

ÉPREUVE EXTERNE COMMUNE

CE1D2014

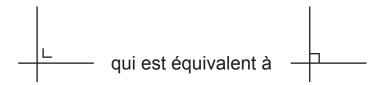
MATHÉMATIQUES

Livret 1 | Lundi 16 juin

NOM:	
PRÉNOM :	/1 2 Γ
CLASSE:	 /135
N° D'ORDRE ·	

ATTENTION

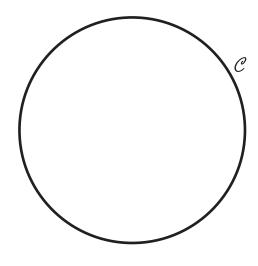
Pour cette première partie :


- la calculatrice n'est pas autorisée ;
- tu auras besoin de ton matériel de géométrie (latte, équerre, rapporteur, compas, crayons de couleur) ;
- n'hésite pas à annoter les figures ;
- il n'est pas nécessaire que tu effaces tes brouillons.

Remarques:

■ Le symbole x et le symbole · sont deux notations utilisées pour la multiplication.

Exemple: 5 x 3 correspond à 5 · 3


 Pour traduire la perpendicularité sur une figure, on a utilisé le codage

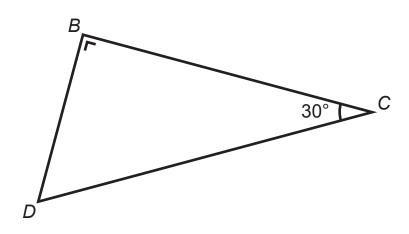
■ Pour écrire les coordonnées d'un point, on a utilisé le codage (...; ...) qui est équivalent à (..., ...).

CONSTRUIS un triangle isocèle BAL dont le sommet A est un point du cercle \mathcal{C} et tel que |AB| = |AL|.

LAISSE tes constructions visibles.

·L

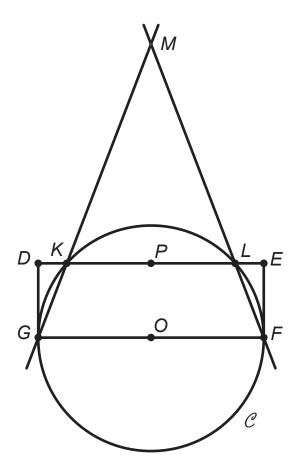
B


QUESTION

/2

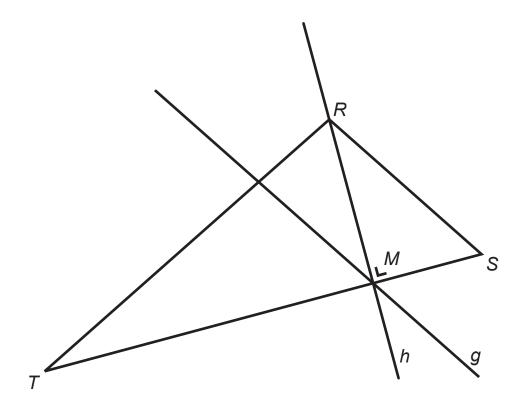
CONSTRUIS un losange dont une diagonale mesure 5 cm et les côtés 3 cm.

Le triangle BCD est rectangle en B.


L'angle \widehat{BCD} mesure 30°.

TRACE le triangle équilatéral *DCE* tel que les points *B* et *E* sont situés de part et d'autre de *DC*.

DÉTERMINE la nature du quadrilatère *BCED*.


Le quadrilatère BCED est un ______.

Voici le programme qui a permis la construction de cette figure. Les deux dernières étapes ont été effacées.

RÉÉCRIS-LES.

- Construis un rectangle *DEFG*.
- Place le point O, milieu du segment [FG].
- Place le point *P*, milieu du segment [*DE*].
- Trace le cercle \mathcal{C} de centre O et de rayon [GO].
- Place le point K, intersection du segment [DP] et du cercle C.
- Place le point L, intersection du segment [EP] et du cercle \mathcal{C} .
- Trace la droite *GK*.
- •_____

Voici, dans le désordre, les consignes du programme de construction de la figure ci-dessus.

