d’un motif de base quelconque à un autre, de la
même manière que l’on étudiait le passage d’un point à un autre par une variation de position. Les
motifs du papier peint ont simplement pris la place des points. Le passage d’un motif à un autre,
caractérisé par sa longueur, sa direction et son sens, peut être reproduit au départ de n’importe
quel motif. C’est intuitivement l’analogue du vecteur libre.

Dans ce cadre, la multiplication d’un mouvement par un nombre (en l’occurrence un entier) apparâıt
naturellement : on envoie le motif tant de fois plus loin dans un sens ou l’autre. La somme de deux
mouvements procède par enchâınement, comme dans le cas des variations de position.

D’autre part, on ne doit pas ici introduire la notion de repère : elle se dégage en quelque sorte d’elle
même, puisque n’importe quel mouvement peut être exprimé comme la somme de deux mouvements
de directions différentes, multipliés chacun par un nombre approprié.

De ces considérations sur les papiers peints, on peut passer par analogie aux vecteurs libres du plan.

Changeons maintenant de point de vue. On peut engendrer une frise tout autrement que ci-dessus, à
condition que l’on ait déjà acquis le concept de translation du plan entier (sans aller nécessairement
jusqu’à la composition des translations). On part d’une figure. On translate le plan, de manière à
envoyer la figure à un autre endroit. Puis on pose la question : comment faudrait-il compléter la
figure de départ pour qu’elle retombe sur elle-même (qu’elle soit invariante) à la suite de la seule
translation envisagée ? La figure complétée est une frise.

On peut alors engendrer un papier peint en demandant simplement de compléter la figure de départ
de sorte qu’elle se transforme en une figure invariante par application de deux translations du plan
de directions différentes.

On peut ensuite explorer toutes les translations du plan qui laissent le papier peint invariant. Et
on voit bien comment l’on retrouve ainsi le produit d’une translation par un nombre, la somme (la
composée) de deux translations, et comment on choisit deux translations de directions différentes
dont les combinaisons linéaires permettent de retrouver toutes les autres.
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Quelles que soient par ailleurs les façons de procéder pour créer une frise ou un papier peint, les
vecteurs mis au point dans de tels contextes sont plus proches des vecteurs libres que des vecteurs-
positions. Comme expliqué ci-dessus, cela demande un effort d’associer chacun d’eux à un point du
plan pour pouvoir ensuite envisager les transformations du plan d’un point de vue vectoriel.

Un avantage toutefois des frises et papiers peints, c’est que si le motif de base est lui-même invariant
pour certaines symétries orthogonales ou rotations, ces symétries se transmettent au plan entier et
conduisent donc naturellement aux isométries du plan entier (mais non à d’autres transformations).

L’extension des isométries au plan entier est un caractère intéressant pour ceux qui étudient – ce
que nous ne ferons pas ici –, les propriétés de groupe de ces tranformations et les théorèmes de
réduction : toute isométrie directe est une translation ou une rotation, et toute isométrie inverse
est une symétrie glissée.

8.3 Les vitesses

Les vecteurs se rencontrent dans d’autres champs que la géométrie. Considérons maintenant les
vitesses, qui relèvent d’abord de la cinématique, avant de jouer un rôle en dynamique, là où les
forces interviennent. Concentrons-nous dans un premier temps sur les mouvements rectilignes et
uniformes d’un mobile ponctuel.

La vitesse d’un tel mobile possède une grandeur, une direction et un sens. Il est par conséquent
tentant de la représenter par un vecteur. Mais tout d’abord on ne peut la représenter par un
segment orienté qu’après avoir fait un double choix, nécessaire pour fixer la longueur du segment :
premièrement on doit se donner une unité de longueur et une unité de temps, par exemple le mètre et
la seconde, ce qui fixe l’unité de vitesse, dans notre exemple le mètre par seconde ; deuxièmement,
on doit se donner une échelle de représentation des vitesses, en convenant par exemple de faire
correspondre un centimètre à un centimètre par seconde.

Ceci fait, la vitesse correspond-elle à un vecteur libre ou à un vecteur lié ? A priori pas à un vecteur
libre, car elle est attachée à un point, à savoir le mobile. Il serait donc très artificiel d’associer à la
vitesse un segment transportable en tout point de l’espace, et encore moins à un ensemble infini de
segments orientés de mêmes longueur, direction et sens. Mais si on veut faire correspondre la vitesse
à un vecteur lié, on tombe sur une autre difficulté, à savoir que le segment orienté-vitesse doit être
attaché à un point mobile, et non à une origine fixe, comme c’était le cas pour les vecteurs-positions.
Ainsi, si la vitesse est représentable par un vecteur, il s’agit d’un vecteur très particulier, peut-être
une variété de vecteur que nous n’avons pas encore rencontrée. Nous reviendrons sur cette difficulté.