- A Trace la droite h, hauteur relative au côté [ST].
- B Trace la droite g parallèle à la droite RS passant par le point M.
- C Trace un triangle RST.
- **D** Nomme *M* le point d'intersection des droites *h* et *ST*.

NOTE, dans les cases ci-dessous, les lettres qui correspondent à l'ordre suivi pour réaliser la construction.

Étape 1	Étape 2	Étape 3	Étape 4

COMPLÈTE le tableau suivant.

Nombre	Notation scientifique du nombre	
312 500 000 000		
0,0034		
	4,72 x 10 ⁵	

QUESTION

/2

CALCULE et ÉCRIS la réponse sans exposant.

 $10^2 \cdot 10 \cdot 10^{-2} =$

 $5 \cdot 10^2 + 4 \cdot 10^3 =$

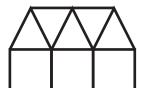
QUESTION 8

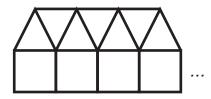
/3

CALCULE.

QUESTION **Q**

/3


COMPLÈTE par > ou < ou =.


<u>2</u> 5	 0,75
- 3	 $-\frac{7}{2}$
0,08	 <u>- 4</u> - 5

OBSERVE cette suite de figures composées de carrés et de triangles.

COMPLÈTE le tableau suivant.

Nombre de carrés	Nombre de triangles
1	1
2	3
3	5
4	

DÉTERMINE le nombre de triangles de la figure composée de 7 carrés.

DÉTERMINE le nombre de carrés de la figure composée de 35 triangles.

PROPOSE une formule qui permet de calculer le nombre de triangles en fonction du nombre *n* de carrés.

Edith adore le cocktail de fruits « Bora Bora » que prépare sa tante.

Ce cocktail est composé de

- 1/2 de jus d'ananas ;
- $-\frac{1}{3}$ de jus de fruits de la passion ;
- $=\frac{1}{10}$ de jus de citron ;
- le reste est de la grenadine.

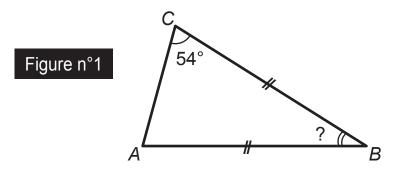
CALCULE la part de grenadine contenue dans le cocktail.

ÉCRIS tous tes calculs.

EXPRIME ta réponse sous forme de fraction irréductible.

Part de grenadine contenue dans le cocktail = _____

QUESTION 1

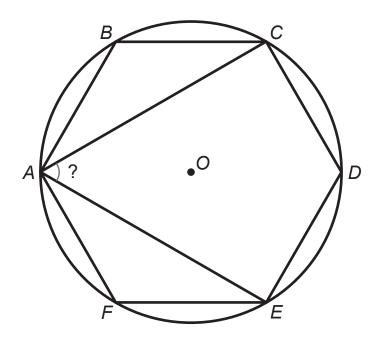

12

HACHURE le tiers du quart de ce rectangle.

DÉTERMINE la fraction du rectangle qui ne doit pas être hachurée.

Attention : les amplitudes des angles des deux figures ci-dessous ne sont pas respectées.

CALCULE l'amplitude de l'angle demandé dans chacune des deux figures. ÉCRIS tous tes calculs.



Amplitude de ABC = _____°

IJHG est un parallélogramme.

Amplitude de \widehat{KHJ} = °

DÉTERMINE, sans mesurer, l'amplitude de l'angle *CAE*. **ÉCRIS** ton raisonnement et tous tes calculs.

Amplitude de \widehat{CAE} = ____ °

Marc et Pascal ont parcouru l'un et l'autre le même trajet.

Marc est parti après Pascal.

Marc ne s'est pas arrêté en chemin.

Marc est arrivé avant Pascal.

EXPLIQUE pourquoi le graphique suivant ne correspond pas à cette situation.

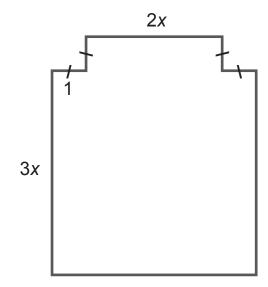
SOULIGNE la lettre du graphique qui correspond à cette situation.