Ceci dit, pour que la vitesse soit représentée fidèlement par un vecteur, il faut encore que cela ait
un sens de la multiplier par un nombre. Aucune difficulté à cela, car doubler, tripler, . . . une vitesse,
en changeant ou non son sens, sont des opérations raisonnables et utiles.

Ensuite, quel sens y a-t-il à additionner deux vitesses ? On peut se faire une idée, mais ce n’est
pas si facile, d’un mobile susceptible de prendre deux mouvements (nous en sommes toujours aux
mouvements rectilignes et uniformes) et qui les prendrait tous les deux en même temps. Par exemple,
il pourrait aller vers le nord à telle vitesse, et pourrait aussi aller vers l’ouest à telle autre vitesse.
Les deux mouvements ensemble le porteraient vers le nord-ouest. Mais qu’est-ce que cela veut dire
les deux mouvements ensemble ? Pour réaliser cela pratiquement, il faut se souvenir qu’un mobile
se meut toujours par rapport à quelque chose. Soit par exemple un nageur qui nage vers le nord
en eau dormante. Remplaçons ensuite, fut-ce mentalement, l’eau dormante par un fleuve qui coule
vers l’ouest. Il se fait que la vitesse du nageur par rapport à la rive s’obtient en ajoutant, par la
règle du parallélogramme, sa vitesse initiale vers le nord et la vitesse du fleuve.
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La question ainsi posée débouche à terme sur celle du mouvement relatif. La vitesse du nageur par
rapport au fleuve est sa vitesse relative. La vitesse du fleuve est sa vitesse d’entrâınement. Enfin, la
vitesse du nageur par rapport à la rive (repère fixe ou réputé tel) est sa vitesse absolue. La vitesse
absolue est la somme de la vitesse d’entrâınement et de la vitesse relative12.

Étant donné ce que nous avons dit de la manière de faire correspondre des segments orientés aux
vitesses, la façon la plus naturelle d’additionner les vitesses est bien la règle du parallélogramme.
On ne voit pas en effet à quoi correspondrait le fait d’enchâıner deux vecteurs vitesses.

En ce qui concerne par ailleurs les transformations linéaires, si étroitement liées aux vecteurs géo-
métriques, on ne voit guère a priori pourquoi on s’en occuperait du côté des vitesses.

Si maintenant nous passons des mouvements rectilignes et uniformes aux mouvements quelconques,
la définition de la vitesse se complique. Elle devient ce que l’on appelle la vitesse instantanée. Sa
direction (la tangente à la trajectoire) et sa grandeur sont déterminées au terme d’un processus de
limite appelé dérivation. Non seulement, comme dans le cas précédent, elle est attachée à un point
mobile, mais encore elle ne conserve le plus souvent ni sa grandeur et ni sa direction, elle en change
à chaque instant. Il n’empêche, ce que nous avons dit ci-dessus du caractère vectoriel de la vitesse
demeure vrai. Mais cela nous entrainerait trop loin de le montrer ici.

La relation entre les vitesses et les vecteurs est étudiée au chapitre 13.

8.4 Les forces

Comme les vitesses, les forces sont candidates pour être représentées par des vecteurs, puisqu’elles
ont comme ces dernières une grandeur, une direction et un sens. Mais elles partagent avec les
vitesses la propriété que pour les représenter par des segments orientés, il faut d’abord les mesurer
dans une unité à choisir (par exemple le kilogramme-force qui est la plus disponible) et ensuite
choisir une échelle de représentation, par exemple un centimètre par kilogramme-force.

Ensuite est-ce qu’une force serait représentable plutôt par un vecteur lié, ou plutôt par un vecteur
libre ? Il ne serait guère possible de répondre à cette question sans examiner les circonstances où
des forces entrent en jeu. Dans un premier temps, bornons-nous au problème le plus simple : celui
où quelques forces tirent sur un point et où on s’intéresse à l’équilibre de celui-ci. Les forces sont
appliquées au point, et par conséquent le bon modèle est plutôt celui des vecteurs liés. Toutefois, on
peut tirer sur le point par l’intermédiaire de cordes dont la longueur n’a a priori pas d’importance.
Et donc on pourrait admettre que la force soit accrochée en un point quelconque de la corde. Cette
remarque n’a pas pour l’instant de grande conséquence, et donc oublions-la provisoirement. Nous
y reviendrons un peu plus tard.

En ce qui concerne la somme des forces, c’est clairement la loi du parallélogramme qui joue, car
on voit mal ce que pourrait vouloir dire l’action d’enchâıner deux segments orientés représentant
des forces. La condition d’équilibre du point est que la somme des forces, calculée par la loi du
parallélogramme, soit nulle.

Multiplier les forces par un nombre est une opération qui a aussi un sens dans le problème de
l’équilibre d’un point. En effet, par exemple, si un point est en équilibre sous l’action de quelques
forces, il demeure en équilibre si toutes ces forces sont multipliées par un même nombre.

12 Cette loi ne va pas de soi, comme on s’en rend compte jusqu’à un certain point en considérant les accélérations.
Quittons momentanément le cadre des mouvements uniformes, et supposons que le nageur ait un mouvement accéléré
par rapport au fleuve et que le fleuve lui-même ait un mouvement accéléré par rapport à la rive. Dans un tel cadre,
on définit pour le nageur une accélération relative, une accélération d’entrâınement et une accélération absolue. Mais
il est généralement faux que la somme des deux premières soit égale à la troisième.
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Multiplier, comme nous venons de le faire, toutes les forces appliquées en un point par un même
nombre revient à soumettre les vecteurs-forces à une homothétie. Par delà cette remarque, on voit
mal a priori pourquoi on développerait une théorie des tranformations linéaires à propos des forces.

Dépassons maintenant le problème élémentaire de l’équilibre d’un point, et jetons un coup d’œil sur
les questions plus générales où des forces interviennent. Bornons-nous aux questions de statique,
car la dynamique nous entrâınerait trop loin. Un problème fondamental est celui de l’équilibre
d’un solide soumis à quelques forces. Ces forces tirent ou poussent sur le solide en des points bien
déterminés. La condition (nécessaire et suffisante) d’équilibre est double : la somme (vectorielle ) des
forces doit être nulle, et la somme des moments des forces par rapport à un point fixe quelconque doit
aussi être nulle13. Pour faire la somme des forces, le plus simple est de les imaginer toutes appliquées
à un point quelconque donné et de procéder comme pour l’équilibre d’un point. Lorsqu’on fait cela,
on libère en pensée les forces de leur point d’application sur le solide. Elles deviennent des vecteurs
libres pour le temps du calcul. Par contre, pour faire la somme des moments des forces, on ne
peut plus déplacer celles-ci, sauf éventuellement que chacune peut glisser sur sa ligne d’action,
c’est-à-dire sur la droite déterminée par son point d’application et sa direction. En raison de cette
contrainte, les mécaniciens ont introduit la notion de système de vecteurs glissants, aussi appelé
torseurs. Ce n’est pas ici le lieu d’en faire la théorie.

Ceci suffit sans doute à montrer que les forces sont représentées fidèlement par des vecteurs, au
sens où on leur applique les règles de calcul introduites pour les vecteurs géométriques (ou plus
généralement pour les éléments des espaces vectoriels). Les vecteurs sont un outil de représentation
des forces et donnent la clé de nombreux calculs qu’on leur applique, mais ils ne disent pas tout
sur les forces. Un peu comme les nombres sont des outils de représentation pour celui qui pèse et
paie des marchandises, mais les nombres ne disent pas tout sur les marchandises.

Sur la relation entre les forces et les vecteurs, voir le chapitre 12.

8.5 Les nombres complexes

Les nombres complexes sont parmi les objets mathématiques qui ont historiquement le plus contri-
bué à l’émergence des vecteurs. Contentons-nous ici de montrer ce que devient la notion de tableau
de proportionnalité lorsqu’on tente de l’étendre aux complexes. Disposons dans une première co-
lonne tous les nombres complexes que nous voulons. Écrivons en face les mêmes nombres multipliés
par un nombre complexe ζ, qui jouera le rôle de rapport externe. Un tel tableau satisfait aux deux
propriétés de la somme et des rapports internes, les notions de somme et de rapport étant prises
ici au sens des complexes. Ces propriétés résultent simplement du fait que les complexes forment
un corps.