 Un panier de pique-nique contient des sandwichs emballés : 4 sont garnis au crabe, 5 au poulet et 6 au fromage.

DÉTERMINE la fréquence (chance) d'obtenir un sandwich au poulet.

Pierre a 2 chances sur 5 d'obtenir un sandwich au gout qu'il préfère. **DÉTERMINE** ce gout.

QUESTION


/9

RÉSOUS les équations suivantes (toute solution fractionnaire doit être écrite sous forme irréductible).

$$7x - (5 + 3x) = 0$$

$$3(x+1) = x - 2 \qquad \frac{5x}{4} = \frac{7}{6}$$

$$\frac{5x}{4} = \frac{7}{6}$$

Cette figure n'est pas à l'échelle. Tous les angles sont droits.

Le périmètre de la figure est égal à 56.

DÉTERMINE, sans mesurer, la valeur de *x*. **ÉCRIS** ton raisonnement et tous tes calculs.

Réponse : *x* = _____

/4

CALCULE en écrivant toutes les étapes.

ÉCRIS la réponse sous forme d'une fraction irréductible.

$$\frac{1}{4} + 2 - \frac{4}{3} =$$

$$\frac{2}{3} \times \frac{9}{-7} \times \frac{-4}{-5} =$$

QUESTION 20

CALCULE la valeur numérique de l'expression $2x^2 - 3x + 1$. **ÉCRIS** toutes les étapes.

Si
$$x = 4$$

Si
$$x = \frac{1}{2}$$

Dans une école, il y a entre 260 et 270 élèves au premier degré.

On organise un tournoi de football auquel tous les élèves participent.

Chaque équipe comprend 11 élèves.

Un même élève ne peut pas jouer dans deux équipes.

CALCULE le nombre d'équipes que l'on peut former.

CALCULE le nombre d'élèves au premier degré.

ÉCRIS ton raisonnement et tous tes calculs.

Nombre d'équipes que l'on peut former : _____

Nombre d'élèves au premier degré : _____

QUESTION 22

1.

Lors d'un jeu, Jean perd 10 % de ses 500 cartes puis regagne 10 % de ce qui lui reste.

DÉTERMINE le nombre de cartes qu'il possède à la fin du jeu. **ÉCRIS** tous tes calculs.

Nombre de cartes que Jean possède à la fin du jeu : _____

SOULIGNE la lettre du tableau qui montre une proportionnalité directe entre la grandeur *x* et la grandeur *y*.

Tableau A				
x y				
1	1			
4	2			
16 4				

Α

Tableau B			
x y			
2	1		
4	3		
6 5			

В

Tableau C			
x y			
3	1		
6	2		
15 5			

C

DÉTERMINE le coefficient de cette proportionnalité.

QUESTION 24

/3

Les mesures des trois côtés d'un triangle sont des nombres entiers. Deux côtés mesurent 2 cm et 5 cm.

DÉTERMINE, en centimètres, la plus grande mesure du 3^e côté. **JUSTIFIE** ta réponse.

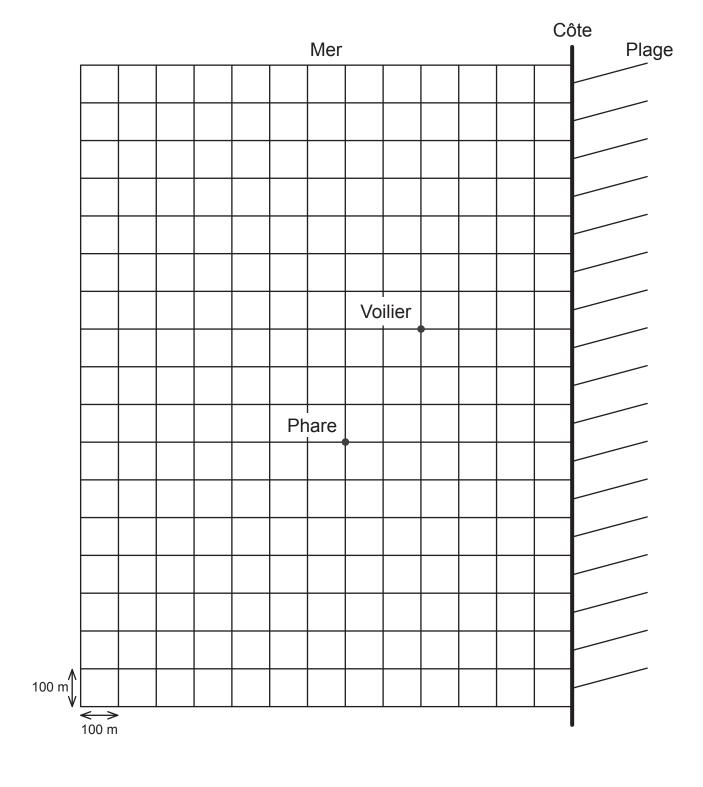
La plus grande mesure entière du 3e côté vaut ____ cm.

SOULIGNE VRAI ou FAUX pour chacune des affirmations ci-dessous.

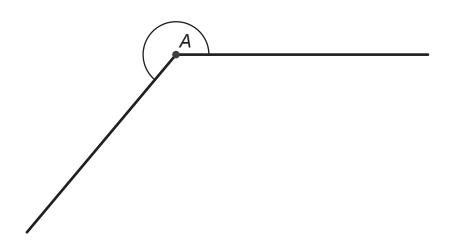
- Si tu as souligné VRAI, **JUSTIFIE** ta réponse.
- Si tu as souligné FAUX, ÉCRIS un contre-exemple.
- a) Si l'on additionne les amplitudes de deux angles aigus, on obtient toujours l'amplitude d'un angle obtus.

VRAI - FAUX

b) Si l'on additionne l'amplitude d'un angle aigu à celle d'un angle obtus, on obtient toujours l'amplitude d'un angle plat.


VRAI – FAUX

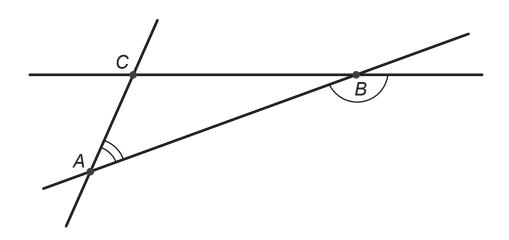
c) Les deux angles aigus d'un triangle rectangle sont complémentaires.


VRAI - FAUX

MARQUE en vert la position du dauphin.

LAISSE tes constructions visibles.

DÉTERMINE l'amplitude de l'angle \hat{A} marqué.

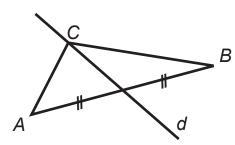


Amplitude de $\hat{A} =$ _____°

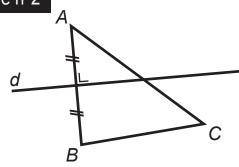
QUESTION 28

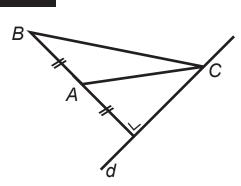
/2

MESURE l'amplitude des angles \hat{A} et \hat{B} marqués.



Amplitude de $\hat{A} =$ _____°


Amplitude de $\hat{B} =$ _____°



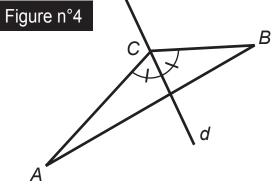


Figure n°2

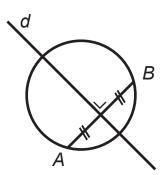


Figure n°3

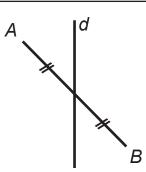


Figure n°5

Figure n°6

ÉCRIS les numéros des deux figures où la droite d est la médiatrice du segment [AB].

Figure n°____ et figure n°____

JUSTIFIE ton choix.

JUSTIFIE pourquoi l'énoncé suivant est faux.

« Un triangle isocèle qui a un angle de 45° est toujours un triangle rectangle. »

JUSTIFIE pourquoi l'énoncé suivant est vrai.