Il est intéressant de noter que la fonction linéaire à laquelle renvoie un tel tableau n’est autre qu’une
similitude du plan complexe. À la section 7 notre généralisation des tableaux de proportionnalité
engendrait toutes les transformations linéaires du plan. Ici nous n’atteignons que les similitudes. Par
ailleurs, notre analyse de la section 7 s’étend sans peine aux espaces à n dimensions. Les nombres
complexes eux ne s’appliquent qu’au plan. Quoiqu’il en soit, la représentation des similitudes par
les complexes fait de ceux-ci un instrument très efficace d’étude des problèmes euclidiens plans.

Sur la relation entre les nombres complexes et les vecteurs, voir le chapitre 10.

13 Nous sommes obligés ici de déborder un peu le cadre théorique de la présente étude. Le lecteur qui ne compren-
drait pas ce paragraphe ne perdra pas grand chose de l’ensemble.
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9 Conclusions

Jetons un dernier regard sur notre parcours. Nous sommes partis de la proportionnalité entre deux
grandeurs. Nous avons envisagé d’emblée la proportionnalité, non sous la forme de l’égalité de
deux rapports, mais sous la forme des tableaux de proportionnalité. Nous avons donc privilégié les
familles – toujours extensibles –, de rapports égaux, ou plus généralement les fonctions linéaires.
Penser les choses par familles stimule davantage la pensée que de les envisager une par une14.

Regarder cette matière sous l’angle des tableaux et des fonctions nous a permis de mettre en
évidence d’emblée les trois propriétés fondamentales : celles du rapport externe, de la somme et
des rapports internes. Tout notre travail a consisté ensuite à voir comment ces notions s’adaptaient
à des contextes divers, sucessivement les mesures, les grandeurs mesurées, les grandeurs orientées
et leurs mesures, et enfin les grandeurs vectorielles. Nous avons étudié plusieurs généralisations
du concept de somme, qui a pourtant conservé le même nom d’un bout à l’autre, et plusieurs
généralisations du concept de rapport, celles-ci tellement profondes que le nom même de rapport a
dû être remplacé, selon la matière traitée, par ceux de combinaison linéaire et de quotient de deux
nombres complexes.

Au terme de ce parcours, nous avons un double espoir. C’est d’abord que le fil conducteur de la
linéarité (il n’est pas le seul, mais il est important) soutienne la conception d’un enseignement en
spirale, aide à en assurer la cohérence, et ramène l’attention sur les structures dans l’enseignement
des mathématiques. À l’époque des mathématiques modernes, on a cru possible d’exhiber très tôt
dans l’enseignement, et de manière axiomatique, certaines structures importantes. Du fait que cela
s’est avéré difficile, certains ont eu tendance à conclure qu’il fallait accorder moins d’importance
aux structures. Cela nous semble contraire à la nature même des mathématiques et préjudiciable
à l’enseignement. Nous proposons plutôt d’envisager les structures autrement, à savoir en étant
attentif à leur émergence et à leur maturation à travers toute la scolarité, quoique sans vouloir les
inculquer prématurément dans une forme abstraite.

Notre deuxième espoir est qu’un enseignant qui aurait compris les connexions importantes qui
relient tant de matières, serait mieux armé pour interpréter les difficultés rencontrées par les élèves
dans les circonstances toujours pressantes d’une classe au travail.

14 C’était une des conclusions méthodologiques de CREM [1995]
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constructions géométriques, A. Blanchard, Paris. Rééd. 1971.
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Klein F. [1908], Elementary mathematics from an advanced standpoint, vol. 2 : Geometry, Dover,
New York. Rééd. 1939.
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trième édition, Delachaux et Niestlé, Paris.
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Gallimard, Paris.
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centre de gravité d’un ensemble de points, 265
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604



Index 605

double fausse position, 209
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Éléments d’Euclide, 7, 203, 295, 297, 321,

491–493
encadrement, 574
Ensanche, 219
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équations du mouvement, 408
équilibre, 381
équilibre d’un point, 390
équipollence, 323, 522, 531
espace de configuration, 418
espace parcouru, 421
estimation, 17
étalon conventionnel, 17
étalon de rencontre, 63
étalon familier, 17
Euclide, 7, 10–12, 295, 297, 531, 568
EXCEL, 405, 421, 452, 458
extrinsèque, 523
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mouvement relatif, 596
Müller, G., 4
multiplication d’un vecteur par un nombre re-

latif, 588
multiplication d’une grandeur par un nombre,

13
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multiplication de déplacements par un scalaire,

241
multiplication des entiers, 150
multiplication des nombres réels, 221
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tableau de proportionnalité entre les mesures,
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Chapitre 1. Les poids à l’école maternelle 17

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Manipulations libres des balances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Soupeser des objets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Comparer avec les balances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
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