« Un triangle isocèle dont l'angle au sommet vaut 60° est un triangle équilatéral. »

Fédération Wallonie-Bruxelles / Ministère Administration générale de l'Enseignement et de la Recherche scientifique

Éditeur responsable : Jean-Pierre HUBIN, Administrateur général Boulevard du Jardin Botanique, 20-22 – 1000 Bruxelles

ÉPREUVE EXTERNE COMMUNE

CE1D2014

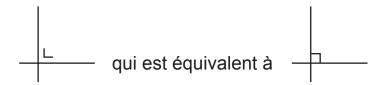
MATHÉMATIQUES

Livret 2 | Lundi 16 juin

NOM:	
PRÉNOM :	
CLASSE:	
N° D'ORDRE :	

ATTENTION

Pour cette seconde partie :


- la calculatrice est autorisée ;
- tu auras besoin de ton matériel de géométrie (latte, équerre, rapporteur, compas, crayons de couleur);
- n'hésite pas à annoter les figures ;
- il n'est pas nécessaire que tu effaces tes brouillons.

Remarques:

■ Le symbole × et le symbole · sont deux notations utilisées pour la multiplication.

Exemple : 5×3 correspond à $5 \cdot 3$

 Pour traduire la perpendicularité sur une figure, on a utilisé le codage

■ Pour écrire les coordonnées d'un point, on a utilisé le codage (...; ...) qui est équivalent à (..., ...).

/4

/1

EFFECTUE les opérations et RÉDUIS si nécessaire.

$$3d^2 \cdot 8d^4 \cdot d =$$

$$-2p^4 - 3p^2 + 2p^4 =$$

$$-(4t+3)-5t=$$

$$(b+4) \cdot (3+2b) =$$

QUESTION 32

EFFECTUE les produits remarquables et RÉDUIS si nécessaire.

$$(5a-2b)^2 =$$

$$(3+2y) \cdot (3-2y) =$$

QUESTION 33

$$x^3 \cdot x^5 = x^8$$

JUSTIFIE cette égalité par une propriété, une règle ou une formule.

APPLIQUE les propriétés des puissances pour réduire les expressions suivantes.

$$(-3x)^4 =$$

$$\frac{2a^6}{3a^2} = \underline{\hspace{1cm}}$$

$$(ab^2)^3 =$$

QUESTION 35

Un jardinier amène de la terre pour combler 17 trous de 0,5 m³ chacun. Il prévoit 25 % de volume supplémentaire car la terre se tasse avec le temps.

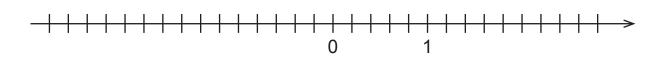
CALCULE le volume de terre à amener. **ÉCRIS** tous tes calculs.

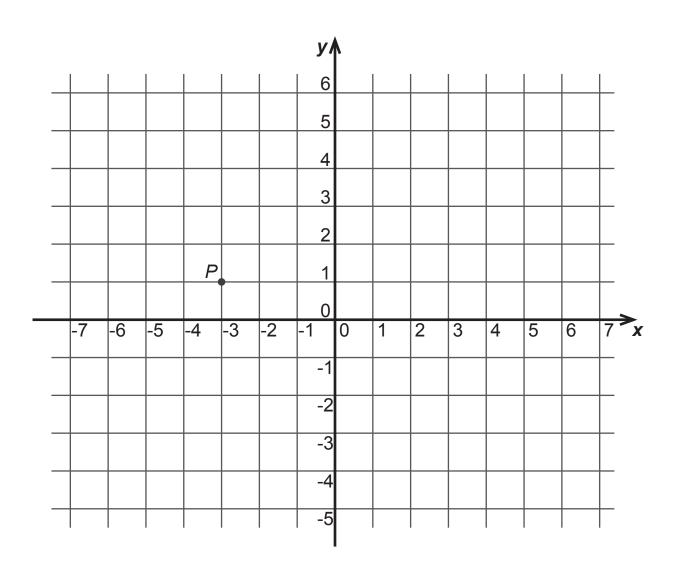
Au cinéma, quatre adolescentes ont acheté des bonbons en vrac.

- Julie a payé 4 € pour 250 g;
- Chen a payé 2,40 € pour 150 g;
- Stéphanie a payé 3 € pour 200 g ;
- Yasmina a payé 6,40 € pour 400 g.

Il y a une erreur pour l'une d'entre elles. **SOULIGNE** son prénom.

Julie | Chen | Stéphanie | Yasmina

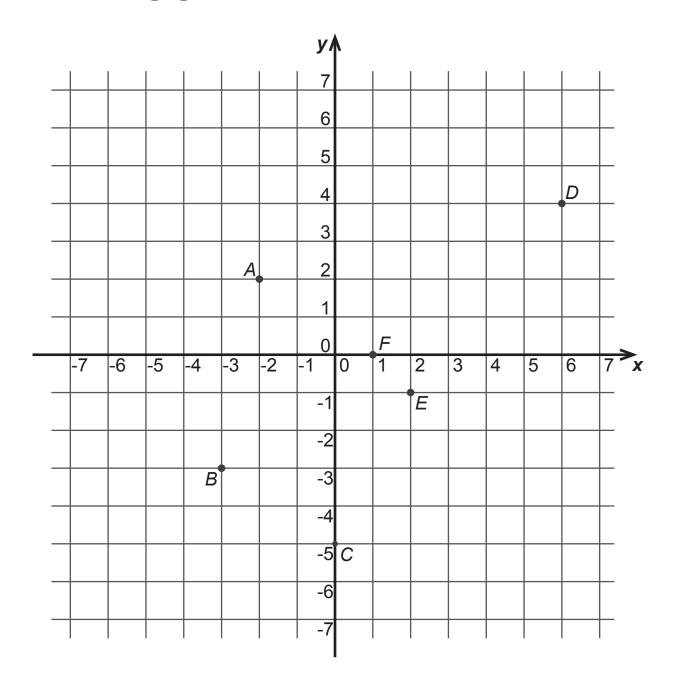

ÉCRIS ton raisonnement.


QUESTION 37

12

SITUE le point *A* d'abscisse $-\frac{5}{2}$.

SITUE le point *B* d'abscisse 1,6.


ÉCRIS les coordonnées du point P.

Coordonnées de *P* : (_____ ; _____)

SITUE le point *A* de coordonnées $(\frac{1}{2}; 4)$.

SITUE le point *B* de coordonnées (-2 ; -3).

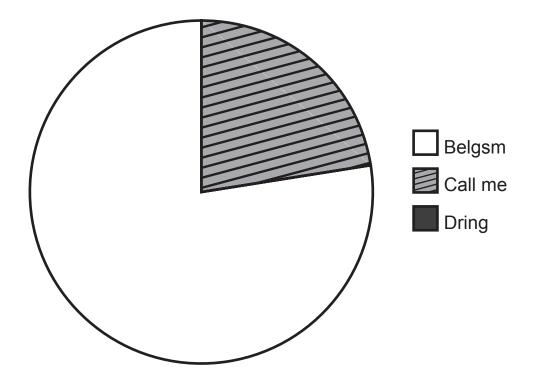
SITUE le point *C* de coordonnées (-3 ; 0).

Parmi les points A, B, C, D, E, F:

a) **DÉTERMINE** le point dont l'abscisse et l'ordonnée sont deux nombres opposés.

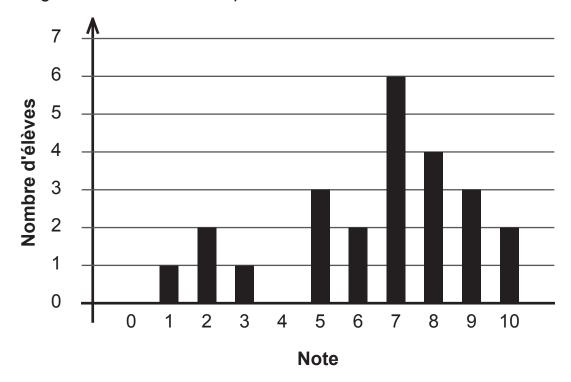
Réponse :

b) **DÉTERMINE** le point dont l'abscisse est nulle.


Réponse : _____

c) **DÉTERMINE** les deux points dont l'ordonnée est supérieure à $\frac{3}{2}$.

Réponse : _____ et ____


On a demandé à 1 800 adolescents de donner le nom de leur opérateur GSM. Les résultats sont repris dans le tableau suivant.

Opérateur	Nombre d'adolescents
Belgsm	855
Call me	405
Dring	540

COMPLÈTE le diagramme circulaire qui représente cette situation. **ÉCRIS** tous tes calculs.

Un professeur a traduit les résultats d'un test noté sur 10 par le diagramme en bâtonnets que voici :

ÉCRIS le nombre d'élèves qui ont obtenu la note maximale.

ÉCRIS le nombre d'élèves qui sont en échec.

ÉCRIS le nombre d'élèves qui ont fait le test.

ÉCRIS le nombre d'élèves qui ont plus de 80 %.

CALCULE le pourcentage d'élèves qui ont obtenu exactement $\frac{5}{10}$.

On a mesuré, au centimètre près, la taille des filles et des garçons du premier degré d'un établissement scolaire.

Les diagrammes dans le livret **Annexe** montrent une répartition de ces tailles.

a) JUSTIFIE que c'est une fille qui a la plus petite taille.

b) **JUSTIFIE** qu'il y a moins de garçons que de filles.

c) **JUSTIFIE** que plus de 50 % des garçons ont une taille comprise entre 1,60 m et 1,69 m.

d) **CALCULE**, à l'unité près, le pourcentage de filles qui ont une taille comprise entre 1,65 m et 1,69 m.

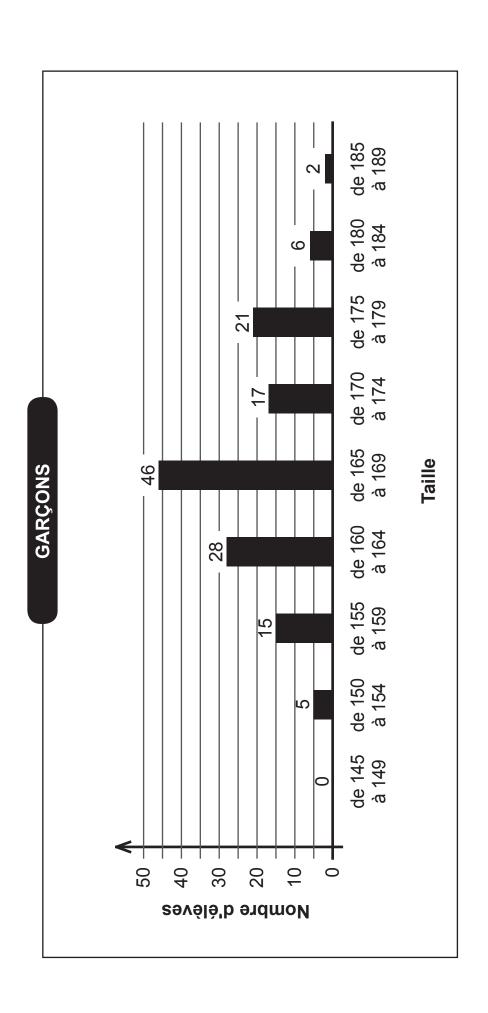
Fédération Wallonie-Bruxelles / Ministère Administration générale de l'Enseignement et de la Recherche scientifique

Éditeur responsable : Jean-Pierre HUBIN, Administrateur général Boulevard du Jardin Botanique, 20-22 – 1000 Bruxelles

ÉPREUVE EXTERNE COMMUNE

CE1D2014

MATHÉMATIQUES


Livret 2 | ANNEXE

NOM:	
PRÉNOM:	
CLASSE:	
N° D'ORDRE :	

de 185 à 189 de 180 à 184 de 175 à 179 13 de 170 à 174 28 de 165 à 169 Taille 49 FILLES de 160 à 164 40 de 155 à 159 16 de 150 à 154 ∞ de 145 à 149 α 0 20 40 30 20 10 Nombre d'élèves

Dans les diagrammes, les tailles sont exprimées en centimètres.

Fédération Wallonie-Bruxelles / Ministère Administration générale de l'Enseignement et de la Recherche scientifique

Éditeur responsable : Jean-Pierre HUBIN, Administrateur général Boulevard du Jardin Botanique, 20-22 – 1000 Bruxelles